qemu/hw/arm/armv7m.c
Peter Maydell cb0929bb13 hw/arm/armv7m: Add mpu-ns-regions and mpu-s-regions properties
M-profile CPUs generally allow configuration of the number of MPU
regions that they have.  We don't currently model this, so our
implementations of some of the board models provide CPUs with the
wrong number of regions.  RTOSes like Zephyr that hardcode the
expected number of regions may therefore not run on the model if they
are set up to run on real hardware.

Add properties mpu-ns-regions and mpu-s-regions to the ARMV7M object,
matching the ability of hardware to configure the number of Secure
and NonSecure regions separately.  Our actual CPU implementation
doesn't currently support that, and it happens that none of the MPS
boards we model set the number of regions differently for Secure vs
NonSecure, so we provide an interface to the boards and SoCs that
won't need to change if we ever do add that functionality in future,
but make it an error to configure the two properties to different
values.

(The property name on the CPU is the somewhat misnamed-for-M-profile
"pmsav7-dregion", so we don't follow that naming convention for
the properties here. The TRM doesn't say what the CPU configuration
variable names are, so we pick something, and follow the lowercase
convention we already have for properties here.)

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20230724174335.2150499-3-peter.maydell@linaro.org
2023-08-31 11:07:02 +01:00

662 lines
23 KiB
C

/*
* ARMV7M System emulation.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "hw/arm/armv7m.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "hw/arm/boot.h"
#include "hw/loader.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "elf.h"
#include "sysemu/reset.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "qemu/log.h"
#include "target/arm/idau.h"
#include "migration/vmstate.h"
/* Bitbanded IO. Each word corresponds to a single bit. */
/* Get the byte address of the real memory for a bitband access. */
static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
{
return s->base | (offset & 0x1ffffff) >> 5;
}
static MemTxResult bitband_read(void *opaque, hwaddr offset,
uint64_t *data, unsigned size, MemTxAttrs attrs)
{
BitBandState *s = opaque;
uint8_t buf[4];
MemTxResult res;
int bitpos, bit;
hwaddr addr;
assert(size <= 4);
/* Find address in underlying memory and round down to multiple of size */
addr = bitband_addr(s, offset) & (-size);
res = address_space_read(&s->source_as, addr, attrs, buf, size);
if (res) {
return res;
}
/* Bit position in the N bytes read... */
bitpos = (offset >> 2) & ((size * 8) - 1);
/* ...converted to byte in buffer and bit in byte */
bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
*data = bit;
return MEMTX_OK;
}
static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size, MemTxAttrs attrs)
{
BitBandState *s = opaque;
uint8_t buf[4];
MemTxResult res;
int bitpos, bit;
hwaddr addr;
assert(size <= 4);
/* Find address in underlying memory and round down to multiple of size */
addr = bitband_addr(s, offset) & (-size);
res = address_space_read(&s->source_as, addr, attrs, buf, size);
if (res) {
return res;
}
/* Bit position in the N bytes read... */
bitpos = (offset >> 2) & ((size * 8) - 1);
/* ...converted to byte in buffer and bit in byte */
bit = 1 << (bitpos & 7);
if (value & 1) {
buf[bitpos >> 3] |= bit;
} else {
buf[bitpos >> 3] &= ~bit;
}
return address_space_write(&s->source_as, addr, attrs, buf, size);
}
static const MemoryRegionOps bitband_ops = {
.read_with_attrs = bitband_read,
.write_with_attrs = bitband_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl.min_access_size = 1,
.impl.max_access_size = 4,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
};
static void bitband_init(Object *obj)
{
BitBandState *s = BITBAND(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
"bitband", 0x02000000);
sysbus_init_mmio(dev, &s->iomem);
}
static void bitband_realize(DeviceState *dev, Error **errp)
{
BitBandState *s = BITBAND(dev);
if (!s->source_memory) {
error_setg(errp, "source-memory property not set");
return;
}
address_space_init(&s->source_as, s->source_memory, "bitband-source");
}
/* Board init. */
static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
0x20000000, 0x40000000
};
static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
0x22000000, 0x42000000
};
static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
MemoryRegion *mr = opaque;
if (attrs.secure) {
/* S accesses to the alias act like NS accesses to the real region */
attrs.secure = 0;
return memory_region_dispatch_write(mr, addr, value,
size_memop(size) | MO_TE, attrs);
} else {
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
