Kernel: Propagate overflow errors from Memory::page_round_up

Fixes #11402.
This commit is contained in:
Guilherme Goncalves 2021-12-24 11:22:11 -03:00 committed by Andreas Kling
parent 11599a3342
commit 33b78915d3
31 changed files with 112 additions and 100 deletions

View file

@ -59,7 +59,17 @@ UNMAP_AFTER_INIT bool Access::search_pci_domains_from_acpi_mcfg_table(PhysicalAd
dbgln("PCI: MCFG, length: {}, revision: {}", length, revision);
auto mcfg_region_or_error = MM.allocate_kernel_region(mcfg_table.page_base(), Memory::page_round_up(length) + PAGE_SIZE, "PCI Parsing MCFG", Memory::Region::Access::ReadWrite);
if (Checked<size_t>::addition_would_overflow(length, PAGE_SIZE)) {
dbgln("Overflow when adding extra page to allocation of length {}", length);
return false;
}
length += PAGE_SIZE;
auto region_size_or_error = Memory::page_round_up(length);
if (region_size_or_error.is_error()) {
dbgln("Failed to round up length of {} to pages", length);
return false;
}
auto mcfg_region_or_error = MM.allocate_kernel_region(mcfg_table.page_base(), region_size_or_error.value(), "PCI Parsing MCFG", Memory::Region::Access::ReadWrite);
if (mcfg_region_or_error.is_error())
return false;
auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region_or_error.value()->vaddr().offset(mcfg_table.offset_in_page()).as_ptr();

View file

@ -131,7 +131,12 @@ UNMAP_AFTER_INIT void Device::initialize()
auto& mapping = m_mmio[cfg.bar];
mapping.size = PCI::get_BAR_space_size(pci_address(), cfg.bar);
if (!mapping.base && mapping.size) {
auto region_or_error = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR(pci_address(), cfg.bar))), Memory::page_round_up(mapping.size), "VirtIO MMIO", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No);
auto region_size_or_error = Memory::page_round_up(mapping.size);
if (region_size_or_error.is_error()) {
dbgln_if(VIRTIO_DEBUG, "{}: Failed to round up size={} to pages", m_class_name, mapping.size);
continue;
}
auto region_or_error = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR(pci_address(), cfg.bar))), region_size_or_error.value(), "VirtIO MMIO", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No);
if (region_or_error.is_error()) {
dbgln_if(VIRTIO_DEBUG, "{}: Failed to map bar {} - (size={}) {}", m_class_name, cfg.bar, mapping.size, region_or_error.error());
} else {

View file

@ -17,7 +17,7 @@ Queue::Queue(u16 queue_size, u16 notify_offset)
size_t size_of_descriptors = sizeof(QueueDescriptor) * queue_size;
size_t size_of_driver = sizeof(QueueDriver) + queue_size * sizeof(u16);
size_t size_of_device = sizeof(QueueDevice) + queue_size * sizeof(QueueDeviceItem);
auto queue_region_size = Memory::page_round_up(size_of_descriptors + size_of_driver + size_of_device);
auto queue_region_size = Memory::page_round_up(size_of_descriptors + size_of_driver + size_of_device).release_value_but_fixme_should_propagate_errors();
if (queue_region_size <= PAGE_SIZE)
m_queue_region = MM.allocate_kernel_region(queue_region_size, "VirtIO Queue", Memory::Region::Access::ReadWrite).release_value();
else

View file

@ -22,7 +22,8 @@ static constexpr u16 pcm_sample_rate_maximum = 48000;
static ErrorOr<OwnPtr<Memory::Region>> allocate_physical_buffer(size_t size, StringView name)
{
auto vmobject = TRY(Memory::AnonymousVMObject::try_create_physically_contiguous_with_size(Memory::page_round_up(size)));
auto rounded_size = TRY(Memory::page_round_up(size));
auto vmobject = TRY(Memory::AnonymousVMObject::try_create_physically_contiguous_with_size(rounded_size));
return TRY(MM.allocate_kernel_region_with_vmobject(move(vmobject), vmobject->size(), name, Memory::Region::Access::Write));
}

View file

@ -20,7 +20,7 @@ ErrorOr<void> KCOVInstance::buffer_allocate(size_t buffer_size_in_entries)
// first entry contains index of last PC
m_buffer_size_in_entries = buffer_size_in_entries - 1;
m_buffer_size_in_bytes = Memory::page_round_up(buffer_size_in_entries * KCOV_ENTRY_SIZE);
m_buffer_size_in_bytes = TRY(Memory::page_round_up(buffer_size_in_entries * KCOV_ENTRY_SIZE));
// one single vmobject is representing the buffer
// - we allocate one kernel region using that vmobject

