qemu/hw/mac_dbdma.c
Jan Kiszka 8217606e6e Introduce reset notifier order
Add the parameter 'order' to qemu_register_reset and sort callbacks on
registration. On system reset, callbacks with lower order will be
invoked before those with higher order. Update all existing users to the
standard order 0.

Note: At least for x86, the existing users seem to assume that handlers
are called in their registration order. Therefore, the patch preserves
this property. If someone feels bored, (s)he could try to identify this
dependency and express it properly on callback registration.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-05-22 10:50:34 -05:00

849 lines
22 KiB
C

/*
* PowerMac descriptor-based DMA emulation
*
* Copyright (c) 2005-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
* Copyright (c) 2009 Laurent Vivier
*
* some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h
*
* Definitions for using the Apple Descriptor-Based DMA controller
* in Power Macintosh computers.
*
* Copyright (C) 1996 Paul Mackerras.
*
* some parts from mol 0.9.71
*
* Descriptor based DMA emulation
*
* Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "isa.h"
#include "mac_dbdma.h"
/* debug DBDMA */
//#define DEBUG_DBDMA
#ifdef DEBUG_DBDMA
#define DBDMA_DPRINTF(fmt, ...) \
do { printf("DBDMA: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DBDMA_DPRINTF(fmt, ...)
#endif
/*
*/
/*
* DBDMA control/status registers. All little-endian.
*/
#define DBDMA_CONTROL 0x00
#define DBDMA_STATUS 0x01
#define DBDMA_CMDPTR_HI 0x02
#define DBDMA_CMDPTR_LO 0x03
#define DBDMA_INTR_SEL 0x04
#define DBDMA_BRANCH_SEL 0x05
#define DBDMA_WAIT_SEL 0x06
#define DBDMA_XFER_MODE 0x07
#define DBDMA_DATA2PTR_HI 0x08
#define DBDMA_DATA2PTR_LO 0x09
#define DBDMA_RES1 0x0A
#define DBDMA_ADDRESS_HI 0x0B
#define DBDMA_BRANCH_ADDR_HI 0x0C
#define DBDMA_RES2 0x0D
#define DBDMA_RES3 0x0E
#define DBDMA_RES4 0x0F
#define DBDMA_REGS 16
#define DBDMA_SIZE (DBDMA_REGS * sizeof(uint32_t))
#define DBDMA_CHANNEL_SHIFT 7
#define DBDMA_CHANNEL_SIZE (1 << DBDMA_CHANNEL_SHIFT)
#define DBDMA_CHANNELS (0x1000 >> DBDMA_CHANNEL_SHIFT)
/* Bits in control and status registers */
#define RUN 0x8000
#define PAUSE 0x4000
#define FLUSH 0x2000
#define WAKE 0x1000
#define DEAD 0x0800
#define ACTIVE 0x0400
#define BT 0x0100
#define DEVSTAT 0x00ff
/*
* DBDMA command structure. These fields are all little-endian!
*/
typedef struct dbdma_cmd {
uint16_t req_count; /* requested byte transfer count */
uint16_t command; /* command word (has bit-fields) */
uint32_t phy_addr; /* physical data address */
uint32_t cmd_dep; /* command-dependent field */
uint16_t res_count; /* residual count after completion */
uint16_t xfer_status; /* transfer status */
} dbdma_cmd;
/* DBDMA command values in command field */
#define COMMAND_MASK 0xf000
#define OUTPUT_MORE 0x0000 /* transfer memory data to stream */
#define OUTPUT_LAST 0x1000 /* ditto followed by end marker */
#define INPUT_MORE 0x2000 /* transfer stream data to memory */
#define INPUT_LAST 0x3000 /* ditto, expect end marker */
#define STORE_WORD 0x4000 /* write word (4 bytes) to device reg */
#define LOAD_WORD 0x5000 /* read word (4 bytes) from device reg */
#define DBDMA_NOP 0x6000 /* do nothing */
#define DBDMA_STOP 0x7000 /* suspend processing */
/* Key values in command field */
#define KEY_MASK 0x0700
#define KEY_STREAM0 0x0000 /* usual data stream */
#define KEY_STREAM1 0x0100 /* control/status stream */
#define KEY_STREAM2 0x0200 /* device-dependent stream */
#define KEY_STREAM3 0x0300 /* device-dependent stream */
#define KEY_STREAM4 0x0400 /* reserved */
#define KEY_REGS 0x0500 /* device register space */
#define KEY_SYSTEM 0x0600 /* system memory-mapped space */
#define KEY_DEVICE 0x0700 /* device memory-mapped space */
