AK: Add an exact and fast hex float parsing algorithm

Similar to decimal floating point parsing the current strtod hex float
parsing gives a lot of incorrect results. We can use a similar technique
as with decimal parsing however hex floats are much simpler as we don't
need to scale with a power of 5.

For hex floats we just provide the parse_first_hexfloat API as there is
currently no need for a parse_hexfloat_completely API.

Again the accepted input for parse_first_hexfloat is very lenient and
any validation should be done before calling this method.
This commit is contained in:
davidot 2022-10-13 02:23:07 +02:00 committed by Linus Groh
parent 53b7f5e6a1
commit 2334cd85a2
3 changed files with 419 additions and 0 deletions

View file

@ -2015,4 +2015,239 @@ template Optional<double> parse_floating_point_completely(char const* start, cha
template Optional<float> parse_floating_point_completely(char const* start, char const* end);
struct HexFloatParseResult {
bool is_negative = false;
bool valid = false;
char const* last_parsed = nullptr;
u64 mantissa = 0;
i64 exponent = 0;
};
static HexFloatParseResult parse_hexfloat(char const* start)
{
HexFloatParseResult result {};
if (start == nullptr || *start == '\0')
return result;
char const* parse_head = start;
bool any_digits = false;
bool truncated_non_zero = false;
if (*parse_head == '-') {
result.is_negative = true;
++parse_head;
if (*parse_head == '\0' || (!is_ascii_hex_digit(*parse_head) && *parse_head != floating_point_decimal_separator))
return result;
} else if (*parse_head == '+') {
++parse_head;
if (*parse_head == '\0' || (!is_ascii_hex_digit(*parse_head) && *parse_head != floating_point_decimal_separator))
return result;
}
if (*parse_head == '0' && (*(parse_head + 1) != '\0') && (*(parse_head + 1) == 'x' || *(parse_head + 1) == 'X')) {
// Skip potential 0[xX], we have to do this here since the sign comes at the front
parse_head += 2;
}
auto add_mantissa_digit = [&] {
any_digits = true;
// We assume you already checked this is actually a digit
auto digit = parse_ascii_hex_digit(*parse_head);
// Because the power of sixteen is just scaling of power of two we don't
// need to keep all the remaining digits beyond the first 52 bits, just because
// it's easy we store the first 16 digits. However for rounding we do need to parse
// all the digits and keep track if we see any non zero one.
if (result.mantissa < (1ull << 60)) {
result.mantissa = (result.mantissa * 16) + digit;
return true;
}
if (digit != 0)
truncated_non_zero = true;
return false;
};
while (*parse_head != '\0' && is_ascii_hex_digit(*parse_head)) {
add_mantissa_digit();
++parse_head;
}
if (*parse_head != '\0' && *parse_head == floating_point_decimal_separator) {
++parse_head;
i64 digits_after_separator = 0;
while (*parse_head != '\0' && is_ascii_hex_digit(*parse_head)) {
// Track how many characters we actually read into the mantissa
digits_after_separator += add_mantissa_digit() ? 1 : 0;
++parse_head;
}
// We parsed x digits after the dot so need to multiply with 2^(-x * 4)
// Since every digit is 4 bits
result.exponent = -digits_after_separator * 4;
}
if (!any_digits)
return result;
if (*parse_head != '\0' && (*parse_head == 'p' || *parse_head == 'P')) {
[&] {
auto const* head_before_p = parse_head;
ArmedScopeGuard reset_ptr { [&] { parse_head = head_before_p; } };
++parse_head;
if (*parse_head == '\0')
return;
bool exponent_is_negative = false;
i64 explicit_exponent = 0;
if (*parse_head == '-' || *parse_head == '+') {
exponent_is_negative = *parse_head == '-';
++parse_head;
if (*parse_head == '\0')
return;
}
if (!is_ascii_digit(*parse_head))
return;
// We have at least one digit (with optional preceding sign) so we will not reset
reset_ptr.disarm();
while (*parse_head != '\0' && is_ascii_digit(*parse_head)) {
// If we hit exponent overflow the number is so huge we are in trouble anyway, see
// a comment in parse_numbers.
if (explicit_exponent < 0x10000000)
explicit_exponent = 10 * explicit_exponent + (*parse_head - '0');
++parse_head;
}
if (exponent_is_negative)
explicit_exponent = -explicit_exponent;
result.exponent += explicit_exponent;
}();
}
result.valid = true;
// Round up exactly halfway with truncated non zeros, but don't if it would cascade up
if (truncated_non_zero && (result.mantissa & 0xF) != 0xF) {
VERIFY(result.mantissa >= 0x1000'0000'0000'0000);
result.mantissa |= 1;
}
result.last_parsed = parse_head;
return result;
}
template<FloatingPoint T>
static FloatingPointBuilder build_hex_float(HexFloatParseResult& parse_result)
{
using FloatingPointRepr = FloatingPointInfo<T>;
VERIFY(parse_result.mantissa != 0);
if (parse_result.exponent >= FloatingPointRepr::infinity_exponent())
return FloatingPointBuilder::infinity<T>();
auto leading_zeros = count_leading_zeroes(parse_result.mantissa);
u64 normalized_mantissa = parse_result.mantissa << leading_zeros;
// No need to multiply with some power of 5 here the exponent is already a power of 2.
u8 upperbit = normalized_mantissa >> 63;
FloatingPointBuilder parts;
parts.mantissa = normalized_mantissa >> (upperbit + 64 - FloatingPointRepr::mantissa_bits() - 3);
parts.exponent = parse_result.exponent + upperbit - leading_zeros + FloatingPointRepr::exponent_bias() + 62;
if (parts.exponent <= 0) {
// subnormal
if (-parts.exponent + 1 >= 64) {
parts.mantissa = 0;
parts.exponent = 0;
return parts;
}
parts.mantissa >>= -parts.exponent + 1;
parts.mantissa += parts.mantissa & 1;
parts.mantissa >>= 1;
if (parts.mantissa < (1ull << FloatingPointRepr::mantissa_bits())) {
parts.exponent = 0;
} else {
parts.exponent = 1;
}
return parts;
}
// Here we don't have to only do this halfway check for some exponents
if ((parts.mantissa & 0b11) == 0b01) {
// effectively all discard bits from z.high are 0
if (normalized_mantissa == (parts.mantissa << (upperbit + 64 - FloatingPointRepr::mantissa_bits() - 3)))
parts.mantissa &= ~u64(1);
}
parts.mantissa += parts.mantissa & 1;
parts.mantissa >>= 1;
if (parts.mantissa >= (2ull << FloatingPointRepr::mantissa_bits())) {
parts.mantissa = 1ull << FloatingPointRepr::mantissa_bits();
++parts.exponent;
}
parts.mantissa &= ~(1ull << FloatingPointRepr::mantissa_bits());
if (parts.exponent >= FloatingPointRepr::infinity_exponent()) {
parts.mantissa = 0;
parts.exponent = FloatingPointRepr::infinity_exponent();
}
return parts;
}
template<FloatingPoint T>
FloatingPointParseResults<T> parse_first_hexfloat_until_zero_character(char const* start)
{
using FloatingPointRepr = FloatingPointInfo<T>;
auto parse_result = parse_hexfloat(start);
if (!parse_result.valid)
return { nullptr, FloatingPointError::NoOrInvalidInput, __builtin_nan("") };
FloatingPointParseResults<T> full_result {};
full_result.end_ptr = parse_result.last_parsed;
// We special case this to be able to differentiate between 0 and values rounded down to 0
if (parse_result.mantissa == 0) {
full_result.value = 0.;
return full_result;
}
auto result = build_hex_float<T>(parse_result);
full_result.value = result.template to_value<T>(parse_result.is_negative);
if (result.exponent == FloatingPointRepr::infinity_exponent()) {
VERIFY(result.mantissa == 0);
full_result.error = FloatingPointError::OutOfRange;
} else if (result.mantissa == 0 && result.exponent == 0) {
full_result.error = FloatingPointError::RoundedDownToZero;
}
return full_result;
}
template FloatingPointParseResults<double> parse_first_hexfloat_until_zero_character(char const* start);
template FloatingPointParseResults<float> parse_first_hexfloat_until_zero_character(char const* start);
}