View file

@ -156,7 +156,7 @@ Memory::MappedROM map_bios()
Memory::MappedROM mapping;
mapping.size = 128 * KiB;
mapping.paddr = PhysicalAddress(0xe0000);
mapping.region = MM.allocate_kernel_region(mapping.paddr, Memory::page_round_up(mapping.size), {}, Memory::Region::Access::Read).release_value();
mapping.region = MM.allocate_kernel_region(mapping.paddr, Memory::page_round_up(mapping.size).release_value_but_fixme_should_propagate_errors(), {}, Memory::Region::Access::Read).release_value();
return mapping;
}
@ -170,7 +170,7 @@ Memory::MappedROM map_ebda()
size_t ebda_size = (*ebda_length_ptr_b1 << 8) | *ebda_length_ptr_b0;
Memory::MappedROM mapping;
mapping.region = MM.allocate_kernel_region(ebda_paddr.page_base(), Memory::page_round_up(ebda_size), {}, Memory::Region::Access::Read).release_value();
mapping.region = MM.allocate_kernel_region(ebda_paddr.page_base(), Memory::page_round_up(ebda_size).release_value_but_fixme_should_propagate_errors(), {}, Memory::Region::Access::Read).release_value();
mapping.offset = ebda_paddr.offset_in_page();
mapping.size = ebda_size;
mapping.paddr = ebda_paddr;

View file

@ -27,8 +27,9 @@ void ContiguousFramebufferConsole::set_resolution(size_t width, size_t height, s
m_height = height;
m_pitch = pitch;
dbgln("Framebuffer Console: taking {} bytes", Memory::page_round_up(pitch * height));
auto region_or_error = MM.allocate_kernel_region(m_framebuffer_address, Memory::page_round_up(pitch * height), "Framebuffer Console", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::Yes);
size_t size = Memory::page_round_up(pitch * height).release_value_but_fixme_should_propagate_errors();
dbgln("Framebuffer Console: taking {} bytes", size);
auto region_or_error = MM.allocate_kernel_region(m_framebuffer_address, size, "Framebuffer Console", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::Yes);
VERIFY(!region_or_error.is_error());
m_framebuffer_region = region_or_error.release_value();

View file

@ -11,7 +11,7 @@ namespace Kernel::Graphics {
UNMAP_AFTER_INIT VGAConsole::VGAConsole(const VGACompatibleAdapter& adapter, Mode mode, size_t width, size_t height)
: Console(width, height)
, m_vga_region(MM.allocate_kernel_region(PhysicalAddress(0xa0000), Memory::page_round_up(0xc0000 - 0xa0000), "VGA Display", Memory::Region::Access::ReadWrite).release_value())
, m_vga_region(MM.allocate_kernel_region(PhysicalAddress(0xa0000), Memory::page_round_up(0xc0000 - 0xa0000).release_value_but_fixme_should_propagate_errors(), "VGA Display", Memory::Region::Access::ReadWrite).release_value())
, m_adapter(adapter)
, m_mode(mode)
{

