qemu/dma-helpers.c
David Gibson c65bcef306 iommu: Make sglists and dma_bdrv helpers use new universal DMA helpers
dma-helpers.c contains a number of helper functions for doing
scatter/gather DMA, and various block device related DMA.  Currently,
these directly access guest memory using cpu_physical_memory_*(),
assuming no IOMMU translation.

This patch updates this code to use the new universal DMA helper
functions.  qemu_sglist_init() now takes a DMAContext * to describe
the DMA address space in which the scatter/gather will take place.

We minimally update the callers qemu_sglist_init() to pass NULL
(i.e. no translation, same as current behaviour).  Some of those
callers should pass something else in some cases to allow proper IOMMU
translation in future, but that will be fixed in later patches.

Cc: Kevin Wolf <kwolf@redhat.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-06-27 16:33:25 -05:00

263 lines
6.7 KiB
C

/*
* DMA helper functions
*
* Copyright (c) 2009 Red Hat
*
* This work is licensed under the terms of the GNU General Public License
* (GNU GPL), version 2 or later.
*/
#include "dma.h"
#include "trace.h"
int dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c, dma_addr_t len)
{
#define FILLBUF_SIZE 512
uint8_t fillbuf[FILLBUF_SIZE];
int l;
memset(fillbuf, c, FILLBUF_SIZE);
while (len > 0) {
l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
cpu_physical_memory_rw(addr, fillbuf, l, true);
len -= len;
addr += len;
}
return 0;
}
void qemu_sglist_init(QEMUSGList *qsg, int alloc_hint, DMAContext *dma)
{
qsg->sg = g_malloc(alloc_hint * sizeof(ScatterGatherEntry));
qsg->nsg = 0;
qsg->nalloc = alloc_hint;
qsg->size = 0;
qsg->dma = dma;
}
void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len)
{
if (qsg->nsg == qsg->nalloc) {
qsg->nalloc = 2 * qsg->nalloc + 1;
qsg->sg = g_realloc(qsg->sg, qsg->nalloc * sizeof(ScatterGatherEntry));
}
qsg->sg[qsg->nsg].base = base;
qsg->sg[qsg->nsg].len = len;
qsg->size += len;
++qsg->nsg;
}
void qemu_sglist_destroy(QEMUSGList *qsg)
{
g_free(qsg->sg);
}
typedef struct {
BlockDriverAIOCB common;
BlockDriverState *bs;
BlockDriverAIOCB *acb;
QEMUSGList *sg;
uint64_t sector_num;
DMADirection dir;
bool in_cancel;
int sg_cur_index;
dma_addr_t sg_cur_byte;
QEMUIOVector iov;
QEMUBH *bh;
DMAIOFunc *io_func;
} DMAAIOCB;
static void dma_bdrv_cb(void *opaque, int ret);
static void reschedule_dma(void *opaque)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
dma_bdrv_cb(dbs, 0);
}
static void continue_after_map_failure(void *opaque)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
dbs->bh = qemu_bh_new(reschedule_dma, dbs);
qemu_bh_schedule(dbs->bh);
}
static void dma_bdrv_unmap(DMAAIOCB *dbs)
{
int i;
for (i = 0; i < dbs->iov.niov; ++i) {
dma_memory_unmap(dbs->sg->dma, dbs->iov.iov[i].iov_base,
dbs->iov.iov[i].iov_len, dbs->dir,
dbs->iov.iov[i].iov_len);
}
qemu_iovec_reset(&dbs->iov);
}
static void dma_complete(DMAAIOCB *dbs, int ret)
{
trace_dma_complete(dbs, ret, dbs->common.cb);
dma_bdrv_unmap(dbs);
if (dbs->common.cb) {
dbs->common.cb(dbs->common.opaque, ret);
}
qemu_iovec_destroy(&dbs->iov);
if (dbs->bh) {
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
}
if (!dbs->in_cancel) {
/* Requests may complete while dma_aio_cancel is in progress. In
* this case, the AIOCB should not be released because it is still
