qemu/dump/win_dump.c
Markus Armbruster d5938f29fe Clean up inclusion of sysemu/sysemu.h
In my "build everything" tree, changing sysemu/sysemu.h triggers a
recompile of some 5400 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).

Almost a third of its inclusions are actually superfluous.  Delete
them.  Downgrade two more to qapi/qapi-types-run-state.h, and move one
from char/serial.h to char/serial.c.

hw/semihosting/config.c, monitor/monitor.c, qdev-monitor.c, and
stubs/semihost.c define variables declared in sysemu/sysemu.h without
including it.  The compiler is cool with that, but include it anyway.

This doesn't reduce actual use much, as it's still included into
widely included headers.  The next commit will tackle that.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-27-armbru@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
2019-08-16 13:31:53 +02:00

390 lines
11 KiB
C

/*
* Windows crashdump
*
* Copyright (c) 2018 Virtuozzo International GmbH
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/cutils.h"
#include "elf.h"
#include "cpu.h"
#include "exec/hwaddr.h"
#include "monitor/monitor.h"
#include "sysemu/kvm.h"
#include "sysemu/dump.h"
#include "sysemu/memory_mapping.h"
#include "sysemu/cpus.h"
#include "qapi/error.h"
#include "qapi/qmp/qerror.h"
#include "qemu/error-report.h"
#include "hw/misc/vmcoreinfo.h"
#include "win_dump.h"
static size_t write_run(WinDumpPhyMemRun64 *run, int fd, Error **errp)
{
void *buf;
uint64_t addr = run->BasePage << TARGET_PAGE_BITS;
uint64_t size = run->PageCount << TARGET_PAGE_BITS;
uint64_t len, l;
size_t total = 0;
while (size) {
len = size;
buf = cpu_physical_memory_map(addr, &len, false);
if (!buf) {
error_setg(errp, "win-dump: failed to map physical range"
" 0x%016" PRIx64 "-0x%016" PRIx64, addr, addr + size - 1);
return 0;
}
l = qemu_write_full(fd, buf, len);
cpu_physical_memory_unmap(buf, addr, false, len);
if (l != len) {
error_setg(errp, QERR_IO_ERROR);
return 0;
}
addr += l;
size -= l;
total += l;
}
return total;
}
static void write_runs(DumpState *s, WinDumpHeader64 *h, Error **errp)
{
WinDumpPhyMemDesc64 *desc = &h->PhysicalMemoryBlock;
WinDumpPhyMemRun64 *run = desc->Run;
Error *local_err = NULL;
int i;
for (i = 0; i < desc->NumberOfRuns; i++) {
s->written_size += write_run(run + i, s->fd, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
}
static void patch_mm_pfn_database(WinDumpHeader64 *h, Error **errp)
{
if (cpu_memory_rw_debug(first_cpu,
h->KdDebuggerDataBlock + KDBG_MM_PFN_DATABASE_OFFSET64,
(uint8_t *)&h->PfnDatabase, sizeof(h->PfnDatabase), 0)) {
error_setg(errp, "win-dump: failed to read MmPfnDatabase");
return;
}
}
static void patch_bugcheck_data(WinDumpHeader64 *h, Error **errp)
{
uint64_t KiBugcheckData;
if (cpu_memory_rw_debug(first_cpu,
h->KdDebuggerDataBlock + KDBG_KI_BUGCHECK_DATA_OFFSET64,
(uint8_t *)&KiBugcheckData, sizeof(KiBugcheckData), 0)) {
error_setg(errp, "win-dump: failed to read KiBugcheckData");
return;
}
if (cpu_memory_rw_debug(first_cpu,
KiBugcheckData,
h->BugcheckData, sizeof(h->BugcheckData), 0)) {
error_setg(errp, "win-dump: failed to read bugcheck data");
return;
}
/*
