LibGfx: Implement new antialiased filled path rasterizer

This is an implementation of the scanline edge-flag algorithm for
antialiased path filling described here:
https://mlab.taik.fi/~kkallio/antialiasing/EdgeFlagAA.pdf

The initial implementation does not try to implement every possible
optimization in favour of keeping things simple. However, it does
support:

   - Both evenodd and nonzero fill rules
   - Applying paint styles/gradients
   - A range of samples per pixel (8, 16, 32)
   - Very nice antialiasing :^)

This replaces the previous path filling code, that only really applied
antialiasing in the x-axis.

There's some very nice improvements around the web with this change,
especially for small icons. Strokes are still a bit wonky, as they don't
yet use this rasterizer, but I think it should be possible to convert
them to do so.
This commit is contained in:
MacDue 2023-05-31 19:02:00 +01:00 committed by Andreas Kling
parent e4adaa2d20
commit 48fa8f97d3
6 changed files with 536 additions and 324 deletions

View file

@ -207,19 +207,6 @@ void AntiAliasingPainter::draw_line(FloatPoint actual_from, FloatPoint actual_to
draw_anti_aliased_line<FixmeEnableHacksForBetterPathPainting::No>(actual_from, actual_to, color, thickness, style, alternate_color, line_length_mode);
}
// FIXME: In the fill_paths() m_transform.translation() throws away any other transforms
// this currently does not matter -- but may in future.
void AntiAliasingPainter::fill_path(Path const& path, Color color, Painter::WindingRule rule)
{
m_underlying_painter.antialiased_fill_path(path, color, rule, m_transform.translation());
}
void AntiAliasingPainter::fill_path(Path const& path, PaintStyle const& paint_style, Painter::WindingRule rule)
{
m_underlying_painter.antialiased_fill_path(path, paint_style, rule, m_transform.translation());
}
void AntiAliasingPainter::stroke_path(Path const& path, Color color, float thickness)
{
FloatPoint cursor;

View file

@ -8,7 +8,7 @@ set(SOURCES
Color.cpp
CursorParams.cpp
DeltaE.cpp
FillPathImplementation.cpp
EdgeFlagPathRasterizer.cpp
Filters/ColorBlindnessFilter.cpp
Filters/FastBoxBlurFilter.cpp
Filters/LumaFilter.cpp

