1
0
mirror of https://gitlab.com/qemu-project/qemu synced 2024-07-05 17:29:18 +00:00
qemu/util/iov.c
Philippe Mathieu-Daudé 522a9b94e0 util/iov: Avoid dynamic stack allocation
Use autofree heap allocation instead of variable-length array on the
stack.

The codebase has very few VLAs, and if we can get rid of them all we
can make the compiler error on new additions.  This is a defensive
measure against security bugs where an on-stack dynamic allocation
isn't correctly size-checked (e.g.  CVE-2021-3527).

Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-ID: <20230824164706.2652277-1-peter.maydell@linaro.org>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Eric Blake <eblake@redhat.com>
2023-09-07 20:32:11 -05:00

713 lines
19 KiB
C

/*
* Helpers for getting linearized buffers from iov / filling buffers into iovs
*
* Copyright IBM, Corp. 2007, 2008
* Copyright (C) 2010 Red Hat, Inc.
*
* Author(s):
* Anthony Liguori <aliguori@us.ibm.com>
* Amit Shah <amit.shah@redhat.com>
* Michael Tokarev <mjt@tls.msk.ru>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/iov.h"
#include "qemu/sockets.h"
#include "qemu/cutils.h"
size_t iov_from_buf_full(const struct iovec *iov, unsigned int iov_cnt,
size_t offset, const void *buf, size_t bytes)
{
size_t done;
unsigned int i;
for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
if (offset < iov[i].iov_len) {
size_t len = MIN(iov[i].iov_len - offset, bytes - done);
memcpy(iov[i].iov_base + offset, buf + done, len);
done += len;
offset = 0;
} else {
offset -= iov[i].iov_len;
}
}
assert(offset == 0);
return done;
}
size_t iov_to_buf_full(const struct iovec *iov, const unsigned int iov_cnt,
size_t offset, void *buf, size_t bytes)
{
size_t done;
unsigned int i;
for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
if (offset < iov[i].iov_len) {
size_t len = MIN(iov[i].iov_len - offset, bytes - done);
memcpy(buf + done, iov[i].iov_base + offset, len);
done += len;
offset = 0;
} else {
offset -= iov[i].iov_len;
}
}
assert(offset == 0);
return done;
}
size_t iov_memset(const struct iovec *iov, const unsigned int iov_cnt,
size_t offset, int fillc, size_t bytes)
{
size_t done;
unsigned int i;
for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
if (offset < iov[i].iov_len) {
size_t len = MIN(iov[i].iov_len - offset, bytes - done);
memset(iov[i].iov_base + offset, fillc, len);
done += len;
offset = 0;
} else {
offset -= iov[i].iov_len;
}
}
assert(offset == 0);
return done;
}
size_t iov_size(const struct iovec *iov, const unsigned int iov_cnt)
{
size_t len;
unsigned int i;
len = 0;
for (i = 0; i < iov_cnt; i++) {
len += iov[i].iov_len;
}
return len;
}
/* helper function for iov_send_recv() */
static ssize_t
do_send_recv(int sockfd, struct iovec *iov, unsigned iov_cnt, bool do_send)
{
#ifdef CONFIG_POSIX
ssize_t ret;
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
msg.msg_iov = iov;
msg.msg_iovlen = iov_cnt;
do {
ret = do_send
? sendmsg(sockfd, &msg, 0)
: recvmsg(sockfd, &msg, 0);
} while (ret < 0 && errno == EINTR);
return ret;
#else
/* else send piece-by-piece */
/*XXX Note: windows has WSASend() and WSARecv() */
unsigned i = 0;
ssize_t ret = 0;
ssize_t off = 0;
while (i < iov_cnt) {
ssize_t r = do_send
? send(sockfd, iov[i].iov_base + off, iov[i].iov_len - off, 0)
: recv(sockfd, iov[i].iov_base + off, iov[i].iov_len - off, 0);
if (r > 0) {
ret += r;
off += r;
if (off < iov[i].iov_len) {
continue;
}
} else if (!r) {
break;
} else if (errno == EINTR) {
continue;
} else {
/* else it is some "other" error,
* only return if there was no data processed. */
if (ret == 0) {
ret = -1;
}
break;
}
off = 0;
i++;