* If BugcheckCode wasn't saved, we consider guest OS as alive.
*/
if (!h->BugcheckCode) {
h->BugcheckCode = LIVE_SYSTEM_DUMP;
}
}
/*
* This routine tries to correct mistakes in crashdump header.
*/
static void patch_header(WinDumpHeader64 *h)
{
Error *local_err = NULL;
h->RequiredDumpSpace = sizeof(WinDumpHeader64) +
(h->PhysicalMemoryBlock.NumberOfPages << TARGET_PAGE_BITS);
h->PhysicalMemoryBlock.unused = 0;
h->unused1 = 0;
patch_mm_pfn_database(h, &local_err);
if (local_err) {
warn_report_err(local_err);
local_err = NULL;
}
patch_bugcheck_data(h, &local_err);
if (local_err) {
warn_report_err(local_err);
}
}
static void check_header(WinDumpHeader64 *h, Error **errp)
{
const char Signature[] = "PAGE";
const char ValidDump[] = "DU64";
if (memcmp(h->Signature, Signature, sizeof(h->Signature))) {
error_setg(errp, "win-dump: invalid header, expected '%.4s',"
" got '%.4s'", Signature, h->Signature);
return;
}
if (memcmp(h->ValidDump, ValidDump, sizeof(h->ValidDump))) {
error_setg(errp, "win-dump: invalid header, expected '%.4s',"
" got '%.4s'", ValidDump, h->ValidDump);
return;
}
}
static void check_kdbg(WinDumpHeader64 *h, Error **errp)
{
const char OwnerTag[] = "KDBG";
char read_OwnerTag[4];
uint64_t KdDebuggerDataBlock = h->KdDebuggerDataBlock;
bool try_fallback = true;
try_again:
if (cpu_memory_rw_debug(first_cpu,
KdDebuggerDataBlock + KDBG_OWNER_TAG_OFFSET64,
(uint8_t *)&read_OwnerTag, sizeof(read_OwnerTag), 0)) {
error_setg(errp, "win-dump: failed to read OwnerTag");
return;
}
if (memcmp(read_OwnerTag, OwnerTag, sizeof(read_OwnerTag))) {
if (try_fallback) {
/*
* If attempt to use original KDBG failed
* (most likely because of its encryption),
* we try to use KDBG obtained by guest driver.
*/
KdDebuggerDataBlock = h->BugcheckParameter1;
try_fallback = false;
goto try_again;
} else {
error_setg(errp, "win-dump: invalid KDBG OwnerTag,"
" expected '%.4s', got '%.4s'",
OwnerTag, read_OwnerTag);
return;
}
}
h->KdDebuggerDataBlock = KdDebuggerDataBlock;
}
struct saved_context {
WinContext ctx;
uint64_t addr;
};
static void patch_and_save_context(WinDumpHeader64 *h,
struct saved_context *saved_ctx,
Error **errp)
{
uint64_t KiProcessorBlock;
uint16_t OffsetPrcbContext;
CPUState *cpu;
int i = 0;
if (cpu_memory_rw_debug(first_cpu,
h->KdDebuggerDataBlock + KDBG_KI_PROCESSOR_BLOCK_OFFSET64,
(uint8_t *)&KiProcessorBlock, sizeof(KiProcessorBlock), 0)) {
error_setg(errp, "win-dump: failed to read KiProcessorBlock");
return;
}
if (cpu_memory_rw_debug(first_cpu,
h->KdDebuggerDataBlock + KDBG_OFFSET_PRCB_CONTEXT_OFFSET64,
(uint8_t *)&OffsetPrcbContext, sizeof(OffsetPrcbContext), 0)) {
error_setg(errp, "win-dump: failed to read OffsetPrcbContext");
return;
}
CPU_FOREACH(cpu) {
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
uint64_t Prcb;
uint64_t Context;
WinContext ctx;
if (cpu_memory_rw_debug(first_cpu,
KiProcessorBlock + i * sizeof(uint64_t),
(uint8_t *)&Prcb, sizeof(Prcb), 0)) {
error_setg(errp, "win-dump: failed to read"
" CPU #%d PRCB location", i);
return;
}
if (cpu_memory_rw_debug(first_cpu,
Prcb + OffsetPrcbContext,
(uint8_t *)&Context, sizeof(Context), 0)) {