* referenced by dma_aio_cancel. */
qemu_aio_release(dbs);
}
}
static void dma_bdrv_cb(void *opaque, int ret)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
dma_addr_t cur_addr, cur_len;
void *mem;
trace_dma_bdrv_cb(dbs, ret);
dbs->acb = NULL;
dbs->sector_num += dbs->iov.size / 512;
dma_bdrv_unmap(dbs);
if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) {
dma_complete(dbs, ret);
return;
}
while (dbs->sg_cur_index < dbs->sg->nsg) {
cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte;
cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte;
mem = dma_memory_map(dbs->sg->dma, cur_addr, &cur_len, dbs->dir);
if (!mem)
break;
qemu_iovec_add(&dbs->iov, mem, cur_len);
dbs->sg_cur_byte += cur_len;
if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) {
dbs->sg_cur_byte = 0;
++dbs->sg_cur_index;
}
}
if (dbs->iov.size == 0) {
trace_dma_map_wait(dbs);
cpu_register_map_client(dbs, continue_after_map_failure);
return;
}
dbs->acb = dbs->io_func(dbs->bs, dbs->sector_num, &dbs->iov,
dbs->iov.size / 512, dma_bdrv_cb, dbs);
assert(dbs->acb);
}
static void dma_aio_cancel(BlockDriverAIOCB *acb)
{
DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
trace_dma_aio_cancel(dbs);
if (dbs->acb) {
BlockDriverAIOCB *acb = dbs->acb;
dbs->acb = NULL;
dbs->in_cancel = true;
bdrv_aio_cancel(acb);
dbs->in_cancel = false;
}
dbs->common.cb = NULL;
dma_complete(dbs, 0);
}
static AIOPool dma_aio_pool = {
.aiocb_size = sizeof(DMAAIOCB),
.cancel = dma_aio_cancel,
};
BlockDriverAIOCB *dma_bdrv_io(
BlockDriverState *bs, QEMUSGList *sg, uint64_t sector_num,
DMAIOFunc *io_func, BlockDriverCompletionFunc *cb,
void *opaque, DMADirection dir)
{
DMAAIOCB *dbs = qemu_aio_get(&dma_aio_pool, bs, cb, opaque);
trace_dma_bdrv_io(dbs, bs, sector_num, (dir == DMA_DIRECTION_TO_DEVICE));
dbs->acb = NULL;
dbs->bs = bs;
dbs->sg = sg;
dbs->sector_num = sector_num;
dbs->sg_cur_index = 0;
dbs->sg_cur_byte = 0;
dbs->dir = dir;
dbs->io_func = io_func;
dbs->bh = NULL;
qemu_iovec_init(&dbs->iov, sg->nsg);
dma_bdrv_cb(dbs, 0);
return &dbs->common;
}
BlockDriverAIOCB *dma_bdrv_read(BlockDriverState *bs,
QEMUSGList *sg, uint64_t sector,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_bdrv_io(bs, sg, sector, bdrv_aio_readv, cb, opaque,
DMA_DIRECTION_FROM_DEVICE);
}
BlockDriverAIOCB *dma_bdrv_write(BlockDriverState *bs,
QEMUSGList *sg, uint64_t sector,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_bdrv_io(bs, sg, sector, bdrv_aio_writev, cb, opaque,
DMA_DIRECTION_TO_DEVICE);
}
static uint64_t dma_buf_rw(uint8_t *ptr, int32_t len, QEMUSGList *sg,
DMADirection dir)
{
uint64_t resid;
int sg_cur_index;
resid = sg->size;
sg_cur_index = 0;
len = MIN(len, resid);
while (len > 0) {
ScatterGatherEntry entry = sg->sg[sg_cur_index++];
int32_t xfer = MIN(len, entry.len);
dma_memory_rw(sg->dma, entry.base, ptr, xfer, dir);
ptr += xfer;
len -= xfer;
resid -= xfer;
}
return resid;
}
uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg)
{
return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_FROM_DEVICE);
}
uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg)
{
return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_TO_DEVICE);
}
void dma_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
QEMUSGList *sg, enum BlockAcctType type)
{
bdrv_acct_start(bs, cookie, sg->size, type);
}