View file

@ -0,0 +1,345 @@
/*
* Copyright (c) 2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Array.h>
#include <AK/IntegralMath.h>
#include <AK/Types.h>
#include <LibGfx/AntiAliasingPainter.h>
#include <LibGfx/EdgeFlagPathRasterizer.h>
#if defined(AK_COMPILER_GCC)
# pragma GCC optimize("O3")
#endif
// This a pretty naive implementation of edge-flag scanline AA.
// The paper lists many possible optimizations, maybe implement one? (FIXME!)
// https://mlab.taik.fi/~kkallio/antialiasing/EdgeFlagAA.pdf
// This currently implements:
// - The scanline buffer optimization (only allocate one scanline)
// Possible other optimizations according to the paper:
// - Using fixed point numbers
// - Edge tracking
// - Mask tracking
// - Loop unrolling (compilers might handle this better now, the paper is from 2007)
// Optimizations I think we could add:
// - Using fast_u32_fills() for runs of solid colors
// - Clipping the plotted edges earlier
namespace Gfx {
static Vector<Detail::Edge> prepare_edges(ReadonlySpan<Path::SplitLineSegment> lines, unsigned samples_per_pixel, FloatPoint origin)
{
// FIXME: split_lines() gives similar information, but the form it's in is not that useful (and is const anyway).
Vector<Detail::Edge> edges;
edges.ensure_capacity(lines.size());
for (auto& line : lines) {
auto p0 = line.from - origin;
auto p1 = line.to - origin;
p0.scale_by(1, samples_per_pixel);
p1.scale_by(1, samples_per_pixel);
i8 winding = -1;
if (p0.y() > p1.y()) {
swap(p0, p1);
} else {
winding = 1;
}
if (p0.y() == p1.y())
continue;
auto dx = p1.x() - p0.x();
auto dy = p1.y() - p0.y();
float dxdy = float(dx) / dy;
float x = p0.x();
edges.unchecked_append(Detail::Edge {
x,
static_cast<int>(p0.y()),
static_cast<int>(p1.y()),
dxdy,
winding,
nullptr });
}
return edges;
}
template<unsigned SamplesPerPixel>
EdgeFlagPathRasterizer<SamplesPerPixel>::EdgeFlagPathRasterizer(IntSize size)
: m_size(size.width() + 1, size.height() + 1)
{
m_scanline.resize(m_size.width());
m_edge_table.resize(m_size.height());
}
template<unsigned SamplesPerPixel>
void EdgeFlagPathRasterizer<SamplesPerPixel>::fill(Painter& painter, Path const& path, Color color, Painter::WindingRule winding_rule, FloatPoint offset)
{
fill_internal(painter, path, color, winding_rule, offset);
}
template<unsigned SamplesPerPixel>
void EdgeFlagPathRasterizer<SamplesPerPixel>::fill(Painter& painter, Path const& path, PaintStyle const& style, Painter::WindingRule winding_rule, FloatPoint offset)
{
style.paint(enclosing_int_rect(path.bounding_box()), [&](PaintStyle::SamplerFunction sampler) {
fill_internal(painter, path, move(sampler), winding_rule, offset);
});
}
template<unsigned SamplesPerPixel>
void EdgeFlagPathRasterizer<SamplesPerPixel>::fill_internal(Painter& painter, Path const& path, auto color_or_function, Painter::WindingRule winding_rule, FloatPoint offset)
{
// FIXME: Figure out how painter scaling works here...
VERIFY(painter.scale() == 1);
auto bounding_box = enclosing_int_rect(path.bounding_box().translated(offset));
auto dest_rect = bounding_box.translated(painter.translation());
auto origin = bounding_box.top_left().to_type<float>() - offset;
m_blit_origin = dest_rect.top_left();
m_clip = dest_rect.intersected(painter.clip_rect());
if (m_clip.is_empty())
return;
auto& lines = path.split_lines();
if (lines.is_empty())
return;
auto edges = prepare_edges(lines, SamplesPerPixel, origin);
int min_scanline = m_size.height();
int max_scanline = 0;
for (auto& edge : edges) {
int start_scanline = edge.min_y / SamplesPerPixel;
int end_scanline = edge.max_y / SamplesPerPixel;
// Create a linked-list of edges starting on this scanline:
edge.next_edge = m_edge_table[start_scanline];
m_edge_table[start_scanline] = &edge;
min_scanline = min(min_scanline, start_scanline);
max_scanline = max(max_scanline, end_scanline);
}
Detail::Edge* active_edges = nullptr;
// FIXME: We could probably clip some of the egde plotting if we know it won't be shown.