View file

@ -36,14 +36,15 @@ ErrorOr<Memory::Region*> FramebufferDevice::mmap(Process& process, OpenFileDescr
if (offset != 0)
return ENXIO;
auto framebuffer_length = TRY(buffer_length(0));
if (range.size() != Memory::page_round_up(framebuffer_length))
framebuffer_length = TRY(Memory::page_round_up(framebuffer_length));
if (range.size() != framebuffer_length)
return EOVERFLOW;
m_userspace_real_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(m_framebuffer_address, Memory::page_round_up(framebuffer_length)));
m_real_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(m_framebuffer_address, Memory::page_round_up(framebuffer_length)));
m_swapped_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(Memory::page_round_up(framebuffer_length), AllocationStrategy::AllocateNow));
m_real_framebuffer_region = TRY(MM.allocate_kernel_region_with_vmobject(*m_real_framebuffer_vmobject, Memory::page_round_up(framebuffer_length), "Framebuffer", Memory::Region::Access::ReadWrite));
m_swapped_framebuffer_region = TRY(MM.allocate_kernel_region_with_vmobject(*m_swapped_framebuffer_vmobject, Memory::page_round_up(framebuffer_length), "Framebuffer Swap (Blank)", Memory::Region::Access::ReadWrite));
m_userspace_real_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(m_framebuffer_address, framebuffer_length));
m_real_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(m_framebuffer_address, framebuffer_length));
m_swapped_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(framebuffer_length, AllocationStrategy::AllocateNow));
m_real_framebuffer_region = TRY(MM.allocate_kernel_region_with_vmobject(*m_real_framebuffer_vmobject, framebuffer_length, "Framebuffer", Memory::Region::Access::ReadWrite));
m_swapped_framebuffer_region = TRY(MM.allocate_kernel_region_with_vmobject(*m_swapped_framebuffer_vmobject, framebuffer_length, "Framebuffer Swap (Blank)", Memory::Region::Access::ReadWrite));
RefPtr<Memory::VMObject> chosen_vmobject;
if (m_graphical_writes_enabled) {
@ -68,7 +69,8 @@ void FramebufferDevice::deactivate_writes()
return;
auto framebuffer_length_or_error = buffer_length(0);
VERIFY(!framebuffer_length_or_error.is_error());
memcpy(m_swapped_framebuffer_region->vaddr().as_ptr(), m_real_framebuffer_region->vaddr().as_ptr(), Memory::page_round_up(framebuffer_length_or_error.release_value()));
size_t rounded_framebuffer_length = Memory::page_round_up(framebuffer_length_or_error.release_value()).release_value_but_fixme_should_propagate_errors();
memcpy(m_swapped_framebuffer_region->vaddr().as_ptr(), m_real_framebuffer_region->vaddr().as_ptr(), rounded_framebuffer_length);
auto vmobject = m_swapped_framebuffer_vmobject;
m_userspace_framebuffer_region->set_vmobject(vmobject.release_nonnull());
m_userspace_framebuffer_region->remap();
@ -85,7 +87,8 @@ void FramebufferDevice::activate_writes()
auto framebuffer_length_or_error = buffer_length(0);
VERIFY(!framebuffer_length_or_error.is_error());
memcpy(m_real_framebuffer_region->vaddr().as_ptr(), m_swapped_framebuffer_region->vaddr().as_ptr(), Memory::page_round_up(framebuffer_length_or_error.release_value()));
size_t rounded_framebuffer_length = Memory::page_round_up(framebuffer_length_or_error.release_value()).release_value_but_fixme_should_propagate_errors();
memcpy(m_real_framebuffer_region->vaddr().as_ptr(), m_swapped_framebuffer_region->vaddr().as_ptr(), rounded_framebuffer_length);
auto vmobject = m_userspace_real_framebuffer_vmobject;
m_userspace_framebuffer_region->set_vmobject(vmobject.release_nonnull());
m_userspace_framebuffer_region->remap();
@ -97,10 +100,11 @@ UNMAP_AFTER_INIT ErrorOr<void> FramebufferDevice::try_to_initialize()
// FIXME: Would be nice to be able to unify this with mmap above, but this
// function is UNMAP_AFTER_INIT for the time being.
auto framebuffer_length = TRY(buffer_length(0));
m_real_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(m_framebuffer_address, Memory::page_round_up(framebuffer_length)));
m_swapped_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(Memory::page_round_up(framebuffer_length), AllocationStrategy::AllocateNow));
m_real_framebuffer_region = TRY(MM.allocate_kernel_region_with_vmobject(*m_real_framebuffer_vmobject, Memory::page_round_up(framebuffer_length), "Framebuffer", Memory::Region::Access::ReadWrite));
m_swapped_framebuffer_region = TRY(MM.allocate_kernel_region_with_vmobject(*m_swapped_framebuffer_vmobject, Memory::page_round_up(framebuffer_length), "Framebuffer Swap (Blank)", Memory::Region::Access::ReadWrite));
framebuffer_length = TRY(Memory::page_round_up(framebuffer_length));
m_real_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(m_framebuffer_address, framebuffer_length));
m_swapped_framebuffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(framebuffer_length, AllocationStrategy::AllocateNow));
m_real_framebuffer_region = TRY(MM.allocate_kernel_region_with_vmobject(*m_real_framebuffer_vmobject, framebuffer_length, "Framebuffer", Memory::Region::Access::ReadWrite));
m_swapped_framebuffer_region = TRY(MM.allocate_kernel_region_with_vmobject(*m_swapped_framebuffer_vmobject, framebuffer_length, "Framebuffer Swap (Blank)", Memory::Region::Access::ReadWrite));
return {};
}

View file

@ -40,7 +40,7 @@ public:
static size_t calculate_framebuffer_size(size_t width, size_t height)
{
// VirtIO resources can only map on page boundaries!
return Memory::page_round_up(sizeof(u32) * width * height);
return Memory::page_round_up(sizeof(u32) * width * height).value();
}
u8* framebuffer_data();

View file

@ -226,7 +226,11 @@ struct KmallocGlobalData {
if (padded_allocation_request.has_overflow()) {
PANIC("Integer overflow during kmalloc heap expansion");
}
size_t new_subheap_size = max(minimum_subheap_size, Memory::page_round_up(padded_allocation_request.value()));
auto rounded_allocation_request = Memory::page_round_up(padded_allocation_request.value());
if (rounded_allocation_request.is_error()) {
PANIC("Integer overflow computing pages for kmalloc heap expansion");
}
size_t new_subheap_size = max(minimum_subheap_size, rounded_allocation_request.value());
dbgln("Unable to allocate {}, expanding kmalloc heap", allocation_request);

View file

@ -334,7 +334,7 @@ UNMAP_AFTER_INIT void APIC::setup_ap_boot_environment()
// * aps_to_enable u32 values for ap_cpu_init_processor_info_array
constexpr u64 apic_startup_region_base = 0x8000;
VERIFY(apic_startup_region_base + apic_ap_start_size < USER_RANGE_BASE);
auto apic_startup_region = create_identity_mapped_region(PhysicalAddress(apic_startup_region_base), Memory::page_round_up(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))));
auto apic_startup_region = create_identity_mapped_region(PhysicalAddress(apic_startup_region_base), Memory::page_round_up(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))).release_value_but_fixme_should_propagate_errors());
memcpy(apic_startup_region->vaddr().as_ptr(), reinterpret_cast<const void*>(apic_ap_start), apic_ap_start_size);
// Allocate enough stacks for all APs

