qemu/softmmu/dma-helpers.c
Stefan Hajnoczi abfcd2760b dma-helpers: prevent dma_blk_cb() vs dma_aio_cancel() race
dma_blk_cb() only takes the AioContext lock around ->io_func(). That
means the rest of dma_blk_cb() is not protected. In particular, the
DMAAIOCB field accesses happen outside the lock.

There is a race when the main loop thread holds the AioContext lock and
invokes scsi_device_purge_requests() -> bdrv_aio_cancel() ->
dma_aio_cancel() while an IOThread executes dma_blk_cb(). The dbs->acb
field determines how cancellation proceeds. If dma_aio_cancel() sees
dbs->acb == NULL while dma_blk_cb() is still running, the request can be
completed twice (-ECANCELED and the actual return value).

The following assertion can occur with virtio-scsi when an IOThread is
used:

  ../hw/scsi/scsi-disk.c:368: scsi_dma_complete: Assertion `r->req.aiocb != NULL' failed.

Fix the race by holding the AioContext across dma_blk_cb(). Now
dma_aio_cancel() under the AioContext lock will not see
inconsistent/intermediate states.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20230221212218.1378734-3-stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2023-02-23 19:49:35 +01:00

355 lines
9.9 KiB
C

/*
* DMA helper functions
*
* Copyright (c) 2009,2020 Red Hat
*
* This work is licensed under the terms of the GNU General Public License
* (GNU GPL), version 2 or later.
*/
#include "qemu/osdep.h"
#include "sysemu/block-backend.h"
#include "sysemu/dma.h"
#include "trace/trace-root.h"
#include "qemu/thread.h"
#include "qemu/main-loop.h"
#include "sysemu/cpu-timers.h"
#include "qemu/range.h"
/* #define DEBUG_IOMMU */
MemTxResult dma_memory_set(AddressSpace *as, dma_addr_t addr,
uint8_t c, dma_addr_t len, MemTxAttrs attrs)
{
dma_barrier(as, DMA_DIRECTION_FROM_DEVICE);
return address_space_set(as, addr, c, len, attrs);
}
void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint,
AddressSpace *as)
{
qsg->sg = g_new(ScatterGatherEntry, alloc_hint);
qsg->nsg = 0;
qsg->nalloc = alloc_hint;
qsg->size = 0;
qsg->as = as;
qsg->dev = dev;
object_ref(OBJECT(dev));
}
void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len)
{
if (qsg->nsg == qsg->nalloc) {
qsg->nalloc = 2 * qsg->nalloc + 1;
qsg->sg = g_renew(ScatterGatherEntry, qsg->sg, qsg->nalloc);
}
qsg->sg[qsg->nsg].base = base;
qsg->sg[qsg->nsg].len = len;
qsg->size += len;
++qsg->nsg;
}
void qemu_sglist_destroy(QEMUSGList *qsg)
{
object_unref(OBJECT(qsg->dev));
g_free(qsg->sg);
memset(qsg, 0, sizeof(*qsg));
}
typedef struct {
BlockAIOCB common;
AioContext *ctx;
BlockAIOCB *acb;
QEMUSGList *sg;
uint32_t align;
uint64_t offset;
DMADirection dir;
int sg_cur_index;
dma_addr_t sg_cur_byte;
QEMUIOVector iov;
QEMUBH *bh;
DMAIOFunc *io_func;
void *io_func_opaque;
} DMAAIOCB;
static void dma_blk_cb(void *opaque, int ret);
static void reschedule_dma(void *opaque)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
assert(!dbs->acb && dbs->bh);
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
dma_blk_cb(dbs, 0);
}
static void dma_blk_unmap(DMAAIOCB *dbs)
{
int i;
for (i = 0; i < dbs->iov.niov; ++i) {
dma_memory_unmap(dbs->sg->as, dbs->iov.iov[i].iov_base,