if (attrs.user) {
return MEMTX_ERROR;
}
return MEMTX_OK;
}
}
static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
MemoryRegion *mr = opaque;
if (attrs.secure) {
/* S accesses to the alias act like NS accesses to the real region */
attrs.secure = 0;
return memory_region_dispatch_read(mr, addr, data,
size_memop(size) | MO_TE, attrs);
} else {
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
if (attrs.user) {
return MEMTX_ERROR;
}
*data = 0;
return MEMTX_OK;
}
}
static const MemoryRegionOps v7m_sysreg_ns_ops = {
.read_with_attrs = v7m_sysreg_ns_read,
.write_with_attrs = v7m_sysreg_ns_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
ARMv7MState *s = opaque;
MemoryRegion *mr;
/* Direct the access to the correct systick */
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
return memory_region_dispatch_write(mr, addr, value,
size_memop(size) | MO_TE, attrs);
}
static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
ARMv7MState *s = opaque;
MemoryRegion *mr;
/* Direct the access to the correct systick */
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
attrs);
}
static const MemoryRegionOps v7m_systick_ops = {
.read_with_attrs = v7m_systick_read,
.write_with_attrs = v7m_systick_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/*
* Unassigned portions of the PPB space are RAZ/WI for privileged
* accesses, and fault for non-privileged accesses.
*/
static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
(uint32_t)addr);
if (attrs.user) {
return MEMTX_ERROR;
}
*data = 0;
return MEMTX_OK;
}
static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
(uint32_t)addr);
if (attrs.user) {
return MEMTX_ERROR;
}
return MEMTX_OK;
}
static const MemoryRegionOps ppb_default_ops = {
.read_with_attrs = ppb_default_read,
.write_with_attrs = ppb_default_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
};
static void armv7m_instance_init(Object *obj)
{
ARMv7MState *s = ARMV7M(obj);
int i;
/* Can't init the cpu here, we don't yet know which model to use */
memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
object_property_add_alias(obj, "num-irq",
OBJECT(&s->nvic), "num-irq");
object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
TYPE_SYSTICK);
/*
* We can't initialize the secure systick here, as we don't know
* yet if we need it.
*/
for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
object_initialize_child(obj, "bitband[*]", &s->bitband[i],
TYPE_BITBAND);
}
s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
}
static void armv7m_realize(DeviceState *dev, Error **errp)
{
ARMv7MState *s = ARMV7M(dev);
SysBusDevice *sbd;
Error *err = NULL;
int i;
if (!s->board_memory) {
error_setg(errp, "memory property was not set");
return;
}
/* cpuclk must be connected; refclk is optional */
if (!clock_has_source(s->cpuclk)) {
error_setg(errp, "armv7m: cpuclk must be connected");
return;
}
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
&err, NULL));
if (err != NULL) {
error_propagate(errp, err);
return;
}
object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
&error_abort);
if (object_property_find(OBJECT(s->cpu), "idau")) {
object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
&error_abort);
}
if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
s->init_svtor, errp)) {
return;
}
}
if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
s->init_nsvtor, errp)) {
return;
}
}
if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
s->start_powered_off, errp)) {
return;
}
}
if (object_property_find(OBJECT(s->cpu), "vfp")) {
if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
return;
}
}
if (object_property_find(OBJECT(s->cpu), "dsp")) {
if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
return;
}
}
/*
* Real M-profile hardware can be configured with a different number of
* MPU regions for Secure vs NonSecure. QEMU's CPU implementation doesn't
* support that yet, so catch attempts to select that.
*/
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
s->mpu_ns_regions != s->mpu_s_regions) {
error_setg(errp,
"mpu-ns-regions and mpu-s-regions properties must have the same value");
return;
}
if (s->mpu_ns_regions != UINT_MAX &&
object_property_find(OBJECT(s->cpu), "pmsav7-dregion")) {
if (!object_property_set_uint(OBJECT(s->cpu), "pmsav7-dregion",
s->mpu_ns_regions, errp)) {
return;
}
}
/*
* Tell the CPU where the NVIC is; it will fail realize if it doesn't
* have one. Similarly, tell the NVIC where its CPU is.
*/
s->cpu->env.nvic = &s->nvic;
s->nvic.cpu = s->cpu;
if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
return;
}
/* Note that we must realize the NVIC after the CPU */
if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
return;
}
/* Alias the NVIC's input and output GPIOs as our own so the board