/* Interrupt control values in command field */
#define INTR_MASK 0x0030
#define INTR_NEVER 0x0000 /* don't interrupt */
#define INTR_IFSET 0x0010 /* intr if condition bit is 1 */
#define INTR_IFCLR 0x0020 /* intr if condition bit is 0 */
#define INTR_ALWAYS 0x0030 /* always interrupt */
/* Branch control values in command field */
#define BR_MASK 0x000c
#define BR_NEVER 0x0000 /* don't branch */
#define BR_IFSET 0x0004 /* branch if condition bit is 1 */
#define BR_IFCLR 0x0008 /* branch if condition bit is 0 */
#define BR_ALWAYS 0x000c /* always branch */
/* Wait control values in command field */
#define WAIT_MASK 0x0003
#define WAIT_NEVER 0x0000 /* don't wait */
#define WAIT_IFSET 0x0001 /* wait if condition bit is 1 */
#define WAIT_IFCLR 0x0002 /* wait if condition bit is 0 */
#define WAIT_ALWAYS 0x0003 /* always wait */
typedef struct DBDMA_channel {
int channel;
uint32_t regs[DBDMA_REGS];
qemu_irq irq;
DBDMA_io io;
DBDMA_rw rw;
DBDMA_flush flush;
dbdma_cmd current;
int processing;
} DBDMA_channel;
#ifdef DEBUG_DBDMA
static void dump_dbdma_cmd(dbdma_cmd *cmd)
{
printf("dbdma_cmd %p\n", cmd);
printf(" req_count 0x%04x\n", le16_to_cpu(cmd->req_count));
printf(" command 0x%04x\n", le16_to_cpu(cmd->command));
printf(" phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr));
printf(" cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep));
printf(" res_count 0x%04x\n", le16_to_cpu(cmd->res_count));
printf(" xfer_status 0x%04x\n", le16_to_cpu(cmd->xfer_status));
}
#else
static void dump_dbdma_cmd(dbdma_cmd *cmd)
{
}
#endif
static void dbdma_cmdptr_load(DBDMA_channel *ch)
{
DBDMA_DPRINTF("dbdma_cmdptr_load 0x%08x\n",
be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]));
cpu_physical_memory_read(be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]),
(uint8_t*)&ch->current, sizeof(dbdma_cmd));
}
static void dbdma_cmdptr_save(DBDMA_channel *ch)
{
DBDMA_DPRINTF("dbdma_cmdptr_save 0x%08x\n",
be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]));
DBDMA_DPRINTF("xfer_status 0x%08x res_count 0x%04x\n",
le16_to_cpu(ch->current.xfer_status),
le16_to_cpu(ch->current.res_count));
cpu_physical_memory_write(be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]),
(uint8_t*)&ch->current, sizeof(dbdma_cmd));
}
static void kill_channel(DBDMA_channel *ch)
{
DBDMA_DPRINTF("kill_channel\n");
ch->regs[DBDMA_STATUS] |= cpu_to_be32(DEAD);
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~ACTIVE);
qemu_irq_raise(ch->irq);
}
static void conditional_interrupt(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t intr;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
DBDMA_DPRINTF("conditional_interrupt\n");
intr = le16_to_cpu(current->command) & INTR_MASK;
switch(intr) {
case INTR_NEVER: /* don't interrupt */
return;
case INTR_ALWAYS: /* always interrupt */
qemu_irq_raise(ch->irq);
return;
}
status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
sel_mask = (be32_to_cpu(ch->regs[DBDMA_INTR_SEL]) >> 16) & 0x0f;
sel_value = be32_to_cpu(ch->regs[DBDMA_INTR_SEL]) & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(intr) {
case INTR_IFSET: /* intr if condition bit is 1 */
if (cond)
qemu_irq_raise(ch->irq);
return;
case INTR_IFCLR: /* intr if condition bit is 0 */
if (!cond)
qemu_irq_raise(ch->irq);
return;
}
}
static int conditional_wait(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t wait;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
DBDMA_DPRINTF("conditional_wait\n");
wait = le16_to_cpu(current->command) & WAIT_MASK;
switch(wait) {
case WAIT_NEVER: /* don't wait */
return 0;
case WAIT_ALWAYS: /* always wait */
return 1;
}
status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
sel_mask = (be32_to_cpu(ch->regs[DBDMA_WAIT_SEL]) >> 16) & 0x0f;