dbs->iov.iov[i].iov_len, dbs->dir,
dbs->iov.iov[i].iov_len);
}
qemu_iovec_reset(&dbs->iov);
}
static void dma_complete(DMAAIOCB *dbs, int ret)
{
trace_dma_complete(dbs, ret, dbs->common.cb);
assert(!dbs->acb && !dbs->bh);
dma_blk_unmap(dbs);
if (dbs->common.cb) {
dbs->common.cb(dbs->common.opaque, ret);
}
qemu_iovec_destroy(&dbs->iov);
qemu_aio_unref(dbs);
}
static void dma_blk_cb(void *opaque, int ret)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
AioContext *ctx = dbs->ctx;
dma_addr_t cur_addr, cur_len;
void *mem;
trace_dma_blk_cb(dbs, ret);
aio_context_acquire(ctx);
dbs->acb = NULL;
dbs->offset += dbs->iov.size;
if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) {
dma_complete(dbs, ret);
goto out;
}
dma_blk_unmap(dbs);
while (dbs->sg_cur_index < dbs->sg->nsg) {
cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte;
cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte;
mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir,
MEMTXATTRS_UNSPECIFIED);
/*
* Make reads deterministic in icount mode. Windows sometimes issues
* disk read requests with overlapping SGs. It leads
* to non-determinism, because resulting buffer contents may be mixed
* from several sectors. This code splits all SGs into several
* groups. SGs in every group do not overlap.
*/
if (mem && icount_enabled() && dbs->dir == DMA_DIRECTION_FROM_DEVICE) {
int i;
for (i = 0 ; i < dbs->iov.niov ; ++i) {
if (ranges_overlap((intptr_t)dbs->iov.iov[i].iov_base,
dbs->iov.iov[i].iov_len, (intptr_t)mem,
cur_len)) {
dma_memory_unmap(dbs->sg->as, mem, cur_len,
dbs->dir, cur_len);
mem = NULL;
break;
}
}
}
if (!mem)
break;
qemu_iovec_add(&dbs->iov, mem, cur_len);
dbs->sg_cur_byte += cur_len;
if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) {
dbs->sg_cur_byte = 0;
++dbs->sg_cur_index;
}
}
if (dbs->iov.size == 0) {
trace_dma_map_wait(dbs);
dbs->bh = aio_bh_new(ctx, reschedule_dma, dbs);
cpu_register_map_client(dbs->bh);
goto out;
}
if (!QEMU_IS_ALIGNED(dbs->iov.size, dbs->align)) {
qemu_iovec_discard_back(&dbs->iov,
QEMU_ALIGN_DOWN(dbs->iov.size, dbs->align));
}
dbs->acb = dbs->io_func(dbs->offset, &dbs->iov,
dma_blk_cb, dbs, dbs->io_func_opaque);
assert(dbs->acb);
out:
aio_context_release(ctx);
}
static void dma_aio_cancel(BlockAIOCB *acb)
{
DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
trace_dma_aio_cancel(dbs);
assert(!(dbs->acb && dbs->bh));
if (dbs->acb) {
/* This will invoke dma_blk_cb. */
blk_aio_cancel_async(dbs->acb);
return;
}
if (dbs->bh) {
cpu_unregister_map_client(dbs->bh);
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
}
if (dbs->common.cb) {
dbs->common.cb(dbs->common.opaque, -ECANCELED);
}
}
static AioContext *dma_get_aio_context(BlockAIOCB *acb)
{
DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
return dbs->ctx;
}
static const AIOCBInfo dma_aiocb_info = {
.aiocb_size = sizeof(DMAAIOCB),
.cancel_async = dma_aio_cancel,
.get_aio_context = dma_get_aio_context,
};
BlockAIOCB *dma_blk_io(AioContext *ctx,
QEMUSGList *sg, uint64_t offset, uint32_t align,
DMAIOFunc *io_func, void *io_func_opaque,
BlockCompletionFunc *cb,
void *opaque, DMADirection dir)