// Though care would have to be taken to ensure the active edges are correct at the first drawn scaline.
if (winding_rule == Painter::WindingRule::EvenOdd) {
auto plot_edge = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y) {
for (int y = start_subpixel_y; y < end_subpixel_y; y++) {
int xi = static_cast<int>(edge.x + SubpixelSample::nrooks_subpixel_offsets[y]);
SampleType sample = 1 << y;
m_scanline[xi] ^= sample;
edge.x += edge.dxdy;
}
};
for (int scanline = min_scanline; scanline <= max_scanline; scanline++) {
active_edges = plot_edges_for_scanline(scanline, plot_edge, active_edges);
accumulate_even_odd_scanline(painter, scanline, color_or_function);
}
} else {
VERIFY(winding_rule == Painter::WindingRule::Nonzero);
// Only allocate the winding buffer if needed.
// NOTE: non-zero fills are a fair bit less efficient. So if you can do an even-odd fill do that :^)
if (m_windings.is_empty())
m_windings.resize(m_size.width());
auto plot_edge = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y) {
for (int y = start_subpixel_y; y < end_subpixel_y; y++) {
int xi = static_cast<int>(edge.x + SubpixelSample::nrooks_subpixel_offsets[y]);
SampleType sample = 1 << y;
m_scanline[xi] |= sample;
m_windings[xi].counts[y] += edge.winding;
edge.x += edge.dxdy;
}
};
for (int scanline = min_scanline; scanline <= max_scanline; scanline++) {
active_edges = plot_edges_for_scanline(scanline, plot_edge, active_edges);
accumulate_non_zero_scanline(painter, scanline, color_or_function);
}
}
}
template<unsigned SamplesPerPixel>
Color EdgeFlagPathRasterizer<SamplesPerPixel>::scanline_color(int scanline, int offset, u8 alpha, auto& color_or_function)
{
using ColorOrFunction = decltype(color_or_function);
constexpr bool has_constant_color = IsSame<RemoveCVReference<ColorOrFunction>, Color>;
auto color = [&] {
if constexpr (has_constant_color) {
return color_or_function;
} else {
return color_or_function({ offset, scanline });
}
}();
return color.with_alpha(color.alpha() * alpha / 255);
}
template<unsigned SamplesPerPixel>
Detail::Edge* EdgeFlagPathRasterizer<SamplesPerPixel>::plot_edges_for_scanline(int scanline, auto plot_edge, Detail::Edge* active_edges)
{
auto y_subpixel = [](int y) {
return y & (SamplesPerPixel - 1);
};
auto* current_edge = active_edges;
Detail::Edge* prev_edge = nullptr;
// First iterate over the edge in the active edge table, these are edges added on earlier scanlines,
// that have not yet reached their end scanline.
while (current_edge) {
int end_scanline = current_edge->max_y / SamplesPerPixel;
if (scanline == end_scanline) {
// This edge ends this scanline.
plot_edge(*current_edge, 0, y_subpixel(current_edge->max_y));
// Remove this edge from the AET
current_edge = current_edge->next_edge;
if (prev_edge)
prev_edge->next_edge = current_edge;
else
active_edges = current_edge;
} else {
// This egde sticks around for a few more scanlines.
plot_edge(*current_edge, 0, SamplesPerPixel);
prev_edge = current_edge;
current_edge = current_edge->next_edge;
}
}
// Next, iterate over new edges for this line. If active_edges was null this also becomes the new
// AET. Edges new will be appended here.
current_edge = m_edge_table[scanline];
while (current_edge) {
int end_scanline = current_edge->max_y / SamplesPerPixel;
if (scanline == end_scanline) {
// This edge will end this scanlines (no need to add to AET).
plot_edge(*current_edge, y_subpixel(current_edge->min_y), y_subpixel(current_edge->max_y));
} else {
// This edge will live on for a few more scanlines.
plot_edge(*current_edge, y_subpixel(current_edge->min_y), SamplesPerPixel);
// Add this edge to the AET
if (prev_edge)
prev_edge->next_edge = current_edge;
else
active_edges = current_edge;
prev_edge = current_edge;
}
current_edge = current_edge->next_edge;
}
m_edge_table[scanline] = nullptr;
return active_edges;
}
template<unsigned SamplesPerPixel>