}
return ret;
#endif
}
ssize_t iov_send_recv(int sockfd, const struct iovec *_iov, unsigned iov_cnt,
size_t offset, size_t bytes,
bool do_send)
{
ssize_t total = 0;
ssize_t ret;
size_t orig_len, tail;
unsigned niov;
struct iovec *local_iov, *iov;
if (bytes <= 0) {
return 0;
}
local_iov = g_new0(struct iovec, iov_cnt);
iov_copy(local_iov, iov_cnt, _iov, iov_cnt, offset, bytes);
offset = 0;
iov = local_iov;
while (bytes > 0) {
/* Find the start position, skipping `offset' bytes:
* first, skip all full-sized vector elements, */
for (niov = 0; niov < iov_cnt && offset >= iov[niov].iov_len; ++niov) {
offset -= iov[niov].iov_len;
}
/* niov == iov_cnt would only be valid if bytes == 0, which
* we already ruled out in the loop condition. */
assert(niov < iov_cnt);
iov += niov;
iov_cnt -= niov;
if (offset) {
/* second, skip `offset' bytes from the (now) first element,
* undo it on exit */
iov[0].iov_base += offset;
iov[0].iov_len -= offset;
}
/* Find the end position skipping `bytes' bytes: */
/* first, skip all full-sized elements */
tail = bytes;
for (niov = 0; niov < iov_cnt && iov[niov].iov_len <= tail; ++niov) {
tail -= iov[niov].iov_len;
}
if (tail) {
/* second, fixup the last element, and remember the original
* length */
assert(niov < iov_cnt);
assert(iov[niov].iov_len > tail);
orig_len = iov[niov].iov_len;
iov[niov++].iov_len = tail;
ret = do_send_recv(sockfd, iov, niov, do_send);
/* Undo the changes above before checking for errors */
iov[niov-1].iov_len = orig_len;
} else {
ret = do_send_recv(sockfd, iov, niov, do_send);
}
if (offset) {
iov[0].iov_base -= offset;
iov[0].iov_len += offset;
}
if (ret < 0) {
assert(errno != EINTR);
g_free(local_iov);
if (errno == EAGAIN && total > 0) {
return total;
}
return -1;
}
if (ret == 0 && !do_send) {
/* recv returns 0 when the peer has performed an orderly
* shutdown. */
break;
}
/* Prepare for the next iteration */
offset += ret;
total += ret;
bytes -= ret;
}
g_free(local_iov);
return total;
}
void iov_hexdump(const struct iovec *iov, const unsigned int iov_cnt,
FILE *fp, const char *prefix, size_t limit)
{
int v;
size_t size = 0;
char *buf;
for (v = 0; v < iov_cnt; v++) {
size += iov[v].iov_len;
}
size = size > limit ? limit : size;
buf = g_malloc(size);
iov_to_buf(iov, iov_cnt, 0, buf, size);
qemu_hexdump(fp, prefix, buf, size);
g_free(buf);
}
unsigned iov_copy(struct iovec *dst_iov, unsigned int dst_iov_cnt,
const struct iovec *iov, unsigned int iov_cnt,
size_t offset, size_t bytes)
{
size_t len;
unsigned int i, j;
for (i = 0, j = 0;
i < iov_cnt && j < dst_iov_cnt && (offset || bytes); i++) {
if (offset >= iov[i].iov_len) {
offset -= iov[i].iov_len;
continue;
}
len = MIN(bytes, iov[i].iov_len - offset);
dst_iov[j].iov_base = iov[i].iov_base + offset;
dst_iov[j].iov_len = len;
j++;
bytes -= len;
offset = 0;
}
assert(offset == 0);
return j;
}
/* io vectors */
void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
{
qiov->iov = g_new(struct iovec, alloc_hint);
qiov->niov = 0;
qiov->nalloc = alloc_hint;
qiov->size = 0;
}
void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
{
int i;
qiov->iov = iov;
qiov->niov = niov;
qiov->nalloc = -1;
qiov->size = 0;
for (i = 0; i < niov; i++)
qiov->size += iov[i].iov_len;
}
void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
{
assert(qiov->nalloc != -1);
if (qiov->niov == qiov->nalloc) {
qiov->nalloc = 2 * qiov->nalloc + 1;
qiov->iov = g_renew(struct iovec, qiov->iov, qiov->nalloc);
}
qiov->iov[qiov->niov].iov_base = base;
qiov->iov[qiov->niov].iov_len = len;
qiov->size += len;
++qiov->niov;
}
/*
* Concatenates (partial) iovecs from src_iov to the end of dst.
