Kernel: Add CLOCK_REALTIME support to the TimerQueue

This allows us to use blocking timeouts with either monotonic or
real time for all blockers. Which means that clock_nanosleep()
now also supports CLOCK_REALTIME.

Also, switch alarm() to use CLOCK_REALTIME as per specification.
This commit is contained in:
Tom 2020-12-01 16:53:47 -07:00 committed by Andreas Kling
parent 4c1e27ec65
commit 12cf6f8650
9 changed files with 182 additions and 97 deletions

View file

@ -46,9 +46,9 @@ unsigned Process::sys$alarm(unsigned seconds)
}
if (seconds > 0) {
auto deadline = TimeManagement::the().monotonic_time(); // TODO: should be using CLOCK_REALTIME
auto deadline = TimeManagement::the().current_time(CLOCK_REALTIME).value();
timespec_add(deadline, { seconds, 0 }, deadline);
m_alarm_timer = TimerQueue::the().add_timer_without_id(deadline, [this]() {
m_alarm_timer = TimerQueue::the().add_timer_without_id(CLOCK_REALTIME, deadline, [this]() {
(void)send_signal(SIGALRM, nullptr);
});
}

View file

@ -34,20 +34,11 @@ int Process::sys$clock_gettime(clockid_t clock_id, Userspace<timespec*> user_ts)
{
REQUIRE_PROMISE(stdio);
timespec ts = {};
auto ts = TimeManagement::the().current_time(clock_id);
if (ts.is_error())
return ts.error();
switch (clock_id) {
case CLOCK_MONOTONIC:
ts = TimeManagement::the().monotonic_time();
break;
case CLOCK_REALTIME:
ts = TimeManagement::the().epoch_time();
break;
default:
return -EINVAL;
}
if (!copy_to_user(user_ts, &ts))
if (!copy_to_user(user_ts, &ts.value()))
return -EFAULT;
return 0;
}
@ -88,13 +79,14 @@ int Process::sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_par
bool is_absolute = params.flags & TIMER_ABSTIME;
switch (params.clock_id) {
case CLOCK_MONOTONIC: {
case CLOCK_MONOTONIC:
case CLOCK_REALTIME: {
bool was_interrupted;
if (is_absolute) {
was_interrupted = Thread::current()->sleep_until(requested_sleep).was_interrupted();
was_interrupted = Thread::current()->sleep_until(params.clock_id, requested_sleep).was_interrupted();
} else {
timespec remaining_sleep;
was_interrupted = Thread::current()->sleep(requested_sleep, &remaining_sleep).was_interrupted();
was_interrupted = Thread::current()->sleep(params.clock_id, requested_sleep, &remaining_sleep).was_interrupted();
if (was_interrupted && params.remaining_sleep && !copy_to_user(params.remaining_sleep, &remaining_sleep))
return -EFAULT;
}

View file

@ -271,16 +271,16 @@ void Thread::relock_process(bool did_unlock)
Processor::current().restore_critical(prev_crit, prev_flags);
}
auto Thread::sleep(const timespec& duration, timespec* remaining_time) -> BlockResult
auto Thread::sleep(clockid_t clock_id, const timespec& duration, timespec* remaining_time) -> BlockResult
{
ASSERT(state() == Thread::Running);
return Thread::current()->block<Thread::SleepBlocker>(nullptr, Thread::BlockTimeout(false, &duration), remaining_time);
return Thread::current()->block<Thread::SleepBlocker>(nullptr, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time);
}
auto Thread::sleep_until(const timespec& deadline) -> BlockResult
auto Thread::sleep_until(clockid_t clock_id, const timespec& deadline) -> BlockResult
{
ASSERT(state() == Thread::Running);
return Thread::current()->block<Thread::SleepBlocker>(nullptr, Thread::BlockTimeout(true, &deadline));
return Thread::current()->block<Thread::SleepBlocker>(nullptr, Thread::BlockTimeout(true, &deadline, nullptr, clock_id));
}
const char* Thread::state_string() const
@ -1081,7 +1081,7 @@ Thread::BlockResult Thread::wait_on(WaitQueue& queue, const char* reason, const
{
ScopedSpinLock sched_lock(g_scheduler_lock);
if (!timeout.is_infinite()) {
timer = TimerQueue::the().add_timer_without_id(timeout.absolute_time(), [&]() {
timer = TimerQueue::the().add_timer_without_id(timeout.clock_id(), timeout.absolute_time(), [&]() {
// NOTE: this may execute on the same or any other processor!
ScopedSpinLock lock(g_scheduler_lock);
if (!block_finished) {