View file

@ -26,7 +26,8 @@ class [[nodiscard]] KBuffer {
public:
static ErrorOr<NonnullOwnPtr<KBuffer>> try_create_with_size(size_t size, Memory::Region::Access access = Memory::Region::Access::ReadWrite, StringView name = "KBuffer", AllocationStrategy strategy = AllocationStrategy::Reserve)
{
auto region = TRY(MM.allocate_kernel_region(Memory::page_round_up(size), name, access, strategy));
auto rounded_size = TRY(Memory::page_round_up(size));
auto region = TRY(MM.allocate_kernel_region(rounded_size, name, access, strategy));
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) KBuffer { size, move(region) }));
}

View file

@ -20,8 +20,11 @@ inline bool KBufferBuilder::check_expand(size_t size)
size_t new_buffer_size = m_size + size;
if (Checked<size_t>::addition_would_overflow(new_buffer_size, 1 * MiB))
return false;
new_buffer_size = Memory::page_round_up(new_buffer_size + 1 * MiB);
auto new_buffer_or_error = KBuffer::try_create_with_size(new_buffer_size);
auto rounded_new_buffer_size_or_error = Memory::page_round_up(new_buffer_size + 1 * MiB);
if (rounded_new_buffer_size_or_error.is_error()) {
return false;
}
auto new_buffer_or_error = KBuffer::try_create_with_size(rounded_new_buffer_size_or_error.value());
if (new_buffer_or_error.is_error())
return false;
auto new_buffer = new_buffer_or_error.release_value();

View file

@ -131,7 +131,7 @@ ErrorOr<void> AddressSpace::unmap_mmap_range(VirtualAddress addr, size_t size)
ErrorOr<VirtualRange> AddressSpace::try_allocate_range(VirtualAddress vaddr, size_t size, size_t alignment)
{
vaddr.mask(PAGE_MASK);
size = page_round_up(size);
size = TRY(page_round_up(size));
if (vaddr.is_null())
return page_directory().range_allocator().try_allocate_anywhere(size, alignment);
return page_directory().range_allocator().try_allocate_specific(vaddr, size);
@ -222,8 +222,8 @@ Region* AddressSpace::find_region_from_range(VirtualRange const& range)
if (!found_region)
return nullptr;
auto& region = *found_region;
size_t size = page_round_up(range.size());
if (region->size() != size)
auto rounded_range_size = page_round_up(range.size());
if (rounded_range_size.is_error() || region->size() != rounded_range_size.value())
return nullptr;
m_region_lookup_cache.range = range;
m_region_lookup_cache.region = *region;

View file

@ -45,6 +45,14 @@ __attribute__((section(".super_pages"))) static u8 super_pages[4 * MiB];
namespace Kernel::Memory {
ErrorOr<FlatPtr> page_round_up(FlatPtr x)
{
if (x > (explode_byte(0xFF) & ~0xFFF)) {
return Error::from_errno(EINVAL);
}
return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
}
// NOTE: We can NOT use Singleton for this class, because
// MemoryManager::initialize is called *before* global constructors are
// run. If we do, then Singleton would get re-initialized, causing
@ -137,7 +145,7 @@ void MemoryManager::unmap_text_after_init()
SpinlockLocker mm_lock(s_mm_lock);
auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
// Unmap the entire .unmap_after_init section
for (auto i = start; i < end; i += PAGE_SIZE) {
@ -155,7 +163,7 @@ UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
SpinlockLocker page_lock(kernel_page_directory().get_lock());
auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
auto end = page_round_up((FlatPtr)end_of_kernel_ksyms);
auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
for (auto i = start; i < end; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
@ -213,7 +221,7 @@ UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
// Register used memory regions that we know of.
m_used_memory_ranges.ensure_capacity(4);
m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image))) });
m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
if (multiboot_flags & 0x4) {
auto* bootmods_start = multiboot_copy_boot_modules_array;
@ -380,7 +388,7 @@ UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
// Calculate how many bytes the array will consume
auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
auto physical_page_array_pages = page_round_up(physical_page_array_size) / PAGE_SIZE;
auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
// Calculate how many page tables we will need to be able to map them all

View file

@ -26,16 +26,7 @@ struct KmallocGlobalData;
namespace Kernel::Memory {
constexpr bool page_round_up_would_wrap(FlatPtr x)
{
return x > (explode_byte(0xFF) & ~0xFFF);
}
constexpr FlatPtr page_round_up(FlatPtr x)
{
VERIFY(!page_round_up_would_wrap(x));
return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
}
ErrorOr<FlatPtr> page_round_up(FlatPtr x);
constexpr FlatPtr page_round_down(FlatPtr x)
{
@ -340,17 +331,11 @@ inline bool PhysicalPage::is_lazy_committed_page() const
inline ErrorOr<Memory::VirtualRange> expand_range_to_page_boundaries(FlatPtr address, size_t size)
{
if (Memory::page_round_up_would_wrap(size))
return EINVAL;
if ((address + size) < address)
return EINVAL;
if (Memory::page_round_up_would_wrap(address + size))
return EINVAL;
auto base = VirtualAddress { address }.page_base();
auto end = Memory::page_round_up(address + size);
auto end = TRY(Memory::page_round_up(address + size));
return Memory::VirtualRange { base, end - base.get() };
}