void EdgeFlagPathRasterizer<SamplesPerPixel>::write_pixel(Painter& painter, int scanline, int offset, SampleType sample, auto& color_or_function)
{
auto dest = IntPoint { offset, scanline } + m_blit_origin;
if (!m_clip.contains_horizontally(dest.x()))
return;
// FIXME: We could detect runs of full coverage and use fast_u32_fills for those rather than many set_pixel() calls.
auto coverage = SubpixelSample::compute_coverage(sample);
if (coverage) {
auto paint_color = scanline_color(scanline, offset, coverage_to_alpha(coverage), color_or_function);
painter.set_physical_pixel(dest, paint_color, true);
}
}
template<unsigned SamplesPerPixel>
void EdgeFlagPathRasterizer<SamplesPerPixel>::accumulate_even_odd_scanline(Painter& painter, int scanline, auto& color_or_function)
{
auto dest_y = m_blit_origin.y() + scanline;
if (!m_clip.contains_vertically(dest_y)) {
// FIXME: This memset only really needs to be done on transition from clipped to not clipped,
// or not at all if we properly clipped egde plotting.
memset(m_scanline.data(), 0, sizeof(SampleType) * m_scanline.size());
return;
}
SampleType sample = 0;
for (int x = 0; x < m_size.width(); x += 1) {
sample ^= m_scanline[x];
write_pixel(painter, scanline, x, sample, color_or_function);
m_scanline[x] = 0;
}
}
template<unsigned SamplesPerPixel>
void EdgeFlagPathRasterizer<SamplesPerPixel>::accumulate_non_zero_scanline(Painter& painter, int scanline, auto& color_or_function)
{
// NOTE: Same FIXMEs apply from accumulate_even_odd_scanline()
auto dest_y = m_blit_origin.y() + scanline;
if (!m_clip.contains_vertically(dest_y)) {
memset(m_scanline.data(), 0, sizeof(SampleType) * m_scanline.size());
memset(m_windings.data(), 0, sizeof(WindingCounts) * m_windings.size());
return;
}
SampleType sample = 0;
WindingCounts sum_winding = {};
for (int x = 0; x < m_size.width(); x += 1) {
if (auto edges = m_scanline[x]) {
// We only need to process the windings when we hit some edges.
for (auto y_sub = 0u; y_sub < SamplesPerPixel; y_sub++) {
auto subpixel_bit = 1 << y_sub;
if (edges & subpixel_bit) {
auto winding = m_windings[x].counts[y_sub];
auto previous_winding_count = sum_winding.counts[y_sub];
sum_winding.counts[y_sub] += winding;
// Toggle fill on change to/from zero
if ((previous_winding_count == 0 && sum_winding.counts[y_sub] != 0)
|| (sum_winding.counts[y_sub] == 0 && previous_winding_count != 0)) {
sample ^= subpixel_bit;
}
}
}
}
write_pixel(painter, scanline, x, sample, color_or_function);
m_scanline[x] = 0;
m_windings[x] = {};
}
}
static IntSize path_bounds(Gfx::Path const& path)
{
return enclosing_int_rect(path.bounding_box()).size();
}
// Note: The AntiAliasingPainter and Painter now perform the same antialiasing,
// since it would be harder to turn it off for the standard painter.
// The samples are reduced to 8 for Gfx::Painter though as a "speedy" option.
void Painter::fill_path(Path const& path, Color color, WindingRule winding_rule)
{
EdgeFlagPathRasterizer<8> rasterizer(path_bounds(path));
rasterizer.fill(*this, path, color, winding_rule);
}
void Painter::fill_path(Path const& path, PaintStyle const& paint_style, Painter::WindingRule winding_rule)
{
EdgeFlagPathRasterizer<8> rasterizer(path_bounds(path));
rasterizer.fill(*this, path, paint_style, winding_rule);
}
void AntiAliasingPainter::fill_path(Path const& path, Color color, Painter::WindingRule winding_rule)
{
EdgeFlagPathRasterizer<32> rasterizer(path_bounds(path));
rasterizer.fill(m_underlying_painter, path, color, winding_rule, m_transform.translation());
}
void AntiAliasingPainter::fill_path(Path const& path, PaintStyle const& paint_style, Painter::WindingRule winding_rule)
{
EdgeFlagPathRasterizer<32> rasterizer(path_bounds(path));
rasterizer.fill(m_underlying_painter, path, paint_style, winding_rule, m_transform.translation());
}
template class EdgeFlagPathRasterizer<8>;
template class EdgeFlagPathRasterizer<16>;
template class EdgeFlagPathRasterizer<32>;
}