View file

@ -211,28 +211,30 @@ public:
: m_infinite(true)
{
}
explicit BlockTimeout(bool is_absolute, const timeval* time, const timespec* start_time = nullptr)
: m_infinite(!time)
explicit BlockTimeout(bool is_absolute, const timeval* time, const timespec* start_time = nullptr, clockid_t clock_id = CLOCK_MONOTONIC)
: m_clock_id(clock_id)
, m_infinite(!time)
{
if (!m_infinite) {
if (time->tv_sec > 0 || time->tv_usec > 0) {
timeval_to_timespec(*time, m_time);
m_should_block = true;
}
m_start_time = start_time ? *start_time : TimeManagement::the().monotonic_time();
m_start_time = start_time ? *start_time : TimeManagement::the().current_time(clock_id).value();
if (!is_absolute)
timespec_add(m_time, m_start_time, m_time);
}
}
explicit BlockTimeout(bool is_absolute, const timespec* time, const timespec* start_time = nullptr)
: m_infinite(!time)
explicit BlockTimeout(bool is_absolute, const timespec* time, const timespec* start_time = nullptr, clockid_t clock_id = CLOCK_MONOTONIC)
: m_clock_id(clock_id)
, m_infinite(!time)
{
if (!m_infinite) {
if (time->tv_sec > 0 || time->tv_nsec > 0) {
m_time = *time;
m_should_block = true;
}
m_start_time = start_time ? *start_time : TimeManagement::the().monotonic_time();
m_start_time = start_time ? *start_time : TimeManagement::the().current_time(clock_id).value();
if (!is_absolute)
timespec_add(m_time, m_start_time, m_time);
}
@ -240,12 +242,14 @@ public:
const timespec& absolute_time() const { return m_time; }
const timespec* start_time() const { return !m_infinite ? &m_start_time : nullptr; }
clockid_t clock_id() const { return m_clock_id; }
bool is_infinite() const { return m_infinite; }
bool should_block() const { return m_infinite || m_should_block; };
private:
timespec m_time { 0, 0 };
timespec m_start_time { 0, 0 };
clockid_t m_clock_id { CLOCK_MONOTONIC };
bool m_infinite { false };
bool m_should_block { false };
};
@ -733,7 +737,7 @@ public:
auto& block_timeout = t.override_timeout(timeout);
if (!block_timeout.is_infinite()) {
m_blocker_timeout = timer = TimerQueue::the().add_timer_without_id(block_timeout.absolute_time(), [&]() {
m_blocker_timeout = timer = TimerQueue::the().add_timer_without_id(block_timeout.clock_id(), block_timeout.absolute_time(), [&]() {
// NOTE: this may execute on the same or any other processor!
ScopedSpinLock scheduler_lock(g_scheduler_lock);
ScopedSpinLock lock(m_lock);
@ -816,8 +820,16 @@ public:
void unblock_from_blocker(Blocker&);
void unblock(u8 signal = 0);
BlockResult sleep(const timespec&, timespec* = nullptr);
BlockResult sleep_until(const timespec&);
BlockResult sleep(clockid_t, const timespec&, timespec* = nullptr);
BlockResult sleep(const timespec& duration, timespec* remaining_time = nullptr)
{
return sleep(CLOCK_MONOTONIC, duration, remaining_time);
}
BlockResult sleep_until(clockid_t, const timespec&);
BlockResult sleep_until(const timespec& duration)
{
return sleep_until(CLOCK_MONOTONIC, duration);
}
// Tell this thread to unblock if needed,
// gracefully unwind the stack and die.