{
DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, NULL, cb, opaque);
trace_dma_blk_io(dbs, io_func_opaque, offset, (dir == DMA_DIRECTION_TO_DEVICE));
dbs->acb = NULL;
dbs->sg = sg;
dbs->ctx = ctx;
dbs->offset = offset;
dbs->align = align;
dbs->sg_cur_index = 0;
dbs->sg_cur_byte = 0;
dbs->dir = dir;
dbs->io_func = io_func;
dbs->io_func_opaque = io_func_opaque;
dbs->bh = NULL;
qemu_iovec_init(&dbs->iov, sg->nsg);
dma_blk_cb(dbs, 0);
return &dbs->common;
}
static
BlockAIOCB *dma_blk_read_io_func(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque)
{
BlockBackend *blk = opaque;
return blk_aio_preadv(blk, offset, iov, 0, cb, cb_opaque);
}
BlockAIOCB *dma_blk_read(BlockBackend *blk,
QEMUSGList *sg, uint64_t offset, uint32_t align,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_blk_io(blk_get_aio_context(blk), sg, offset, align,
dma_blk_read_io_func, blk, cb, opaque,
DMA_DIRECTION_FROM_DEVICE);
}
static
BlockAIOCB *dma_blk_write_io_func(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque)
{
BlockBackend *blk = opaque;
return blk_aio_pwritev(blk, offset, iov, 0, cb, cb_opaque);
}
BlockAIOCB *dma_blk_write(BlockBackend *blk,
QEMUSGList *sg, uint64_t offset, uint32_t align,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_blk_io(blk_get_aio_context(blk), sg, offset, align,
dma_blk_write_io_func, blk, cb, opaque,
DMA_DIRECTION_TO_DEVICE);
}
static MemTxResult dma_buf_rw(void *buf, dma_addr_t len, dma_addr_t *residual,
QEMUSGList *sg, DMADirection dir,
MemTxAttrs attrs)
{
uint8_t *ptr = buf;
dma_addr_t xresidual;
int sg_cur_index;
MemTxResult res = MEMTX_OK;
xresidual = sg->size;
sg_cur_index = 0;
len = MIN(len, xresidual);
while (len > 0) {
ScatterGatherEntry entry = sg->sg[sg_cur_index++];
dma_addr_t xfer = MIN(len, entry.len);
res |= dma_memory_rw(sg->as, entry.base, ptr, xfer, dir, attrs);
ptr += xfer;
len -= xfer;
xresidual -= xfer;
}
if (residual) {
*residual = xresidual;
}
return res;
}
MemTxResult dma_buf_read(void *ptr, dma_addr_t len, dma_addr_t *residual,
QEMUSGList *sg, MemTxAttrs attrs)
{
return dma_buf_rw(ptr, len, residual, sg, DMA_DIRECTION_FROM_DEVICE, attrs);
}
MemTxResult dma_buf_write(void *ptr, dma_addr_t len, dma_addr_t *residual,
QEMUSGList *sg, MemTxAttrs attrs)
{
return dma_buf_rw(ptr, len, residual, sg, DMA_DIRECTION_TO_DEVICE, attrs);
}
void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie,
QEMUSGList *sg, enum BlockAcctType type)
{
block_acct_start(blk_get_stats(blk), cookie, sg->size, type);
}
uint64_t dma_aligned_pow2_mask(uint64_t start, uint64_t end, int max_addr_bits)
{
uint64_t max_mask = UINT64_MAX, addr_mask = end - start;
uint64_t alignment_mask, size_mask;
if (max_addr_bits != 64) {
max_mask = (1ULL << max_addr_bits) - 1;
}
alignment_mask = start ? (start & -start) - 1 : max_mask;
alignment_mask = MIN(alignment_mask, max_mask);
size_mask = MIN(addr_mask, max_mask);
if (alignment_mask <= size_mask) {
/* Increase the alignment of start */
return alignment_mask;
} else {
/* Find the largest page mask from size */
if (addr_mask == UINT64_MAX) {
return UINT64_MAX;
}
return (1ULL << (63 - clz64(addr_mask + 1))) - 1;
}
}