View file

@ -0,0 +1,188 @@
/*
* Copyright (c) 2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/GenericShorthands.h>
#include <AK/Vector.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/PaintStyle.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Path.h>
namespace Gfx {
namespace Detail {
static auto constexpr coverage_lut = [] {
Array<u8, 256> coverage_lut {};
for (u32 sample = 0; sample <= 255; sample++)
coverage_lut[sample] = popcount(sample);
return coverage_lut;
}();
template<unsigned SamplesPerPixel>
struct Sample {
static_assert(!first_is_one_of(SamplesPerPixel, 8u, 16u, 32u), "EdgeFlagPathRasterizer: Invalid samples per pixel!");
};
// See paper for diagrams for how these offsets work, but they allow for nicely spread out samples in each pixel.
template<>
struct Sample<8> {
using Type = u8;
static constexpr Array nrooks_subpixel_offsets {
(5.0f / 8.0f),
(0.0f / 8.0f),
(3.0f / 8.0f),
(6.0f / 8.0f),
(1.0f / 8.0f),
(4.0f / 8.0f),
(7.0f / 8.0f),
(2.0f / 8.0f),
};
static u8 compute_coverage(Type sample)
{
return coverage_lut[sample];
}
};
template<>
struct Sample<16> {
using Type = u16;
static constexpr Array nrooks_subpixel_offsets {
(1.0f / 16.0f),
(8.0f / 16.0f),
(4.0f / 16.0f),
(15.0f / 16.0f),
(11.0f / 16.0f),
(2.0f / 16.0f),
(6.0f / 16.0f),
(14.0f / 16.0f),
(10.0f / 16.0f),
(3.0f / 16.0f),
(7.0f / 16.0f),
(12.0f / 16.0f),
(0.0f / 16.0f),
(9.0f / 16.0f),
(5.0f / 16.0f),
(13.0f / 16.0f),
};
static u8 compute_coverage(Type sample)
{
return (
coverage_lut[(sample >> 0) & 0xff]
+ coverage_lut[(sample >> 8) & 0xff]);
}
};
template<>
struct Sample<32> {
using Type = u32;
static constexpr Array nrooks_subpixel_offsets {
(28.0f / 32.0f),
(13.0f / 32.0f),
(6.0f / 32.0f),
(23.0f / 32.0f),
(0.0f / 32.0f),
(17.0f / 32.0f),
(10.0f / 32.0f),
(27.0f / 32.0f),
(4.0f / 32.0f),
(21.0f / 32.0f),
(14.0f / 32.0f),
(31.0f / 32.0f),
(8.0f / 32.0f),
(25.0f / 32.0f),
(18.0f / 32.0f),
(3.0f / 32.0f),
(12.0f / 32.0f),
(29.0f / 32.0f),
(22.0f / 32.0f),
(7.0f / 32.0f),
(16.0f / 32.0f),
(1.0f / 32.0f),
(26.0f / 32.0f),
(11.0f / 32.0f),
(20.0f / 32.0f),
(5.0f / 32.0f),
(30.0f / 32.0f),
(15.0f / 32.0f),
(24.0f / 32.0f),
(9.0f / 32.0f),
(2.0f / 32.0f),
(19.0f / 32.0f),
};
static u8 compute_coverage(Type sample)
{
return (
coverage_lut[(sample >> 0) & 0xff]
+ coverage_lut[(sample >> 8) & 0xff]
+ coverage_lut[(sample >> 16) & 0xff]
+ coverage_lut[(sample >> 24) & 0xff]);
}
};
struct Edge {
float x;
int min_y;
int max_y;
float dxdy;
i8 winding;
Edge* next_edge;
};
}
template<unsigned SamplesPerPixel = 32>
class EdgeFlagPathRasterizer {
public:
EdgeFlagPathRasterizer(IntSize);
void fill(Painter&, Path const&, Color, Painter::WindingRule, FloatPoint offset = {});
void fill(Painter&, Path const&, PaintStyle const&, Painter::WindingRule, FloatPoint offset = {});
private:
using SubpixelSample = Detail::Sample<SamplesPerPixel>;
using SampleType = typename SubpixelSample::Type;
static u8 coverage_to_alpha(u8 coverage)
{
constexpr auto alpha_shift = AK::log2(256 / SamplesPerPixel);
if (!coverage)
return 0;
return (coverage << alpha_shift) - 1;
}
void fill_internal(Painter&, Path const&, auto color_or_function, Painter::WindingRule, FloatPoint offset);
Detail::Edge* plot_edges_for_scanline(int scanline, auto plot_edge, Detail::Edge* active_edges = nullptr);
void accumulate_even_odd_scanline(Painter&, int scanline, auto& color_or_function);
void accumulate_non_zero_scanline(Painter&, int scanline, auto& color_or_function);
Color scanline_color(int scanline, int offset, u8 alpha, auto& color_or_function);
void write_pixel(Painter&, int scanline, int offset, SampleType sample, auto& color_or_function);
struct WindingCounts {
// NOTE: This only allows up to 256 winding levels. Increase this if required (i.e. to an i16).
i8 counts[SamplesPerPixel];
};
IntSize m_size;
IntPoint m_blit_origin;
IntRect m_clip;
Vector<SampleType> m_scanline;
Vector<WindingCounts> m_windings;
Vector<Detail::Edge*> m_edge_table;
};
extern template class EdgeFlagPathRasterizer<8>;
extern template class EdgeFlagPathRasterizer<16>;
extern template class EdgeFlagPathRasterizer<32>;
}