View file

@ -197,7 +197,7 @@ auto Thread::WriteBlocker::override_timeout(const BlockTimeout& timeout) -> cons
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_send_timeout()) {
m_timeout = BlockTimeout(false, &socket.send_timeout(), timeout.start_time());
m_timeout = BlockTimeout(false, &socket.send_timeout(), timeout.start_time(), timeout.clock_id());
if (timeout.is_infinite() || (!m_timeout.is_infinite() && m_timeout.absolute_time() < timeout.absolute_time()))
return m_timeout;
}
@ -216,7 +216,7 @@ auto Thread::ReadBlocker::override_timeout(const BlockTimeout& timeout) -> const
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_receive_timeout()) {
m_timeout = BlockTimeout(false, &socket.receive_timeout(), timeout.start_time());
m_timeout = BlockTimeout(false, &socket.receive_timeout(), timeout.start_time(), timeout.clock_id());
if (timeout.is_infinite() || (!m_timeout.is_infinite() && m_timeout.absolute_time() < timeout.absolute_time()))
return m_timeout;
}
@ -256,7 +256,7 @@ void Thread::SleepBlocker::calculate_remaining()
{
if (!m_remaining)
return;
auto time_now = TimeManagement::the().monotonic_time();
auto time_now = TimeManagement::the().current_time(m_deadline.clock_id()).value();
if (time_now < m_deadline.absolute_time())
timespec_sub(m_deadline.absolute_time(), time_now, *m_remaining);
else

View file

@ -52,6 +52,18 @@ TimeManagement& TimeManagement::the()
return *s_the;
}
KResultOr<timespec> TimeManagement::current_time(clockid_t clock_id) const
{
switch (clock_id) {
case CLOCK_MONOTONIC:
return monotonic_time();
case CLOCK_REALTIME:
return epoch_time();
default:
return KResult(EINVAL);
}
}
bool TimeManagement::is_system_timer(const HardwareTimerBase& timer) const
{
return &timer == m_system_timer.ptr();

View file

@ -29,6 +29,7 @@
#include <AK/NonnullRefPtrVector.h>
#include <AK/RefPtr.h>
#include <AK/Types.h>
#include <Kernel/KResult.h>
#include <Kernel/UnixTypes.h>
namespace Kernel {
@ -49,6 +50,7 @@ public:
static timespec ticks_to_time(u64 ticks, time_t ticks_per_second);
static u64 time_to_ticks(const timespec& tspec, time_t ticks_per_second);
KResultOr<timespec> current_time(clockid_t clock_id) const;
timespec monotonic_time() const;
timespec epoch_time() const;
void set_epoch_time(timespec);