* It starts copying after skipping `soffset' bytes at the
* beginning of src and adds individual vectors from src to
* dst copies up to `sbytes' bytes total, or up to the end
* of src_iov if it comes first. This way, it is okay to specify
* very large value for `sbytes' to indicate "up to the end
* of src".
* Only vector pointers are processed, not the actual data buffers.
*/
size_t qemu_iovec_concat_iov(QEMUIOVector *dst,
struct iovec *src_iov, unsigned int src_cnt,
size_t soffset, size_t sbytes)
{
int i;
size_t done;
if (!sbytes) {
return 0;
}
assert(dst->nalloc != -1);
for (i = 0, done = 0; done < sbytes && i < src_cnt; i++) {
if (soffset < src_iov[i].iov_len) {
size_t len = MIN(src_iov[i].iov_len - soffset, sbytes - done);
qemu_iovec_add(dst, src_iov[i].iov_base + soffset, len);
done += len;
soffset = 0;
} else {
soffset -= src_iov[i].iov_len;
}
}
assert(soffset == 0); /* offset beyond end of src */
return done;
}
/*
* Concatenates (partial) iovecs from src to the end of dst.
* It starts copying after skipping `soffset' bytes at the
* beginning of src and adds individual vectors from src to
* dst copies up to `sbytes' bytes total, or up to the end
* of src if it comes first. This way, it is okay to specify
* very large value for `sbytes' to indicate "up to the end
* of src".
* Only vector pointers are processed, not the actual data buffers.
*/
void qemu_iovec_concat(QEMUIOVector *dst,
QEMUIOVector *src, size_t soffset, size_t sbytes)
{
qemu_iovec_concat_iov(dst, src->iov, src->niov, soffset, sbytes);
}
/*
* qiov_find_iov
*
* Return pointer to iovec structure, where byte at @offset in original vector
* @iov exactly is.
* Set @remaining_offset to be offset inside that iovec to the same byte.
*/
static struct iovec *iov_skip_offset(struct iovec *iov, size_t offset,
size_t *remaining_offset)
{
while (offset > 0 && offset >= iov->iov_len) {
offset -= iov->iov_len;
iov++;
}
*remaining_offset = offset;
return iov;
}
/*
* qemu_iovec_slice
*
* Find subarray of iovec's, containing requested range. @head would
* be offset in first iov (returned by the function), @tail would be
* count of extra bytes in last iovec (returned iov + @niov - 1).