sel_value = be32_to_cpu(ch->regs[DBDMA_WAIT_SEL]) & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(wait) {
case WAIT_IFSET: /* wait if condition bit is 1 */
if (cond)
return 1;
return 0;
case WAIT_IFCLR: /* wait if condition bit is 0 */
if (!cond)
return 1;
return 0;
}
return 0;
}
static void next(DBDMA_channel *ch)
{
uint32_t cp;
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~BT);
cp = be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]);
ch->regs[DBDMA_CMDPTR_LO] = cpu_to_be32(cp + sizeof(dbdma_cmd));
dbdma_cmdptr_load(ch);
}
static void branch(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
ch->regs[DBDMA_CMDPTR_LO] = current->cmd_dep;
ch->regs[DBDMA_STATUS] |= cpu_to_be32(BT);
dbdma_cmdptr_load(ch);
}
static void conditional_branch(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t br;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
DBDMA_DPRINTF("conditional_branch\n");
/* check if we must branch */
br = le16_to_cpu(current->command) & BR_MASK;
switch(br) {
case BR_NEVER: /* don't branch */
next(ch);
return;
case BR_ALWAYS: /* always branch */
branch(ch);
return;
}
status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
sel_mask = (be32_to_cpu(ch->regs[DBDMA_BRANCH_SEL]) >> 16) & 0x0f;
sel_value = be32_to_cpu(ch->regs[DBDMA_BRANCH_SEL]) & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(br) {
case BR_IFSET: /* branch if condition bit is 1 */
if (cond)
branch(ch);
else
next(ch);
return;
case BR_IFCLR: /* branch if condition bit is 0 */
if (!cond)
branch(ch);
else
next(ch);
return;
}
}
static QEMUBH *dbdma_bh;
static void channel_run(DBDMA_channel *ch);
static void dbdma_end(DBDMA_io *io)
{
DBDMA_channel *ch = io->channel;
dbdma_cmd *current = &ch->current;
if (conditional_wait(ch))
goto wait;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
current->res_count = cpu_to_le16(be32_to_cpu(io->len));
dbdma_cmdptr_save(ch);
if (io->is_last)
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~FLUSH);
conditional_interrupt(ch);
conditional_branch(ch);
wait:
ch->processing = 0;
if ((ch->regs[DBDMA_STATUS] & cpu_to_be32(RUN)) &&
(ch->regs[DBDMA_STATUS] & cpu_to_be32(ACTIVE)))
channel_run(ch);
}
static void start_output(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t req_count, int is_last)
{
DBDMA_DPRINTF("start_output\n");
/* KEY_REGS, KEY_DEVICE and KEY_STREAM
* are not implemented in the mac-io chip
*/
DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key);
if (!addr || key > KEY_STREAM3) {
kill_channel(ch);
return;
}
ch->io.addr = addr;
ch->io.len = req_count;
ch->io.is_last = is_last;
ch->io.dma_end = dbdma_end;
ch->io.is_dma_out = 1;
ch->processing = 1;
ch->rw(&ch->io);
}
static void start_input(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t req_count, int is_last)
{
DBDMA_DPRINTF("start_input\n");
/* KEY_REGS, KEY_DEVICE and KEY_STREAM
* are not implemented in the mac-io chip
*/
if (!addr || key > KEY_STREAM3) {
kill_channel(ch);
return;
}
ch->io.addr = addr;
ch->io.len = req_count;
ch->io.is_last = is_last;
ch->io.dma_end = dbdma_end;
ch->io.is_dma_out = 0;
ch->processing = 1;
ch->rw(&ch->io);
}
static void load_word(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t len)
{
dbdma_cmd *current = &ch->current;
uint32_t val;
DBDMA_DPRINTF("load_word\n");
/* only implements KEY_SYSTEM */
if (key != KEY_SYSTEM) {
printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key);
kill_channel(ch);
return;
}
cpu_physical_memory_read(addr, (uint8_t*)&val, len);
if (len == 2)
val = (val << 16) | (current->cmd_dep & 0x0000ffff);
else if (len == 1)
val = (val << 24) | (current->cmd_dep & 0x00ffffff);
current->cmd_dep = val;
if (conditional_wait(ch))
goto wait;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