View file

@ -62,7 +62,24 @@ FloatingPointParseResults<T> parse_first_floating_point_until_zero_character(cha
template<FloatingPoint T = double>
Optional<T> parse_floating_point_completely(char const* start, char const* end);
/// This function finds the first floating point as a hex float within [start, end).
/// The accepted format is intentionally as lenient as possible. If your format is
/// stricter you must validate it first. The format accepts:
/// - An optional sign, both + and - are supported
/// - Optionally either 0x or OX
/// - 0 or more hexadecimal digits, with leading zeros allowed [1]
/// - A decimal point '.', which can have no digits after it
/// - 0 or more hexadecimal digits, unless the first digits [1] doesn't have any digits,
/// then this must have at least one
/// - An exponent 'p' or 'P' followed by an optional sign '+' or '-' and at least one decimal digit
/// NOTE: The exponent is _not_ hexadecimal and gives powers of 2 not 16.
/// This function additionally detects out of range values which have been rounded to
/// [-]infinity or 0 and gives the next character to read after the floating point.
template<FloatingPoint T = double>
FloatingPointParseResults<T> parse_first_hexfloat_until_zero_character(char const* start);
}
using AK::parse_first_floating_point;
using AK::parse_first_hexfloat_until_zero_character;
using AK::parse_floating_point_completely;