*/
struct iovec *qemu_iovec_slice(QEMUIOVector *qiov,
size_t offset, size_t len,
size_t *head, size_t *tail, int *niov)
{
struct iovec *iov, *end_iov;
assert(offset + len <= qiov->size);
iov = iov_skip_offset(qiov->iov, offset, head);
end_iov = iov_skip_offset(iov, *head + len, tail);
if (*tail > 0) {
assert(*tail < end_iov->iov_len);
*tail = end_iov->iov_len - *tail;
end_iov++;
}
*niov = end_iov - iov;
return iov;
}
int qemu_iovec_subvec_niov(QEMUIOVector *qiov, size_t offset, size_t len)
{
size_t head, tail;
int niov;
qemu_iovec_slice(qiov, offset, len, &head, &tail, &niov);
return niov;
}
/*
* Check if the contents of subrange of qiov data is all zeroes.
*/
bool qemu_iovec_is_zero(QEMUIOVector *qiov, size_t offset, size_t bytes)
{
struct iovec *iov;
size_t current_offset;
assert(offset + bytes <= qiov->size);
iov = iov_skip_offset(qiov->iov, offset, &current_offset);
while (bytes) {
uint8_t *base = (uint8_t *)iov->iov_base + current_offset;
size_t len = MIN(iov->iov_len - current_offset, bytes);
if (!buffer_is_zero(base, len)) {
return false;
}
current_offset = 0;
bytes -= len;
iov++;
}
return true;
}
void qemu_iovec_init_slice(QEMUIOVector *qiov, QEMUIOVector *source,
size_t offset, size_t len)
{
struct iovec *slice_iov;
int slice_niov;
size_t slice_head, slice_tail;
assert(source->size >= len);
assert(source->size - len >= offset);
slice_iov = qemu_iovec_slice(source, offset, len,
&slice_head, &slice_tail, &slice_niov);
if (slice_niov == 1) {
qemu_iovec_init_buf(qiov, slice_iov[0].iov_base + slice_head, len);
} else {
qemu_iovec_init(qiov, slice_niov);
qemu_iovec_concat_iov(qiov, slice_iov, slice_niov, slice_head, len);
}
}
void qemu_iovec_destroy(QEMUIOVector *qiov)
{
if (qiov->nalloc != -1) {
g_free(qiov->iov);
}
memset(qiov, 0, sizeof(*qiov));
}
void qemu_iovec_reset(QEMUIOVector *qiov)
{
assert(qiov->nalloc != -1);
qiov->niov = 0;
qiov->size = 0;
}
size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
void *buf, size_t bytes)
{
return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
}
size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
const void *buf, size_t bytes)
{
return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
}
size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
int fillc, size_t bytes)
{
return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
}
/**
* Check that I/O vector contents are identical
*
* The IO vectors must have the same structure (same length of all parts).
* A typical usage is to compare vectors created with qemu_iovec_clone().
*
* @a: I/O vector
* @b: I/O vector
* @ret: Offset to first mismatching byte or -1 if match
*/
ssize_t qemu_iovec_compare(QEMUIOVector *a, QEMUIOVector *b)
{
int i;
ssize_t offset = 0;
assert(a->niov == b->niov);
for (i = 0; i < a->niov; i++) {
size_t len = 0;
uint8_t *p = (uint8_t *)a->iov[i].iov_base;
uint8_t *q = (uint8_t *)b->iov[i].iov_base;
assert(a->iov[i].iov_len == b->iov[i].iov_len);
while (len < a->iov[i].iov_len && *p++ == *q++) {
len++;
}
offset += len;
if (len != a->iov[i].iov_len) {
return offset;
}
}
return -1;
}
typedef struct {
int src_index;
struct iovec *src_iov;
void *dest_base;
} IOVectorSortElem;
static int sortelem_cmp_src_base(const void *a, const void *b)
{
const IOVectorSortElem *elem_a = a;
const IOVectorSortElem *elem_b = b;
/* Don't overflow */
if (elem_a->src_iov->iov_base < elem_b->src_iov->iov_base) {
return -1;
} else if (elem_a->src_iov->iov_base > elem_b->src_iov->iov_base) {
return 1;
} else {
return 0;
}
}
static int sortelem_cmp_src_index(const void *a, const void *b)
{
const IOVectorSortElem *elem_a = a;
const IOVectorSortElem *elem_b = b;
return elem_a->src_index - elem_b->src_index;
}
/**
* Copy contents of I/O vector
*
* The relative relationships of overlapping iovecs are preserved. This is
* necessary to ensure identical semantics in the cloned I/O vector.