View file

@ -42,7 +42,12 @@ timespec Timer::remaining() const
{
if (m_remaining == 0)
return {};
return TimerQueue::the().ticks_to_time(m_remaining);
return TimerQueue::the().ticks_to_time(m_clock_id, m_remaining);
}
u64 Timer::now() const
{
return TimerQueue::the().time_to_ticks(m_clock_id, TimeManagement::the().current_time(m_clock_id).value());
}
TimerQueue& TimerQueue::the()
@ -55,9 +60,9 @@ TimerQueue::TimerQueue()
m_ticks_per_second = TimeManagement::the().ticks_per_second();
}
RefPtr<Timer> TimerQueue::add_timer_without_id(const timespec& deadline, Function<void()>&& callback)
RefPtr<Timer> TimerQueue::add_timer_without_id(clockid_t clock_id, const timespec& deadline, Function<void()>&& callback)
{
if (deadline <= TimeManagement::the().monotonic_time())
if (deadline <= TimeManagement::the().current_time(clock_id).value())
return {};
// Because timer handlers can execute on any processor and there is
@ -65,7 +70,7 @@ RefPtr<Timer> TimerQueue::add_timer_without_id(const timespec& deadline, Functio
// *must* be a RefPtr<Timer>. Otherwise calling cancel_timer() could
// inadvertently cancel another timer that has been created between
// returning from the timer handler and a call to cancel_timer().
auto timer = adopt(*new Timer(time_to_ticks(deadline), move(callback)));
auto timer = adopt(*new Timer(clock_id, time_to_ticks(clock_id, deadline), move(callback)));
ScopedSpinLock lock(g_timerqueue_lock);
timer->m_id = 0; // Don't generate a timer id
@ -86,16 +91,17 @@ TimerId TimerQueue::add_timer(NonnullRefPtr<Timer>&& timer)
void TimerQueue::add_timer_locked(NonnullRefPtr<Timer> timer)
{
u64 timer_expiration = timer->m_expires;
ASSERT(timer_expiration >= time_to_ticks(TimeManagement::the().monotonic_time()));
ASSERT(timer_expiration >= time_to_ticks(timer->m_clock_id, TimeManagement::the().current_time(timer->m_clock_id).value()));
ASSERT(!timer->is_queued());
if (m_timer_queue.is_empty()) {
m_timer_queue.append(&timer.leak_ref());
m_next_timer_due = timer_expiration;
auto& queue = queue_for_timer(*timer);
if (queue.list.is_empty()) {
queue.list.append(&timer.leak_ref());
queue.next_timer_due = timer_expiration;
} else {
Timer* following_timer = nullptr;
m_timer_queue.for_each([&](Timer& t) {
queue.list.for_each([&](Timer& t) {
if (t.m_expires > timer_expiration) {
following_timer = &t;
return IterationDecision::Break;
@ -103,51 +109,85 @@ void TimerQueue::add_timer_locked(NonnullRefPtr<Timer> timer)
return IterationDecision::Continue;
});
if (following_timer) {
bool next_timer_needs_update = m_timer_queue.head() == following_timer;
m_timer_queue.insert_before(following_timer, &timer.leak_ref());
bool next_timer_needs_update = queue.list.head() == following_timer;
queue.list.insert_before(following_timer, &timer.leak_ref());
if (next_timer_needs_update)
m_next_timer_due = timer_expiration;
queue.next_timer_due = timer_expiration;
} else {
m_timer_queue.append(&timer.leak_ref());
queue.list.append(&timer.leak_ref());
}
}
}
TimerId TimerQueue::add_timer(timeval& deadline, Function<void()>&& callback)
TimerId TimerQueue::add_timer(clockid_t clock_id, timeval& deadline, Function<void()>&& callback)
{
auto expires = TimeManagement::the().monotonic_time();
auto expires = TimeManagement::the().current_time(clock_id).value();
timespec_add_timeval(expires, deadline, expires);
return add_timer(adopt(*new Timer(time_to_ticks(expires), move(callback))));
return add_timer(adopt(*new Timer(clock_id, time_to_ticks(clock_id, expires), move(callback))));
}
timespec TimerQueue::ticks_to_time(u64 ticks) const
timespec TimerQueue::ticks_to_time(clockid_t clock_id, u64 ticks) const
{
timespec tspec;
tspec.tv_sec = ticks / m_ticks_per_second;
tspec.tv_nsec = (ticks % m_ticks_per_second) * (1'000'000'000 / m_ticks_per_second);
switch (clock_id) {
case CLOCK_MONOTONIC:
tspec.tv_sec = ticks / m_ticks_per_second;
tspec.tv_nsec = (ticks % m_ticks_per_second) * (1'000'000'000 / m_ticks_per_second);
break;
case CLOCK_REALTIME:
tspec.tv_sec = ticks / 1'000'000'000;
tspec.tv_nsec = ticks % 1'000'000'000;
break;
default:
ASSERT_NOT_REACHED();
}
ASSERT(tspec.tv_nsec <= 1'000'000'000);
return tspec;
}
u64 TimerQueue::time_to_ticks(const timespec& tspec) const