error_setg(errp, "win-dump: failed to read"
" CPU #%d ContextFrame location", i);
return;
}
saved_ctx[i].addr = Context;
ctx = (WinContext){
.ContextFlags = WIN_CTX_ALL,
.MxCsr = env->mxcsr,
.SegEs = env->segs[0].selector,
.SegCs = env->segs[1].selector,
.SegSs = env->segs[2].selector,
.SegDs = env->segs[3].selector,
.SegFs = env->segs[4].selector,
.SegGs = env->segs[5].selector,
.EFlags = cpu_compute_eflags(env),
.Dr0 = env->dr[0],
.Dr1 = env->dr[1],
.Dr2 = env->dr[2],
.Dr3 = env->dr[3],
.Dr6 = env->dr[6],
.Dr7 = env->dr[7],
.Rax = env->regs[R_EAX],
.Rbx = env->regs[R_EBX],
.Rcx = env->regs[R_ECX],
.Rdx = env->regs[R_EDX],
.Rsp = env->regs[R_ESP],
.Rbp = env->regs[R_EBP],
.Rsi = env->regs[R_ESI],
.Rdi = env->regs[R_EDI],
.R8 = env->regs[8],
.R9 = env->regs[9],
.R10 = env->regs[10],
.R11 = env->regs[11],
.R12 = env->regs[12],
.R13 = env->regs[13],
.R14 = env->regs[14],
.R15 = env->regs[15],
.Rip = env->eip,
.FltSave = {
.MxCsr = env->mxcsr,
},
};
if (cpu_memory_rw_debug(first_cpu, Context,
(uint8_t *)&saved_ctx[i].ctx, sizeof(WinContext), 0)) {
error_setg(errp, "win-dump: failed to save CPU #%d context", i);
return;
}
if (cpu_memory_rw_debug(first_cpu, Context,
(uint8_t *)&ctx, sizeof(WinContext), 1)) {
error_setg(errp, "win-dump: failed to write CPU #%d context", i);
return;
}
i++;
}
}
static void restore_context(WinDumpHeader64 *h,
struct saved_context *saved_ctx)
{
int i;
Error *err = NULL;
for (i = 0; i < h->NumberProcessors; i++) {
if (cpu_memory_rw_debug(first_cpu, saved_ctx[i].addr,
(uint8_t *)&saved_ctx[i].ctx, sizeof(WinContext), 1)) {
error_setg(&err, "win-dump: failed to restore CPU #%d context", i);
warn_report_err(err);
}
}
}
void create_win_dump(DumpState *s, Error **errp)
{
WinDumpHeader64 *h = (WinDumpHeader64 *)(s->guest_note +
VMCOREINFO_ELF_NOTE_HDR_SIZE);
X86CPU *first_x86_cpu = X86_CPU(first_cpu);
uint64_t saved_cr3 = first_x86_cpu->env.cr[3];
struct saved_context *saved_ctx = NULL;
Error *local_err = NULL;
if (s->guest_note_size != sizeof(WinDumpHeader64) +
VMCOREINFO_ELF_NOTE_HDR_SIZE) {
error_setg(errp, "win-dump: invalid vmcoreinfo note size");
return;
}
check_header(h, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/*
* Further access to kernel structures by virtual addresses
* should be made from system context.
*/
first_x86_cpu->env.cr[3] = h->DirectoryTableBase;
check_kdbg(h, &local_err);
if (local_err) {
error_propagate(errp, local_err);
goto out_cr3;
}
patch_header(h);
saved_ctx = g_new(struct saved_context, h->NumberProcessors);
/*
* Always patch context because there is no way
* to determine if the system-saved context is valid
*/
patch_and_save_context(h, saved_ctx, &local_err);
if (local_err) {
error_propagate(errp, local_err);
goto out_free;
}
s->total_size = h->RequiredDumpSpace;
s->written_size = qemu_write_full(s->fd, h, sizeof(*h));
if (s->written_size != sizeof(*h)) {
error_setg(errp, QERR_IO_ERROR);
goto out_restore;
}
write_runs(s, h, &local_err);
if (local_err) {
error_propagate(errp, local_err);
goto out_restore;
}
out_restore:
restore_context(h, saved_ctx);
out_free:
g_free(saved_ctx);
out_cr3:
first_x86_cpu->env.cr[3] = saved_cr3;
return;
}