dbdma_cmdptr_save(ch);
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~FLUSH);
conditional_interrupt(ch);
next(ch);
wait:
qemu_bh_schedule(dbdma_bh);
}
static void store_word(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t len)
{
dbdma_cmd *current = &ch->current;
uint32_t val;
DBDMA_DPRINTF("store_word\n");
/* only implements KEY_SYSTEM */
if (key != KEY_SYSTEM) {
printf("DBDMA: STORE_WORD, unimplemented key %x\n", key);
kill_channel(ch);
return;
}
val = current->cmd_dep;
if (len == 2)
val >>= 16;
else if (len == 1)
val >>= 24;
cpu_physical_memory_write(addr, (uint8_t*)&val, len);
if (conditional_wait(ch))
goto wait;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
dbdma_cmdptr_save(ch);
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~FLUSH);
conditional_interrupt(ch);
next(ch);
wait:
qemu_bh_schedule(dbdma_bh);
}
static void nop(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
if (conditional_wait(ch))
goto wait;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
dbdma_cmdptr_save(ch);
conditional_interrupt(ch);
conditional_branch(ch);
wait:
qemu_bh_schedule(dbdma_bh);
}
static void stop(DBDMA_channel *ch)
{
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~(ACTIVE|DEAD|FLUSH));
/* the stop command does not increment command pointer */
}
static void channel_run(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t cmd, key;
uint16_t req_count;
uint32_t phy_addr;
DBDMA_DPRINTF("channel_run\n");
dump_dbdma_cmd(current);
/* clear WAKE flag at command fetch */
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~WAKE);
cmd = le16_to_cpu(current->command) & COMMAND_MASK;
switch (cmd) {
case DBDMA_NOP:
nop(ch);
return;
case DBDMA_STOP:
stop(ch);
return;
}
key = le16_to_cpu(current->command) & 0x0700;
req_count = le16_to_cpu(current->req_count);
phy_addr = le32_to_cpu(current->phy_addr);
if (key == KEY_STREAM4) {
printf("command %x, invalid key 4\n", cmd);
kill_channel(ch);
return;
}
switch (cmd) {
case OUTPUT_MORE:
start_output(ch, key, phy_addr, req_count, 0);
return;
case OUTPUT_LAST:
start_output(ch, key, phy_addr, req_count, 1);
return;
case INPUT_MORE:
start_input(ch, key, phy_addr, req_count, 0);
return;
case INPUT_LAST:
start_input(ch, key, phy_addr, req_count, 1);
return;
}
if (key < KEY_REGS) {
printf("command %x, invalid key %x\n", cmd, key);
key = KEY_SYSTEM;
}
/* for LOAD_WORD and STORE_WORD, req_count is on 3 bits
* and BRANCH is invalid
*/
req_count = req_count & 0x0007;
if (req_count & 0x4) {
req_count = 4;
phy_addr &= ~3;
} else if (req_count & 0x2) {
req_count = 2;
phy_addr &= ~1;
} else
req_count = 1;
switch (cmd) {
case LOAD_WORD:
load_word(ch, key, phy_addr, req_count);
return;
case STORE_WORD:
store_word(ch, key, phy_addr, req_count);
return;
}
}
static void DBDMA_run (DBDMA_channel *ch)
{
int channel;
for (channel = 0; channel < DBDMA_CHANNELS; channel++, ch++) {
uint32_t status = be32_to_cpu(ch->regs[DBDMA_STATUS]);
if (!ch->processing && (status & RUN) && (status & ACTIVE))
channel_run(ch);
}
}
static void DBDMA_run_bh(void *opaque)
{
DBDMA_channel *ch = opaque;
DBDMA_DPRINTF("DBDMA_run_bh\n");
DBDMA_run(ch);
}
void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq,
DBDMA_rw rw, DBDMA_flush flush,
void *opaque)
{
DBDMA_channel *ch = ( DBDMA_channel *)dbdma + nchan;
DBDMA_DPRINTF("DBDMA_register_channel 0x%x\n", nchan);
ch->irq = irq;
ch->channel = nchan;
ch->rw = rw;
ch->flush = flush;
ch->io.opaque = opaque;
ch->io.channel = ch;
}
void DBDMA_schedule(void)
{
qemu_notify_event();
}
static void
dbdma_control_write(DBDMA_channel *ch)
{
uint16_t mask, value;
uint32_t status;
mask = (be32_to_cpu(ch->regs[DBDMA_CONTROL]) >> 16) & 0xffff;
value = be32_to_cpu(ch->regs[DBDMA_CONTROL]) & 0xffff;