View file

@ -11,7 +11,7 @@
namespace Kernel::Memory {
RingBuffer::RingBuffer(String region_name, size_t capacity)
: m_region(MM.allocate_contiguous_kernel_region(page_round_up(capacity), move(region_name), Region::Access::Read | Region::Access::Write).release_value())
: m_region(MM.allocate_contiguous_kernel_region(page_round_up(capacity).release_value_but_fixme_should_propagate_errors(), move(region_name), Region::Access::Read | Region::Access::Write).release_value())
, m_capacity_in_bytes(capacity)
{
}

View file

@ -21,7 +21,7 @@ RefPtr<ScatterGatherList> ScatterGatherList::try_create(AsyncBlockDeviceRequest&
ScatterGatherList::ScatterGatherList(NonnullRefPtr<AnonymousVMObject> vm_object, AsyncBlockDeviceRequest& request, size_t device_block_size)
: m_vm_object(move(vm_object))
{
auto region_or_error = MM.allocate_kernel_region_with_vmobject(m_vm_object, page_round_up((request.block_count() * device_block_size)), "AHCI Scattered DMA", Region::Access::Read | Region::Access::Write, Region::Cacheable::Yes);
auto region_or_error = MM.allocate_kernel_region_with_vmobject(m_vm_object, page_round_up((request.block_count() * device_block_size)).release_value_but_fixme_should_propagate_errors(), "AHCI Scattered DMA", Region::Access::Read | Region::Access::Write, Region::Cacheable::Yes);
if (region_or_error.is_error())
TODO();
m_dma_region = region_or_error.release_value();

View file

@ -27,7 +27,7 @@ template<typename T>
static TypedMapping<T> map_typed(PhysicalAddress paddr, size_t length, Region::Access access = Region::Access::Read)
{
TypedMapping<T> table;
size_t mapping_length = page_round_up(paddr.offset_in_page() + length);
size_t mapping_length = page_round_up(paddr.offset_in_page() + length).release_value_but_fixme_should_propagate_errors();
auto region_or_error = MM.allocate_kernel_region(paddr.page_base(), mapping_length, {}, access);
if (region_or_error.is_error())
TODO();

View file

@ -38,18 +38,11 @@ VirtualRange VirtualRange::intersect(VirtualRange const& other) const
ErrorOr<VirtualRange> VirtualRange::expand_to_page_boundaries(FlatPtr address, size_t size)
{
if (page_round_up_would_wrap(size))
return EINVAL;
if ((address + size) < address)
return EINVAL;
if (page_round_up_would_wrap(address + size))
return EINVAL;
auto base = VirtualAddress { address }.page_base();
auto end = page_round_up(address + size);
auto end = TRY(page_round_up(address + size));
return VirtualRange { base, end - base.get() };
}

View file

@ -209,7 +209,7 @@ UNMAP_AFTER_INIT bool E1000ENetworkAdapter::initialize()
enable_bus_mastering(pci_address());
size_t mmio_base_size = PCI::get_BAR_space_size(pci_address(), 0);
auto region_or_error = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), Memory::page_round_up(mmio_base_size), "E1000e MMIO", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No);
auto region_or_error = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), Memory::page_round_up(mmio_base_size).release_value_but_fixme_should_propagate_errors(), "E1000e MMIO", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No);
if (region_or_error.is_error())
return false;
m_mmio_region = region_or_error.release_value();

View file

@ -200,7 +200,7 @@ UNMAP_AFTER_INIT bool E1000NetworkAdapter::initialize()
m_io_base = IOAddress(PCI::get_BAR1(pci_address()) & ~1);
size_t mmio_base_size = PCI::get_BAR_space_size(pci_address(), 0);
auto region_or_error = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), Memory::page_round_up(mmio_base_size), "E1000 MMIO", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No);
auto region_or_error = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), Memory::page_round_up(mmio_base_size).release_value_but_fixme_should_propagate_errors(), "E1000 MMIO", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No);
if (region_or_error.is_error())
return false;
m_mmio_region = region_or_error.release_value();
@ -228,8 +228,8 @@ UNMAP_AFTER_INIT E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address address,
: NetworkAdapter(move(interface_name))
, PCI::Device(address)
, IRQHandler(irq)
, m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16), "E1000 RX Descriptors", Memory::Region::Access::ReadWrite).release_value())
, m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16), "E1000 TX Descriptors", Memory::Region::Access::ReadWrite).release_value())
, m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16).release_value_but_fixme_should_propagate_errors(), "E1000 RX Descriptors", Memory::Region::Access::ReadWrite).release_value())
, m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16).release_value_but_fixme_should_propagate_errors(), "E1000 TX Descriptors", Memory::Region::Access::ReadWrite).release_value())
{
}

