1
0
mirror of https://github.com/SerenityOS/serenity synced 2024-07-09 03:50:45 +00:00

LibCompress: Handle arbitrarily long FF-chains in the LZMA encoder

This commit is contained in:
Tim Schumacher 2023-05-19 01:27:31 +02:00 committed by Jelle Raaijmakers
parent cb93186350
commit a01968ee6d
3 changed files with 76 additions and 29 deletions

View File

@ -75,6 +75,26 @@ TEST_CASE(compress_decompress_roundtrip_with_unknown_size)
EXPECT_EQ(uncompressed, result.span());
}
TEST_CASE(compress_long_overflow_chain)
{
// Encoding 0xFF followed by the end-of-stream marker results in a chain of bytes that doesn't fit into 64 bits,
// which breaks naive implementations of "hold back the byte until it no longer changes".
Array<u8, 1> const uncompressed {
0xFF
};
auto stream = MUST(try_make<AllocatingMemoryStream>());
auto compressor = TRY_OR_FAIL(Compress::LzmaCompressor::create_container(MaybeOwned<Stream> { *stream }, {}));
TRY_OR_FAIL(compressor->write_until_depleted(uncompressed));
TRY_OR_FAIL(compressor->flush());
auto decompressor = TRY_OR_FAIL(Compress::LzmaDecompressor::create_from_container(MaybeOwned<Stream> { *stream }));
auto result = TRY_OR_FAIL(decompressor->read_until_eof());
EXPECT_EQ(uncompressed, result.span());
}
// The following tests are based on test files from the LZMA specification, which has been placed in the public domain.
// LZMA Specification Draft (2015): https://www.7-zip.org/a/lzma-specification.7z