value &= (RUN | PAUSE | FLUSH | WAKE | DEVSTAT);
status = be32_to_cpu(ch->regs[DBDMA_STATUS]);
status = (value & mask) | (status & ~mask);
if (status & WAKE)
status |= ACTIVE;
if (status & RUN) {
status |= ACTIVE;
status &= ~DEAD;
}
if (status & PAUSE)
status &= ~ACTIVE;
if ((be32_to_cpu(ch->regs[DBDMA_STATUS]) & RUN) && !(status & RUN)) {
/* RUN is cleared */
status &= ~(ACTIVE|DEAD);
}
DBDMA_DPRINTF(" status 0x%08x\n", status);
ch->regs[DBDMA_STATUS] = cpu_to_be32(status);
if (status & ACTIVE)
qemu_bh_schedule(dbdma_bh);
if (status & FLUSH)
ch->flush(&ch->io);
}
static void dbdma_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
int channel = addr >> DBDMA_CHANNEL_SHIFT;
DBDMA_channel *ch = (DBDMA_channel *)opaque + channel;
int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
DBDMA_DPRINTF("writel 0x" TARGET_FMT_plx " <= 0x%08x\n", addr, value);
DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
(uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
/* cmdptr cannot be modified if channel is RUN or ACTIVE */
if (reg == DBDMA_CMDPTR_LO &&
(ch->regs[DBDMA_STATUS] & cpu_to_be32(RUN | ACTIVE)))
return;
ch->regs[reg] = value;
switch(reg) {
case DBDMA_CONTROL:
dbdma_control_write(ch);
break;
case DBDMA_CMDPTR_LO:
/* 16-byte aligned */
ch->regs[DBDMA_CMDPTR_LO] &= cpu_to_be32(~0xf);
dbdma_cmdptr_load(ch);
break;
case DBDMA_STATUS:
case DBDMA_INTR_SEL:
case DBDMA_BRANCH_SEL:
case DBDMA_WAIT_SEL:
/* nothing to do */
break;
case DBDMA_XFER_MODE:
case DBDMA_CMDPTR_HI:
case DBDMA_DATA2PTR_HI:
case DBDMA_DATA2PTR_LO:
case DBDMA_ADDRESS_HI:
case DBDMA_BRANCH_ADDR_HI:
case DBDMA_RES1:
case DBDMA_RES2:
case DBDMA_RES3:
case DBDMA_RES4:
/* unused */
break;
}
}
static uint32_t dbdma_readl (void *opaque, target_phys_addr_t addr)
{
uint32_t value;
int channel = addr >> DBDMA_CHANNEL_SHIFT;
DBDMA_channel *ch = (DBDMA_channel *)opaque + channel;
int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
value = ch->regs[reg];
DBDMA_DPRINTF("readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value);
DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
(uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
switch(reg) {
case DBDMA_CONTROL:
value = 0;
break;
case DBDMA_STATUS:
case DBDMA_CMDPTR_LO:
case DBDMA_INTR_SEL:
case DBDMA_BRANCH_SEL:
case DBDMA_WAIT_SEL:
/* nothing to do */
break;
case DBDMA_XFER_MODE:
case DBDMA_CMDPTR_HI:
case DBDMA_DATA2PTR_HI:
case DBDMA_DATA2PTR_LO:
case DBDMA_ADDRESS_HI:
case DBDMA_BRANCH_ADDR_HI:
/* unused */
value = 0;
break;
case DBDMA_RES1:
case DBDMA_RES2:
case DBDMA_RES3:
case DBDMA_RES4:
/* reserved */
break;
}
return value;
}
static CPUWriteMemoryFunc *dbdma_write[] = {
NULL,
NULL,
dbdma_writel,
};
static CPUReadMemoryFunc *dbdma_read[] = {
NULL,
NULL,
dbdma_readl,
};
static void dbdma_save(QEMUFile *f, void *opaque)
{
DBDMA_channel *s = opaque;
unsigned int i, j;
for (i = 0; i < DBDMA_CHANNELS; i++)
for (j = 0; j < DBDMA_REGS; j++)
qemu_put_be32s(f, &s[i].regs[j]);
}
static int dbdma_load(QEMUFile *f, void *opaque, int version_id)
{
DBDMA_channel *s = opaque;
unsigned int i, j;
if (version_id != 2)
return -EINVAL;
for (i = 0; i < DBDMA_CHANNELS; i++)
for (j = 0; j < DBDMA_REGS; j++)
qemu_get_be32s(f, &s[i].regs[j]);
return 0;
}
static void dbdma_reset(void *opaque)
{
DBDMA_channel *s = opaque;
int i;
for (i = 0; i < DBDMA_CHANNELS; i++)
memset(s[i].regs, 0, DBDMA_SIZE);
}
void* DBDMA_init (int *dbdma_mem_index)
{
DBDMA_channel *s;
s = qemu_mallocz(sizeof(DBDMA_channel) * DBDMA_CHANNELS);
*dbdma_mem_index = cpu_register_io_memory(0, dbdma_read, dbdma_write, s);
register_savevm("dbdma", -1, 1, dbdma_save, dbdma_load, s);
qemu_register_reset(dbdma_reset, 0, s);
dbdma_reset(s);
dbdma_bh = qemu_bh_new(DBDMA_run_bh, s);
return s;
}