*/
void qemu_iovec_clone(QEMUIOVector *dest, const QEMUIOVector *src, void *buf)
{
g_autofree IOVectorSortElem *sortelems = g_new(IOVectorSortElem, src->niov);
void *last_end;
int i;
/* Sort by source iovecs by base address */
for (i = 0; i < src->niov; i++) {
sortelems[i].src_index = i;
sortelems[i].src_iov = &src->iov[i];
}
qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_base);
/* Allocate buffer space taking into account overlapping iovecs */
last_end = NULL;
for (i = 0; i < src->niov; i++) {
struct iovec *cur = sortelems[i].src_iov;
ptrdiff_t rewind = 0;
/* Detect overlap */
if (last_end && last_end > cur->iov_base) {
rewind = last_end - cur->iov_base;
}
sortelems[i].dest_base = buf - rewind;
buf += cur->iov_len - MIN(rewind, cur->iov_len);
last_end = MAX(cur->iov_base + cur->iov_len, last_end);
}
/* Sort by source iovec index and build destination iovec */
qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_index);
for (i = 0; i < src->niov; i++) {
qemu_iovec_add(dest, sortelems[i].dest_base, src->iov[i].iov_len);
}
}
void iov_discard_undo(IOVDiscardUndo *undo)
{
/* Restore original iovec if it was modified */
if (undo->modified_iov) {
*undo->modified_iov = undo->orig;
}
}
size_t iov_discard_front_undoable(struct iovec **iov,
unsigned int *iov_cnt,
size_t bytes,
IOVDiscardUndo *undo)
{
size_t total = 0;
struct iovec *cur;
if (undo) {
undo->modified_iov = NULL;
}
for (cur = *iov; *iov_cnt > 0; cur++) {
if (cur->iov_len > bytes) {
if (undo) {
undo->modified_iov = cur;
undo->orig = *cur;
}
cur->iov_base += bytes;
cur->iov_len -= bytes;
total += bytes;
break;
}
bytes -= cur->iov_len;
total += cur->iov_len;
*iov_cnt -= 1;
}
*iov = cur;
return total;
}
size_t iov_discard_front(struct iovec **iov, unsigned int *iov_cnt,
size_t bytes)
{
return iov_discard_front_undoable(iov, iov_cnt, bytes, NULL);
}
size_t iov_discard_back_undoable(struct iovec *iov,
unsigned int *iov_cnt,
size_t bytes,
IOVDiscardUndo *undo)
{
size_t total = 0;
struct iovec *cur;
if (undo) {
undo->modified_iov = NULL;
}
if (*iov_cnt == 0) {
return 0;
}
cur = iov + (*iov_cnt - 1);
while (*iov_cnt > 0) {
if (cur->iov_len > bytes) {
if (undo) {
undo->modified_iov = cur;
undo->orig = *cur;
}
cur->iov_len -= bytes;
total += bytes;
break;
}
bytes -= cur->iov_len;
total += cur->iov_len;
cur--;
*iov_cnt -= 1;
}
return total;
}
size_t iov_discard_back(struct iovec *iov, unsigned int *iov_cnt,
size_t bytes)
{
return iov_discard_back_undoable(iov, iov_cnt, bytes, NULL);
}
void qemu_iovec_discard_back(QEMUIOVector *qiov, size_t bytes)
{
size_t total;
unsigned int niov = qiov->niov;
assert(qiov->size >= bytes);
total = iov_discard_back(qiov->iov, &niov, bytes);
assert(total == bytes);
qiov->niov = niov;
qiov->size -= bytes;
}