View file

@ -131,8 +131,8 @@ UNMAP_AFTER_INIT RTL8139NetworkAdapter::RTL8139NetworkAdapter(PCI::Address addre
, PCI::Device(address)
, IRQHandler(irq)
, m_io_base(PCI::get_BAR0(pci_address()) & ~1)
, m_rx_buffer(MM.allocate_contiguous_kernel_region(Memory::page_round_up(RX_BUFFER_SIZE + PACKET_SIZE_MAX), "RTL8139 RX", Memory::Region::Access::ReadWrite).release_value())
, m_packet_buffer(MM.allocate_contiguous_kernel_region(Memory::page_round_up(PACKET_SIZE_MAX), "RTL8139 Packet buffer", Memory::Region::Access::ReadWrite).release_value())
, m_rx_buffer(MM.allocate_contiguous_kernel_region(Memory::page_round_up(RX_BUFFER_SIZE + PACKET_SIZE_MAX).release_value_but_fixme_should_propagate_errors(), "RTL8139 RX", Memory::Region::Access::ReadWrite).release_value())
, m_packet_buffer(MM.allocate_contiguous_kernel_region(Memory::page_round_up(PACKET_SIZE_MAX).release_value_but_fixme_should_propagate_errors(), "RTL8139 Packet buffer", Memory::Region::Access::ReadWrite).release_value())
{
m_tx_buffers.ensure_capacity(RTL8139_TX_BUFFER_COUNT);
@ -149,7 +149,7 @@ UNMAP_AFTER_INIT RTL8139NetworkAdapter::RTL8139NetworkAdapter(PCI::Address addre
dbgln("RTL8139: RX buffer: {}", m_rx_buffer->physical_page(0)->paddr());
for (int i = 0; i < RTL8139_TX_BUFFER_COUNT; i++) {
m_tx_buffers.append(MM.allocate_contiguous_kernel_region(Memory::page_round_up(TX_BUFFER_SIZE), "RTL8139 TX", Memory::Region::Access::Write | Memory::Region::Access::Read).release_value());
m_tx_buffers.append(MM.allocate_contiguous_kernel_region(Memory::page_round_up(TX_BUFFER_SIZE).release_value_but_fixme_should_propagate_errors(), "RTL8139 TX", Memory::Region::Access::Write | Memory::Region::Access::Read).release_value());
dbgln("RTL8139: TX buffer {}: {}", i, m_tx_buffers[i]->physical_page(0)->paddr());
}

View file

@ -246,8 +246,8 @@ UNMAP_AFTER_INIT RTL8168NetworkAdapter::RTL8168NetworkAdapter(PCI::Address addre
, PCI::Device(address)
, IRQHandler(irq)
, m_io_base(PCI::get_BAR0(pci_address()) & ~1)
, m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(TXDescriptor) * (number_of_rx_descriptors + 1)), "RTL8168 RX", Memory::Region::Access::ReadWrite).release_value())
, m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(RXDescriptor) * (number_of_tx_descriptors + 1)), "RTL8168 TX", Memory::Region::Access::ReadWrite).release_value())
, m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(TXDescriptor) * (number_of_rx_descriptors + 1)).release_value_but_fixme_should_propagate_errors(), "RTL8168 RX", Memory::Region::Access::ReadWrite).release_value())
, m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(RXDescriptor) * (number_of_tx_descriptors + 1)).release_value_but_fixme_should_propagate_errors(), "RTL8168 TX", Memory::Region::Access::ReadWrite).release_value())
{
dmesgln("RTL8168: Found @ {}", pci_address());
dmesgln("RTL8168: I/O port base: {}", m_io_base);
@ -1095,7 +1095,7 @@ UNMAP_AFTER_INIT void RTL8168NetworkAdapter::initialize_rx_descriptors()
auto* rx_descriptors = (RXDescriptor*)m_rx_descriptors_region->vaddr().as_ptr();
for (size_t i = 0; i < number_of_rx_descriptors; ++i) {
auto& descriptor = rx_descriptors[i];
auto region = MM.allocate_contiguous_kernel_region(Memory::page_round_up(RX_BUFFER_SIZE), "RTL8168 RX buffer", Memory::Region::Access::ReadWrite).release_value();
auto region = MM.allocate_contiguous_kernel_region(Memory::page_round_up(RX_BUFFER_SIZE).release_value_but_fixme_should_propagate_errors(), "RTL8168 RX buffer", Memory::Region::Access::ReadWrite).release_value();
memset(region->vaddr().as_ptr(), 0, region->size()); // MM already zeros out newly allocated pages, but we do it again in case that ever changes
m_rx_buffers_regions.append(move(region));
@ -1113,7 +1113,7 @@ UNMAP_AFTER_INIT void RTL8168NetworkAdapter::initialize_tx_descriptors()
auto* tx_descriptors = (TXDescriptor*)m_tx_descriptors_region->vaddr().as_ptr();
for (size_t i = 0; i < number_of_tx_descriptors; ++i) {
auto& descriptor = tx_descriptors[i];
auto region = MM.allocate_contiguous_kernel_region(Memory::page_round_up(TX_BUFFER_SIZE), "RTL8168 TX buffer", Memory::Region::Access::ReadWrite).release_value();
auto region = MM.allocate_contiguous_kernel_region(Memory::page_round_up(TX_BUFFER_SIZE).release_value_but_fixme_should_propagate_errors(), "RTL8168 TX buffer", Memory::Region::Access::ReadWrite).release_value();
memset(region->vaddr().as_ptr(), 0, region->size()); // MM already zeros out newly allocated pages, but we do it again in case that ever changes
m_tx_buffers_regions.append(move(region));

