qemu/crypto/pbkdf.c
Jungmin Park bf98afc75e crypto/luks: Support creating LUKS image on Darwin
When the user creates a LUKS-encrypted qcow2 image using the qemu-img
program, the passphrase is hashed using PBKDF2 with a dynamic
number of iterations. The number of iterations is determined by
measuring thread cpu time usage, such that it takes approximately
2 seconds to compute the hash.

Because Darwin doesn't implement getrusage(RUSAGE_THREAD), we get an
error message:
> qemu-img: test.qcow2: Unable to calculate thread CPU usage on this platform
for this command:
> qemu-img create --object secret,id=key,data=1234 -f qcow2 -o 'encrypt.format=luks,encrypt.key-secret=key' test.qcow2 100M

This patch implements qcrypto_pbkdf2_get_thread_cpu() for Darwin so that
the above command works.

Signed-off-by: Jungmin Park <pjm0616@gmail.com>
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
2022-10-26 13:32:08 +01:00

133 lines
4 KiB
C

/*
* QEMU Crypto PBKDF support (Password-Based Key Derivation Function)
*
* Copyright (c) 2015-2016 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "crypto/pbkdf.h"
#ifndef _WIN32
#include <sys/resource.h>
#endif
#ifdef CONFIG_DARWIN
#include <mach/mach_init.h>
#include <mach/thread_act.h>
#include <mach/mach_port.h>
#endif
static int qcrypto_pbkdf2_get_thread_cpu(unsigned long long *val_ms,
Error **errp)
{
#ifdef _WIN32
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER thread_time;
if (!GetThreadTimes(GetCurrentThread(), &creation_time, &exit_time,
&kernel_time, &user_time)) {
error_setg(errp, "Unable to get thread CPU usage");
return -1;
}
thread_time.LowPart = user_time.dwLowDateTime;
thread_time.HighPart = user_time.dwHighDateTime;
/* QuadPart is units of 100ns and we want ms as unit */
*val_ms = thread_time.QuadPart / 10000ll;
return 0;
#elif defined(CONFIG_DARWIN)
mach_port_t thread;
kern_return_t kr;
mach_msg_type_number_t count;
thread_basic_info_data_t info;
thread = mach_thread_self();
count = THREAD_BASIC_INFO_COUNT;
kr = thread_info(thread, THREAD_BASIC_INFO, (thread_info_t)&info, &count);
mach_port_deallocate(mach_task_self(), thread);
if (kr != KERN_SUCCESS || (info.flags & TH_FLAGS_IDLE) != 0) {
error_setg_errno(errp, errno, "Unable to get thread CPU usage");
return -1;
}
*val_ms = ((info.user_time.seconds * 1000ll) +
(info.user_time.microseconds / 1000));
return 0;
#elif defined(RUSAGE_THREAD)
struct rusage ru;
if (getrusage(RUSAGE_THREAD, &ru) < 0) {
error_setg_errno(errp, errno, "Unable to get thread CPU usage");
return -1;
}
*val_ms = ((ru.ru_utime.tv_sec * 1000ll) +
(ru.ru_utime.tv_usec / 1000));
return 0;
#else
*val_ms = 0;
error_setg(errp, "Unable to calculate thread CPU usage on this platform");
return -1;
#endif
}
uint64_t qcrypto_pbkdf2_count_iters(QCryptoHashAlgorithm hash,
const uint8_t *key, size_t nkey,
const uint8_t *salt, size_t nsalt,
size_t nout,
Error **errp)
{
uint64_t ret = -1;
g_autofree uint8_t *out = g_new(uint8_t, nout);
uint64_t iterations = (1 << 15);
unsigned long long delta_ms, start_ms, end_ms;
while (1) {
if (qcrypto_pbkdf2_get_thread_cpu(&start_ms, errp) < 0) {
goto cleanup;
}
if (qcrypto_pbkdf2(hash,
key, nkey,
salt, nsalt,
iterations,
out, nout,
errp) < 0) {
goto cleanup;
}
if (qcrypto_pbkdf2_get_thread_cpu(&end_ms, errp) < 0) {
goto cleanup;
}
delta_ms = end_ms - start_ms;
if (delta_ms > 500) {
break;
} else if (delta_ms < 100) {
iterations = iterations * 10;
} else {
iterations = (iterations * 1000 / delta_ms);
}
}
iterations = iterations * 1000 / delta_ms;
ret = iterations;
cleanup:
memset(out, 0, nout);
return ret;
}