View File

@ -249,33 +249,53 @@ ErrorOr<void> LzmaDecompressor::normalize_range_decoder()
return {};
}
ErrorOr<void> LzmaCompressor::shift_range_encoder()
{
if ((m_range_encoder_code >> 32) == 0x01) {
// If there is an overflow, we can finalize the chain we were previously building.
// This includes incrementing both the cached byte and all the 0xFF bytes that we generate.
VERIFY(m_range_encoder_cached_byte != 0xFF);
TRY(m_stream->write_value<u8>(m_range_encoder_cached_byte + 1));
for (size_t i = 0; i < m_range_encoder_ff_chain_length; i++)
TRY(m_stream->write_value<u8>(0x00));
m_range_encoder_ff_chain_length = 0;
m_range_encoder_cached_byte = (m_range_encoder_code >> 24);
} else if ((m_range_encoder_code >> 24) == 0xFF) {
// If the byte to flush is 0xFF, it can potentially propagate an overflow and needs to be added to the chain.
m_range_encoder_ff_chain_length++;
} else {
// If the byte to flush isn't 0xFF, any future overflows will not be propagated beyond this point,
// so we can be sure that the built chain doesn't change anymore.
TRY(m_stream->write_value<u8>(m_range_encoder_cached_byte));
for (size_t i = 0; i < m_range_encoder_ff_chain_length; i++)
TRY(m_stream->write_value<u8>(0xFF));
m_range_encoder_ff_chain_length = 0;
m_range_encoder_cached_byte = (m_range_encoder_code >> 24);
}
// In all three cases we now recorded the highest byte in some way, so we can shift it away and shift in a null byte as the lowest byte.
m_range_encoder_range <<= 8;
m_range_encoder_code <<= 8;
// Since we are working with a 64-bit code, we need to limit it to 32 bits artificially.
m_range_encoder_code &= 0xFFFFFFFF;
return {};
}
ErrorOr<void> LzmaCompressor::normalize_range_encoder()
{
u64 const maximum_range_value = m_range_encoder_code + m_range_encoder_range;
// If we hit this, we have the potential to overflow into a byte that we already flushed.
VERIFY((maximum_range_value & ((1ull << m_range_encoder_code_used_bits) - 1)) == maximum_range_value);
// Logically, we should only ever build up an overflow that is smaller than or equal to 0x01.
VERIFY((maximum_range_value >> 32) <= 0x01);
constexpr u32 minimum_range_value = 1 << 24;
if (m_range_encoder_range >= minimum_range_value)
return {};
u64 const flipped_bits = maximum_range_value ^ m_range_encoder_code;
u64 const size_of_flipped_bits = count_required_bits(flipped_bits);
// If we can flush a full byte without impacting future bits, do so.
while (m_range_encoder_code_used_bits - 8 >= size_of_flipped_bits) {
u8 const next_byte = (m_range_encoder_code >> (m_range_encoder_code_used_bits - 8));
m_range_encoder_code -= static_cast<u64>(next_byte) << (m_range_encoder_code_used_bits - 8);
m_range_encoder_code_used_bits -= 8;
TRY(m_stream->write_value(next_byte));
}
// Now, shift in a fresh null byte from the bottom.
m_range_encoder_range <<= 8;
m_range_encoder_code <<= 8;
m_range_encoder_code_used_bits += 8;
TRY(shift_range_encoder());
VERIFY(m_range_encoder_range >= minimum_range_value);
@ -1212,10 +1232,6 @@ ErrorOr<NonnullOwnPtr<LzmaCompressor>> LzmaCompressor::create_container(MaybeOwn
auto header = TRY(LzmaHeader::from_compressor_options(options));
TRY(stream->write_value(header));
// Note: The reference LZMA implementation has a starting null byte due to how their overflow reservoir is implemented and subsequently wrote it into the specification.
// Therefore, we just have to add it manually.
TRY(stream->write_value<u8>(0x00));
auto compressor = TRY(adopt_nonnull_own_or_enomem(new (nothrow) LzmaCompressor(move(stream), options, move(dictionary), move(literal_probabilities))));
return compressor;
@ -1276,13 +1292,18 @@ ErrorOr<void> LzmaCompressor::flush()
if (!m_options.uncompressed_size.has_value())
TRY(encode_normalized_simple_match(end_of_stream_marker, 0));
while (m_range_encoder_code_used_bits > 0) {
VERIFY(m_range_encoder_code_used_bits >= 8);
u8 const next_byte = (m_range_encoder_code >> (m_range_encoder_code_used_bits - 8));
m_range_encoder_code -= static_cast<u64>(next_byte) << (m_range_encoder_code_used_bits - 8);
m_range_encoder_code_used_bits -= 8;
TRY(m_stream->write_value(next_byte));
}
// Shifting the range encoder using the normal operation handles any pending overflows.
TRY(shift_range_encoder());
// Now, the remaining bytes are the cached byte, the chain of 0xFF, and the upper 3 bytes of the current `code`.
// Incrementing the values does not have to be considered as no overflows are pending. The fourth byte is the
// null byte that we just shifted in, which should not be flushed as it would be extraneous junk data.
TRY(m_stream->write_value<u8>(m_range_encoder_cached_byte));
for (size_t i = 0; i < m_range_encoder_ff_chain_length; i++)
TRY(m_stream->write_value<u8>(0xFF));
TRY(m_stream->write_value<u8>(m_range_encoder_code >> 24));
TRY(m_stream->write_value<u8>(m_range_encoder_code >> 16));
TRY(m_stream->write_value<u8>(m_range_encoder_code >> 8));
m_has_flushed_data = true;
return {};

View File

@ -225,6 +225,7 @@ public:
private:
LzmaCompressor(MaybeOwned<Stream>, LzmaCompressorOptions, MaybeOwned<CircularBuffer>, FixedArray<Probability> literal_probabilities);
ErrorOr<void> shift_range_encoder();
ErrorOr<void> normalize_range_encoder();
ErrorOr<void> encode_direct_bit(u8 value);
ErrorOr<void> encode_bit_with_probability(Probability&, u8 value);
@ -253,7 +254,12 @@ private:
// Range encoder state.
u32 m_range_encoder_range { 0xFFFFFFFF };
u64 m_range_encoder_code { 0 };
size_t m_range_encoder_code_used_bits { 32 };
// Since the range is only 32-bits, we can overflow at most +1 into the next byte beyond the usual 32-bit code.
// Therefore, it is sufficient to store the highest byte (which may still change due to that +1 overflow) and
// the length of the chain of 0xFF bytes that may end up propagating that change.
u8 m_range_encoder_cached_byte { 0x00 };
size_t m_range_encoder_ff_chain_length { 0 };
};
}