View file

@ -1,299 +0,0 @@
/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
* Copyright (c) 2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/QuickSort.h>
#include <LibGfx/Color.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Path.h>
#if defined(AK_COMPILER_GCC)
# pragma GCC optimize("O3")
#endif
namespace Gfx {
template<typename T, typename TColorOrFunction>
ALWAYS_INLINE void Painter::draw_scanline_for_fill_path(int y, T x_start, T x_end, TColorOrFunction color)
{
// Fill path should scale the scanlines before calling this.
VERIFY(scale() == 1);
constexpr bool is_floating_point = IsSameIgnoringCV<T, float>;
constexpr bool has_constant_color = IsSameIgnoringCV<TColorOrFunction, Color>;
int x1 = 0;
int x2 = 0;
u8 left_subpixel_alpha = 0;
u8 right_subpixel_alpha = 0;
if constexpr (is_floating_point) {
x1 = ceilf(x_start);
x2 = floorf(x_end);
left_subpixel_alpha = (x1 - x_start) * 255;
right_subpixel_alpha = (x_end - x2) * 255;
x1 -= left_subpixel_alpha > 0;
x2 += right_subpixel_alpha > 0;
} else {
x1 = x_start;
x2 = x_end;
}
IntRect scanline(x1, y, x2 - x1, 1);
scanline = scanline.translated(translation());
auto clipped = scanline.intersected(clip_rect());
if (clipped.is_empty())
return;
auto get_color = [&](int offset) {
if constexpr (has_constant_color) {
return color;
} else {
return color(offset);
}
};
if constexpr (is_floating_point) {
// Paint left and right subpixels (then remove them from the scanline).
auto get_color_with_alpha = [&](int offset, u8 alpha) {
auto color_at_offset = get_color(offset);
u8 color_alpha = (alpha * color_at_offset.alpha()) / 255;
return color_at_offset.with_alpha(color_alpha);
};
bool paint_left_subpixel = clipped.left() == scanline.left() && left_subpixel_alpha;
bool paint_right_subpixel = clipped.right() == scanline.right() && right_subpixel_alpha;
if (paint_left_subpixel)
set_physical_pixel(clipped.top_left(), get_color_with_alpha(0, left_subpixel_alpha), true);
if (paint_right_subpixel)
set_physical_pixel(clipped.top_right().moved_left(1), get_color_with_alpha(scanline.width(), right_subpixel_alpha), true);
clipped.shrink(0, paint_right_subpixel, 0, paint_left_subpixel);
if (clipped.is_empty())
return;
}
if constexpr (has_constant_color) {
if (color.alpha() == 255) {
// Speedy path: Constant color and no alpha blending.
fast_u32_fill(m_target->scanline(clipped.y()) + clipped.x(), color.value(), clipped.width());
return;
}
}
for (int x = clipped.x(); x < clipped.right(); x++)
set_physical_pixel({ x, clipped.y() }, get_color(x - scanline.x()), true);
}
[[maybe_unused]] inline void approximately_place_on_int_grid(FloatPoint ffrom, FloatPoint fto, IntPoint& from, IntPoint& to, Optional<IntPoint> previous_to)
{
auto diffs = fto - ffrom;
// Truncate all first (round down).
from = ffrom.to_type<int>();
to = fto.to_type<int>();
// There are 16 possible configurations, by deciding to round each
// coord up or down (and there are four coords, from.x from.y to.x to.y)
// we will simply choose one which most closely matches the correct slope
// with the following heuristic:
// - if the x diff is positive or zero (that is, a right-to-left slant), round 'from.x' up and 'to.x' down.
// - if the x diff is negative (that is, a left-to-right slant), round 'from.x' down and 'to.x' up.
// Note that we do not need to touch the 'y' attribute, as that is our scanline.
if (diffs.x() >= 0) {
from.set_x(from.x() + 1);
} else {
to.set_x(to.x() + 1);
}
if (previous_to.has_value() && from.x() != previous_to.value().x()) // The points have to line up, since we're using these lines to fill a shape.
from.set_x(previous_to.value().x());
}
template<Painter::FillPathMode fill_path_mode, typename ColorOrFunction>
void Painter::fill_path_impl(Path const& path, ColorOrFunction color, Gfx::Painter::WindingRule winding_rule, Optional<FloatPoint> offset)
{
using GridCoordinateType = Conditional<fill_path_mode == FillPathMode::PlaceOnIntGrid, int, float>;
using PointType = Point<GridCoordinateType>;
auto draw_scanline = [&](int y, GridCoordinateType x1, GridCoordinateType x2) {
const auto draw_offset = offset.value_or({ 0, 0 });
// Note: .to_floored() is used here to be consistent with enclosing_int_rect()
const auto draw_origin = (path.bounding_box().top_left() + draw_offset).to_floored<int>();
// FIMXE: Offset is added here to handle floating point translations in the AA painter,
// really this should be done there but this function is a bit too specialised.
y = floorf(y + draw_offset.y());
x1 += draw_offset.x();
x2 += draw_offset.x();
if (x1 > x2)
swap(x1, x2);
if constexpr (IsSameIgnoringCV<ColorOrFunction, Color>) {
draw_scanline_for_fill_path(y, x1, x2, color);
} else {
draw_scanline_for_fill_path(y, x1, x2, [&](int offset) {
return color(IntPoint(x1 + offset, y) - draw_origin);
});
}
};
auto const& segments = path.split_lines();