u64 TimerQueue::time_to_ticks(clockid_t clock_id, const timespec& tspec) const
{
u64 ticks = (u64)tspec.tv_sec * m_ticks_per_second;
ticks += ((u64)tspec.tv_nsec * m_ticks_per_second) / 1'000'000'000;
u64 ticks;
switch (clock_id) {
case CLOCK_MONOTONIC:
ticks = (u64)tspec.tv_sec * m_ticks_per_second;
ticks += ((u64)tspec.tv_nsec * m_ticks_per_second) / 1'000'000'000;
break;
case CLOCK_REALTIME:
ticks = (u64)tspec.tv_sec * 1'000'000'000 + tspec.tv_nsec;
break;
default:
ASSERT_NOT_REACHED();
}
return ticks;
}
bool TimerQueue::cancel_timer(TimerId id)
{
ScopedSpinLock lock(g_timerqueue_lock);
Timer* found_timer = nullptr;
if (m_timer_queue.for_each([&](Timer& timer) {
Queue* timer_queue = nullptr;
ScopedSpinLock lock(g_timerqueue_lock);
if (m_timer_queue_monotonic.list.for_each([&](Timer& timer) {
if (timer.m_id == id) {
found_timer = &timer;
timer_queue = &m_timer_queue_monotonic;
return IterationDecision::Break;
}
return IterationDecision::Continue;
})
!= IterationDecision::Break) {
m_timer_queue_realtime.list.for_each([&](Timer& timer) {
if (timer.m_id == id) {
found_timer = &timer;
timer_queue = &m_timer_queue_realtime;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
if (!found_timer) {
// The timer may be executing right now, if it is then it should
// be in m_timers_executing. If it is then release the lock
// briefly to allow it to finish by removing itself
@ -171,7 +211,8 @@ bool TimerQueue::cancel_timer(TimerId id)
}
ASSERT(found_timer);
remove_timer_locked(*found_timer);
ASSERT(timer_queue);
remove_timer_locked(*timer_queue, *found_timer);
lock.unlock();
found_timer->unref();
return true;
@ -179,8 +220,9 @@ bool TimerQueue::cancel_timer(TimerId id)
bool TimerQueue::cancel_timer(Timer& timer)
{
auto& timer_queue = queue_for_timer(timer);
ScopedSpinLock lock(g_timerqueue_lock);
if (!m_timer_queue.contains_slow(&timer)) {
if (!timer_queue.list.contains_slow(&timer)) {
// The timer may be executing right now, if it is then it should
// be in m_timers_executing. If it is then release the lock
// briefly to allow it to finish by removing itself
@ -199,58 +241,64 @@ bool TimerQueue::cancel_timer(Timer& timer)
return false;
}
remove_timer_locked(timer);
remove_timer_locked(timer_queue, timer);
return true;
}
void TimerQueue::remove_timer_locked(Timer& timer)
void TimerQueue::remove_timer_locked(Queue& queue, Timer& timer)
{
bool was_next_timer = (m_timer_queue.head() == &timer);
m_timer_queue.remove(&timer);
bool was_next_timer = (queue.list.head() == &timer);
queue.list.remove(&timer);
timer.set_queued(false);
auto now = TimeManagement::the().monotonic_ticks();
auto now = timer.now();
if (timer.m_expires > now)
timer.m_remaining = timer.m_expires - now;
if (was_next_timer)
update_next_timer_due();
update_next_timer_due(queue);
}
void TimerQueue::fire()
{
ScopedSpinLock lock(g_timerqueue_lock);
auto* timer = m_timer_queue.head();
if (!timer)
return;
ASSERT(m_next_timer_due == timer->m_expires);
auto fire_timers = [&](Queue& queue) {
auto* timer = queue.list.head();
ASSERT(timer);
ASSERT(queue.next_timer_due == timer->m_expires);
while (timer && TimeManagement::the().monotonic_ticks() > timer->m_expires) {
m_timer_queue.remove(timer);
m_timers_executing.append(timer);
while (timer && timer->now() > timer->m_expires) {
queue.list.remove(timer);
m_timers_executing.append(timer);
update_next_timer_due();
update_next_timer_due(queue);
lock.unlock();
timer->m_callback();
lock.lock();
lock.unlock();
timer->m_callback();
lock.lock();
m_timers_executing.remove(timer);
timer->set_queued(false);
timer->unref();
m_timers_executing.remove(timer);
timer->set_queued(false);
timer->unref();
timer = m_timer_queue.head();
}
timer = queue.list.head();
}
};
if (!m_timer_queue_monotonic.list.is_empty())
fire_timers(m_timer_queue_monotonic);
if (!m_timer_queue_realtime.list.is_empty())
fire_timers(m_timer_queue_realtime);
}
void TimerQueue::update_next_timer_due()
void TimerQueue::update_next_timer_due(Queue& queue)
{
ASSERT(g_timerqueue_lock.is_locked());
if (auto* next_timer = m_timer_queue.head())
m_next_timer_due = next_timer->m_expires;
if (auto* next_timer = queue.list.head())
queue.next_timer_due = next_timer->m_expires;
else
m_next_timer_due = 0;
queue.next_timer_due = 0;
}
}