View file

@ -132,7 +132,7 @@ AHCI::HBADefinedCapabilities AHCIController::capabilities() const
NonnullOwnPtr<Memory::Region> AHCIController::default_hba_region() const
{
return MM.allocate_kernel_region(PhysicalAddress(PCI::get_BAR5(pci_address())).page_base(), Memory::page_round_up(sizeof(AHCI::HBA)), "AHCI HBA", Memory::Region::Access::ReadWrite).release_value();
return MM.allocate_kernel_region(PhysicalAddress(PCI::get_BAR5(pci_address())).page_base(), Memory::page_round_up(sizeof(AHCI::HBA)).release_value_but_fixme_should_propagate_errors(), "AHCI HBA", Memory::Region::Access::ReadWrite).release_value();
}
AHCIController::~AHCIController()

View file

@ -184,7 +184,7 @@ void AHCIPort::eject()
// handshake error bit in PxSERR register if CFL is incorrect.
command_list_entries[unused_command_header.value()].attributes = (size_t)FIS::DwordCount::RegisterHostToDevice | AHCI::CommandHeaderAttributes::P | AHCI::CommandHeaderAttributes::C | AHCI::CommandHeaderAttributes::A;
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)), "AHCI Command Table", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No).release_value();
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)).value(), "AHCI Command Table", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No).release_value();
auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr();
memset(const_cast<u8*>(command_table.command_fis), 0, 64);
auto& fis = *(volatile FIS::HostToDevice::Register*)command_table.command_fis;
@ -444,7 +444,7 @@ void AHCIPort::set_sleep_state() const
size_t AHCIPort::calculate_descriptors_count(size_t block_count) const
{
VERIFY(m_connected_device);
size_t needed_dma_regions_count = Memory::page_round_up((block_count * m_connected_device->block_size())) / PAGE_SIZE;
size_t needed_dma_regions_count = Memory::page_round_up((block_count * m_connected_device->block_size())).value() / PAGE_SIZE;
VERIFY(needed_dma_regions_count <= m_dma_buffers.size());
return needed_dma_regions_count;
}
@ -548,7 +548,7 @@ bool AHCIPort::access_device(AsyncBlockDeviceRequest::RequestType direction, u64
dbgln_if(AHCI_DEBUG, "AHCI Port {}: CLE: ctba={:#08x}, ctbau={:#08x}, prdbc={:#08x}, prdtl={:#04x}, attributes={:#04x}", representative_port_index(), (u32)command_list_entries[unused_command_header.value()].ctba, (u32)command_list_entries[unused_command_header.value()].ctbau, (u32)command_list_entries[unused_command_header.value()].prdbc, (u16)command_list_entries[unused_command_header.value()].prdtl, (u16)command_list_entries[unused_command_header.value()].attributes);
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)), "AHCI Command Table", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No).release_value();
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)).value(), "AHCI Command Table", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No).release_value();
auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr();
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Allocated command table at {}", representative_port_index(), command_table_region->vaddr());
@ -632,7 +632,7 @@ bool AHCIPort::identify_device()
// QEMU doesn't care if we don't set the correct CFL field in this register, real hardware will set an handshake error bit in PxSERR register.
command_list_entries[unused_command_header.value()].attributes = (size_t)FIS::DwordCount::RegisterHostToDevice | AHCI::CommandHeaderAttributes::P;
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)), "AHCI Command Table", Memory::Region::Access::ReadWrite).release_value();
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)).value(), "AHCI Command Table", Memory::Region::Access::ReadWrite).release_value();
auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr();
memset(const_cast<u8*>(command_table.command_fis), 0, 64);
command_table.descriptors[0].base_high = 0;

View file

@ -43,7 +43,7 @@ RamdiskController::RamdiskController()
size_t count = 0;
for (auto& used_memory_range : MM.used_memory_ranges()) {
if (used_memory_range.type == Memory::UsedMemoryRangeType::BootModule) {
size_t length = Memory::page_round_up(used_memory_range.end.get()) - used_memory_range.start.get();
size_t length = Memory::page_round_up(used_memory_range.end.get()).release_value_but_fixme_should_propagate_errors() - used_memory_range.start.get();
auto region_or_error = MM.allocate_kernel_region(used_memory_range.start, length, "Ramdisk", Memory::Region::Access::ReadWrite);
if (region_or_error.is_error()) {
dmesgln("RamdiskController: Failed to allocate kernel region of size {}", length);