View file

@ -410,3 +410,170 @@ TEST_CASE(parse_completely_must_be_just_floating_point)
EXPECT_PARSE_COMPLETELY_TO_FAIL("1=234567890");
EXPECT_PARSE_COMPLETELY_TO_FAIL("1234567=890");
}
static double newhex(char const* view)
{
auto value = parse_first_hexfloat_until_zero_character<double>(view);
VERIFY(value.error == AK::FloatingPointError::None);
return value.value;
}
static float newhexf(char const* view)
{
auto value = parse_first_hexfloat_until_zero_character<float>(view);
VERIFY(value.error == AK::FloatingPointError::None);
return value.value;
}
TEST_CASE(hexfloat)
{
#define DOES_PARSE_HEX_DOUBLE_LIKE_CPP(value) \
do { \
EXPECT_EQ(static_cast<double>(value), newhex(#value)); \
EXPECT_EQ(-static_cast<double>(value), newhex("-" #value)); \
} while (false)
#define DOES_PARSE_HEX_FLOAT_LIKE_CPP(value) \
do { \
EXPECT_EQ(static_cast<float>(value##f), newhexf(#value)); \
EXPECT_EQ(-static_cast<float>(value##f), newhexf("-" #value)); \
} while (false)
#define DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(value) \
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(value); \
DOES_PARSE_HEX_FLOAT_LIKE_CPP(value)
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x123456789ABCDEFp0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x123456789ABCDEFp+0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x123456789ABCDEFp-0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x123456789ABCDEF.p-0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x123456789ABCDEF.123456789ABCDEFp-0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x123456789ABCDEF.123456789ABCDEFp-1);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x123456789ABCDEF.123456789ABCDEFp+1);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c0p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c00p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c000p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c001p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c10001p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c8p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c8001p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c80000000000000000000000000000000000000000000000000000000001p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c80000000000000000000000000000000000000000000000000000000000p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffp+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c9p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c9001p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x180eafb89ba47c9.001p+52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x180eafb89ba47c9.001p-4);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-1075);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-1075);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-1040);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-1040);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-999);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-999);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-788);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-788);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-632);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-632);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-408);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-408);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-189);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-189);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-76);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-76);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-52);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-25);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-25);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-13);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-13);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp-3);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p-3);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+3);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+3);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+6);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+6);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+13);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+13);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+19);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+19);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+154);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+154);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+298);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+298);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+455);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+455);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+692);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+692);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+901);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+901);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47cp+1023);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.80eafb89ba47c1p+1023);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x.80eafb89ba47cp+1024);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x.80eafb89ba47c1p+1024);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x.080eafb89ba47cp+1025);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x.080eafb89ba47c1p+1025);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.c5e1463479f8ep+218);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.c5e1463479f8e8p+218);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.c5e1463479f8e80p+218);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.c5e1463479f8e800p+218);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.c5e1463479f8e8001p+218);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.42100a53adbd5p-1024);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.d542100a53adbp-1023);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.fffffffffffffp-1023);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.fffffffffffff9p-1023);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.fffffffffffff8p-1023);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.fffffffffffff7p-1023);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.fffffffffffff800000001p-1023);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1p-1022);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x2p-1022);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x3p-1022);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x1.0p-1022);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x000000000000000000000000000000000001.0p-1022);
DOES_PARSE_HEX_DOUBLE_LIKE_CPP(0x000000000000000000000000000000000001.000000000000000000p-1022);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xCap0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xCAp0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xcAp0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xcAP0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xcaP0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xcap0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xcap1);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xca.p1);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0xc.ap1);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x1.p0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x11.p0);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x11.p1);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x11.p2);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x11.p-2);
DOES_PARSE_HEX_FLOAT_AND_DOUBLE_LIKE_CPP(0x11.p-0);
}
TEST_CASE(invalid_hex_floats)
{
#define EXPECT_HEX_PARSE_TO_VALUE_AND_CONSUME_CHARS(string_value, double_value, chars_parsed) \
do { \
char const* c_str = string_value; \
auto result = parse_first_hexfloat_until_zero_character<double>(c_str); \
EXPECT(result.error == AK::FloatingPointError::None); \
EXPECT_EQ(bit_cast<u64>(result.value), bit_cast<u64>(static_cast<double>(double_value))); \
EXPECT_EQ(result.end_ptr - c_str, chars_parsed); \
} while (false)
EXPECT_HEX_PARSE_TO_VALUE_AND_CONSUME_CHARS("0xab.cdpef", 0xab.cdp0, 7);
EXPECT_HEX_PARSE_TO_VALUE_AND_CONSUME_CHARS("0xab.cdPef", 0xab.cdp0, 7);
EXPECT_HEX_PARSE_TO_VALUE_AND_CONSUME_CHARS("0xab.cdPEf", 0xab.cdp0, 7);
EXPECT_HEX_PARSE_TO_VALUE_AND_CONSUME_CHARS("0xab.cdPEF", 0xab.cdp0, 7);
EXPECT_HEX_PARSE_TO_VALUE_AND_CONSUME_CHARS("0xAB.cdPEF", 0xab.cdp0, 7);
EXPECT_HEX_PARSE_TO_VALUE_AND_CONSUME_CHARS("0xABCDPEF", 0xabcdp0, 6);
EXPECT_HEX_PARSE_TO_VALUE_AND_CONSUME_CHARS("0xCAPE", 0xCAp0, 4);
}