View file

@ -43,8 +43,9 @@ class Timer : public RefCounted<Timer>
friend class InlineLinkedListNode<Timer>;
public:
Timer(u64 expires, Function<void()>&& callback)
: m_expires(expires)
Timer(clockid_t clock_id, u64 expires, Function<void()>&& callback)
: m_clock_id(clock_id)
, m_expires(expires)
, m_callback(move(callback))
{
}
@ -57,6 +58,7 @@ public:
private:
TimerId m_id;
clockid_t m_clock_id;
u64 m_expires;
u64 m_remaining { 0 };
Function<void()> m_callback;
@ -78,6 +80,7 @@ private:
}
bool is_queued() const { return m_queued.load(AK::MemoryOrder::memory_order_relaxed); }
void set_queued(bool queued) { m_queued.store(queued, AK::MemoryOrder::memory_order_relaxed); }
u64 now() const;
};
class TimerQueue {
@ -88,8 +91,8 @@ public:
static TimerQueue& the();
TimerId add_timer(NonnullRefPtr<Timer>&&);
RefPtr<Timer> add_timer_without_id(const timespec& timeout, Function<void()>&& callback);
TimerId add_timer(timeval& timeout, Function<void()>&& callback);
RefPtr<Timer> add_timer_without_id(clockid_t, const timespec&, Function<void()>&&);
TimerId add_timer(clockid_t, timeval& timeout, Function<void()>&& callback);
bool cancel_timer(TimerId id);
bool cancel_timer(Timer&);
bool cancel_timer(NonnullRefPtr<Timer>&& timer)
@ -99,17 +102,33 @@ public:
void fire();
private:
void remove_timer_locked(Timer&);
void update_next_timer_due();
struct Queue {
InlineLinkedList<Timer> list;
u64 next_timer_due { 0 };
};
void remove_timer_locked(Queue&, Timer&);
void update_next_timer_due(Queue&);
void add_timer_locked(NonnullRefPtr<Timer>);
timespec ticks_to_time(u64 ticks) const;
u64 time_to_ticks(const timespec&) const;
Queue& queue_for_timer(Timer& timer)
{
switch (timer.m_clock_id) {
case CLOCK_MONOTONIC:
return m_timer_queue_monotonic;
case CLOCK_REALTIME:
return m_timer_queue_realtime;
default:
ASSERT_NOT_REACHED();
}
}
timespec ticks_to_time(clockid_t, u64 ticks) const;
u64 time_to_ticks(clockid_t, const timespec&) const;
u64 m_next_timer_due { 0 };
u64 m_timer_id_count { 0 };
u64 m_ticks_per_second { 0 };
InlineLinkedList<Timer> m_timer_queue;
Queue m_timer_queue_monotonic;
Queue m_timer_queue_realtime;
InlineLinkedList<Timer> m_timers_executing;
};