View file

@ -166,8 +166,8 @@ static ErrorOr<RequiredLoadRange> get_required_load_range(OpenFileDescription& p
auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
size_t executable_size = inode.size();
auto region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, Memory::page_round_up(executable_size), "ELF memory range calculation", Memory::Region::Access::Read));
size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
auto region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF memory range calculation", Memory::Region::Access::Read));
auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
if (!elf_image.is_valid()) {
return EINVAL;
@ -261,8 +261,9 @@ static ErrorOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> n
}
size_t executable_size = inode.size();
size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
auto executable_region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, Memory::page_round_up(executable_size), "ELF loading", Memory::Region::Access::Read));
auto executable_region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF loading", Memory::Region::Access::Read));
auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);
if (!elf_image.is_valid())
@ -313,7 +314,8 @@ static ErrorOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> n
auto region_name = String::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : "");
auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
auto range_end = VirtualAddress { Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()) };
size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
auto range_end = VirtualAddress { rounded_range_end };
auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
auto region = TRY(new_space->allocate_region(range, region_name, prot, AllocationStrategy::Reserve));
@ -349,7 +351,8 @@ static ErrorOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> n
prot |= PROT_EXEC;
auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
auto range_end = VirtualAddress { Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()) };
size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
auto range_end = VirtualAddress { rounded_range_end };
auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
auto region = TRY(new_space->allocate_region_with_vmobject(range, *vmobject, program_header.offset(), elf_name->view(), prot, true));

View file

@ -142,10 +142,8 @@ ErrorOr<FlatPtr> Process::sys$mmap(Userspace<const Syscall::SC_mmap_params*> use
if (alignment & ~PAGE_MASK)
return EINVAL;
if (Memory::page_round_up_would_wrap(size))
return EINVAL;
if (!Memory::is_user_range(VirtualAddress(addr), Memory::page_round_up(size)))
size_t rounded_size = TRY(Memory::page_round_up(size));
if (!Memory::is_user_range(VirtualAddress(addr), rounded_size))
return EFAULT;
OwnPtr<KString> name;
@ -188,7 +186,7 @@ ErrorOr<FlatPtr> Process::sys$mmap(Userspace<const Syscall::SC_mmap_params*> use
auto range = TRY([&]() -> ErrorOr<Memory::VirtualRange> {
if (map_randomized)
return address_space().page_directory().range_allocator().try_allocate_randomized(Memory::page_round_up(size), alignment);
return address_space().page_directory().range_allocator().try_allocate_randomized(rounded_size, alignment);
// If MAP_FIXED is specified, existing mappings that intersect the requested range are removed.
if (map_fixed)
@ -208,9 +206,9 @@ ErrorOr<FlatPtr> Process::sys$mmap(Userspace<const Syscall::SC_mmap_params*> use
auto strategy = map_noreserve ? AllocationStrategy::None : AllocationStrategy::Reserve;
RefPtr<Memory::AnonymousVMObject> vmobject;
if (flags & MAP_PURGEABLE) {
vmobject = TRY(Memory::AnonymousVMObject::try_create_purgeable_with_size(Memory::page_round_up(size), strategy));
vmobject = TRY(Memory::AnonymousVMObject::try_create_purgeable_with_size(rounded_size, strategy));
} else {
vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(Memory::page_round_up(size), strategy));
vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(rounded_size, strategy));
}
region = TRY(address_space().allocate_region_with_vmobject(range, vmobject.release_nonnull(), 0, {}, prot, map_shared));
@ -587,15 +585,11 @@ ErrorOr<FlatPtr> Process::sys$msync(Userspace<void*> address, size_t size, int f
if (address.ptr() % PAGE_SIZE != 0)
return EINVAL;
if (Memory::page_round_up_would_wrap(size)) {
return EINVAL;
}
// Note: This is not specified
size = Memory::page_round_up(size);
auto rounded_size = TRY(Memory::page_round_up(size));
// FIXME: We probably want to sync all mappings in the address+size range.
auto* region = address_space().find_region_containing(Memory::VirtualRange { address.vaddr(), size });
auto* region = address_space().find_region_containing(Memory::VirtualRange { address.vaddr(), rounded_size });
// All regions from address upto address+size shall be mapped
if (!region)
return ENOMEM;

View file

@ -131,7 +131,7 @@ UNMAP_AFTER_INIT void VirtualConsole::initialize()
// Allocate twice of the max row * max column * sizeof(Cell) to ensure we can have some sort of history mechanism...
auto size = GraphicsManagement::the().console()->max_column() * GraphicsManagement::the().console()->max_row() * sizeof(Cell) * 2;
m_cells = MM.allocate_kernel_region(Memory::page_round_up(size), "Virtual Console Cells", Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value();
m_cells = MM.allocate_kernel_region(Memory::page_round_up(size).release_value_but_fixme_should_propagate_errors(), "Virtual Console Cells", Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value();
// Add the lines, so we also ensure they will be flushed now
for (size_t row = 0; row < rows(); row++) {
@ -150,7 +150,7 @@ void VirtualConsole::refresh_after_resolution_change()
// Note: From now on, columns() and rows() are updated with the new settings.
auto size = GraphicsManagement::the().console()->max_column() * GraphicsManagement::the().console()->max_row() * sizeof(Cell) * 2;
auto new_cells = MM.allocate_kernel_region(Memory::page_round_up(size), "Virtual Console Cells", Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value();
auto new_cells = MM.allocate_kernel_region(Memory::page_round_up(size).release_value_but_fixme_should_propagate_errors(), "Virtual Console Cells", Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value();
if (rows() < old_rows_count) {
m_lines.shrink(rows());