if (segments.size() == 0)
return;
Vector<Path::SplitLineSegment> active_list;
active_list.ensure_capacity(segments.size());
// first, grab the segments for the very first scanline
GridCoordinateType first_y = path.bounding_box().bottom();
GridCoordinateType last_y = path.bounding_box().top() - 1;
float scanline = first_y;
size_t last_active_segment { 0 };
for (auto& segment : segments) {
if (segment.maximum_y != scanline)
break;
active_list.append(segment);
++last_active_segment;
}
auto is_inside_shape = [winding_rule](int winding_number) {
if (winding_rule == Gfx::Painter::WindingRule::Nonzero)
return winding_number != 0;
if (winding_rule == Gfx::Painter::WindingRule::EvenOdd)
return winding_number % 2 == 0;
VERIFY_NOT_REACHED();
};
auto increment_winding = [winding_rule](int& winding_number, PointType const& from, PointType const& to) {
if (winding_rule == Gfx::Painter::WindingRule::EvenOdd) {
++winding_number;
return;
}
if (winding_rule == Gfx::Painter::WindingRule::Nonzero) {
if (from.dy_relative_to(to) < 0)
++winding_number;
else
--winding_number;
return;
}
VERIFY_NOT_REACHED();
};
while (scanline >= last_y) {
Optional<PointType> previous_to;
if (active_list.size()) {
// sort the active list by 'x' from right to left
quick_sort(active_list, [](auto const& line0, auto const& line1) {
return line1.x < line0.x;
});
if constexpr (fill_path_mode == FillPathMode::PlaceOnIntGrid && FILL_PATH_DEBUG) {
if ((int)scanline % 10 == 0) {
draw_text(Gfx::Rect<GridCoordinateType>(active_list.last().x - 20, scanline, 20, 10), DeprecatedString::number((int)scanline));
}
}
if (active_list.size() > 1) {
auto winding_number { winding_rule == Gfx::Painter::WindingRule::Nonzero ? 1 : 0 };
for (size_t i = 1; i < active_list.size(); ++i) {
auto& previous = active_list[i - 1];
auto& current = active_list[i];
PointType from, to;
PointType truncated_from { previous.x, scanline };
PointType truncated_to { current.x, scanline };
if constexpr (fill_path_mode == FillPathMode::PlaceOnIntGrid) {
approximately_place_on_int_grid({ previous.x, scanline }, { current.x, scanline }, from, to, previous_to);
} else {
from = truncated_from;
to = truncated_to;
}
if (is_inside_shape(winding_number)) {
// The points between this segment and the previous are
// inside the shape
dbgln_if(FILL_PATH_DEBUG, "y={}: {} at {}: {} -- {}", scanline, winding_number, i, from, to);
draw_scanline(floorf(scanline), from.x(), to.x());
}
auto is_passing_through_maxima = scanline == previous.maximum_y
|| scanline == previous.minimum_y
|| scanline == current.maximum_y
|| scanline == current.minimum_y;
auto is_passing_through_vertex = false;
if (is_passing_through_maxima) {
is_passing_through_vertex = previous.x == current.x;
}
if (!is_passing_through_vertex || previous.inverse_slope * current.inverse_slope < 0)
increment_winding(winding_number, truncated_from, truncated_to);
// update the x coord
active_list[i - 1].x -= active_list[i - 1].inverse_slope;
}
active_list.last().x -= active_list.last().inverse_slope;
} else {
auto point = PointType(active_list[0].x, scanline);
draw_scanline(floorf(scanline), point.x(), point.x());
// update the x coord
active_list.first().x -= active_list.first().inverse_slope;
}
}
--scanline;
// remove any edge that goes out of bound from the active list
for (size_t i = 0, count = active_list.size(); i < count; ++i) {
if (scanline <= active_list[i].minimum_y) {
active_list.remove(i);
--count;
--i;
}
}
for (size_t j = last_active_segment; j < segments.size(); ++j, ++last_active_segment) {
auto& segment = segments[j];
if (segment.maximum_y < scanline)
break;
if (segment.minimum_y >= scanline)
continue;
active_list.append(segment);
}
}
}
void Painter::fill_path(Path const& path, Color color, WindingRule winding_rule)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
fill_path_impl<FillPathMode::PlaceOnIntGrid>(path, color, winding_rule);
}
void Painter::fill_path(Path const& path, PaintStyle const& paint_style, Painter::WindingRule rule)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
paint_style.paint(enclosing_int_rect(path.bounding_box()), [&](PaintStyle::SamplerFunction sampler) {
fill_path_impl<FillPathMode::PlaceOnIntGrid>(path, move(sampler), rule);
});
}
void Painter::antialiased_fill_path(Path const& path, Color color, WindingRule rule, FloatPoint translation)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
fill_path_impl<FillPathMode::AllowFloatingPoints>(path, color, rule, translation);
}
void Painter::antialiased_fill_path(Path const& path, PaintStyle const& paint_style, WindingRule rule, FloatPoint translation)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
paint_style.paint(enclosing_int_rect(path.bounding_box()), [&](PaintStyle::SamplerFunction sampler) {
fill_path_impl<FillPathMode::AllowFloatingPoints>(path, move(sampler), rule, translation);
});
}
}

View file

@ -187,6 +187,8 @@ public:
protected:
friend GradientLine;
friend AntiAliasingPainter;
template<unsigned SamplesPerPixel>
friend class EdgeFlagPathRasterizer;
IntRect to_physical(IntRect const& r) const { return r.translated(translation()) * scale(); }
IntPoint to_physical(IntPoint p) const { return p.translated(translation()) * scale(); }
@ -219,17 +221,6 @@ private:
bool text_contains_bidirectional_text(Utf8View const&, TextDirection);
template<typename DrawGlyphFunction>
void do_draw_text(FloatRect const&, Utf8View const& text, Font const&, TextAlignment, TextElision, TextWrapping, DrawGlyphFunction);
void antialiased_fill_path(Path const&, Color, WindingRule rule, FloatPoint translation);
void antialiased_fill_path(Path const&, PaintStyle const& paint_style, WindingRule rule, FloatPoint translation);
enum class FillPathMode {
PlaceOnIntGrid,
AllowFloatingPoints,
};
template<typename T, typename TColorOrFunction>
void draw_scanline_for_fill_path(int y, T x_start, T x_end, TColorOrFunction color);
template<FillPathMode fill_path_mode, typename ColorOrFunction>
void fill_path_impl(Path const& path, ColorOrFunction color, Gfx::Painter::WindingRule winding_rule, Optional<FloatPoint> offset = {});
};
class PainterStateSaver {