* code can wire them up. (We do this in realize because the
* NVIC doesn't create the input GPIO array until realize.)
*/
qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
/*
* We map various devices into the container MR at their architected
* addresses. In particular, we map everything corresponding to the
* "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
* and includes the NVIC, the System Control Space (system registers),
* the systick timer, and for CPUs with the Security extension an NS
* banked version of all of these.
*
* The default behaviour for unimplemented registers/ranges
* (for instance the Data Watchpoint and Trace unit at 0xe0001000)
* is to RAZ/WI for privileged access and BusFault for non-privileged
* access.
*
* The NVIC and System Control Space (SCS) starts at 0xe000e000
* and looks like this:
* 0x004 - ICTR
* 0x010 - 0xff - systick
* 0x100..0x7ec - NVIC
* 0x7f0..0xcff - Reserved
* 0xd00..0xd3c - SCS registers
* 0xd40..0xeff - Reserved or Not implemented
* 0xf00 - STIR
*
* Some registers within this space are banked between security states.
* In v8M there is a second range 0xe002e000..0xe002efff which is the
* NonSecure alias SCS; secure accesses to this behave like NS accesses
* to the main SCS range, and non-secure accesses (including when
* the security extension is not implemented) are RAZ/WI.
* Note that both the main SCS range and the alias range are defined
* to be exempt from memory attribution (R_BLJT) and so the memory
* transaction attribute always matches the current CPU security
* state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
* wrappers we change attrs.secure to indicate the NS access; so
* generally code determining which banked register to use should
* use attrs.secure; code determining actual behaviour of the system
* should use env->v7m.secure.
*
* Within the PPB space, some MRs overlap, and the priority
* of overlapping regions is:
* - default region (for RAZ/WI and BusFault) : -1
* - system register regions (provided by the NVIC) : 0
* - systick : 1
* This is because the systick device is a small block of registers
* in the middle of the other system control registers.
*/
memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
"nvic-default", 0x100000);
memory_region_add_subregion_overlap(&s->container, 0xe0000000,
&s->defaultmem, -1);
/* Wire the NVIC up to the CPU */
sbd = SYS_BUS_DEVICE(&s->nvic);
sysbus_connect_irq(sbd, 0,
qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
memory_region_add_subregion(&s->container, 0xe000e000,
sysbus_mmio_get_region(sbd, 0));
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
/* Create the NS alias region for the NVIC sysregs */
memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
&v7m_sysreg_ns_ops,
sysbus_mmio_get_region(sbd, 0),
"nvic_sysregs_ns", 0x1000);
memory_region_add_subregion(&s->container, 0xe002e000,
&s->sysreg_ns_mem);
}
/*
* Create and map the systick devices. Note that we only connect
* refclk if it has been connected to us; otherwise the systick
* device gets the wrong answer for clock_has_source(refclk), because
* it has an immediate source (the ARMv7M's clock object) but not
* an ultimate source, and then it won't correctly auto-select the
* CPU clock as its only possible clock source.
*/
if (clock_has_source(s->refclk)) {
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk",
s->refclk);
}
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
qdev_get_gpio_in_named(DEVICE(&s->nvic),
"systick-trigger", M_REG_NS));
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
/*
* We couldn't init the secure systick device in instance_init
* as we didn't know then if the CPU had the security extensions;
* so we have to do it here.
*/
object_initialize_child(OBJECT(dev), "systick-reg-s",
&s->systick[M_REG_S], TYPE_SYSTICK);
if (clock_has_source(s->refclk)) {
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
s->refclk);
}
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
s->cpuclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
qdev_get_gpio_in_named(DEVICE(&s->nvic),
"systick-trigger", M_REG_S));
}
memory_region_init_io(&s->systickmem, OBJECT(s),
&v7m_systick_ops, s,
"v7m_systick", 0xe0);
memory_region_add_subregion_overlap(&s->container, 0xe000e010,
&s->systickmem, 1);
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
&v7m_sysreg_ns_ops, &s->systickmem,
"v7m_systick_ns", 0xe0);
memory_region_add_subregion_overlap(&s->container, 0xe002e010,
&s->systick_ns_mem, 1);
}
/* If the CPU has RAS support, create the RAS register block */
if (cpu_isar_feature(aa32_ras, s->cpu)) {
object_initialize_child(OBJECT(dev), "armv7m-ras",
&s->ras, TYPE_ARMV7M_RAS);
sbd = SYS_BUS_DEVICE(&s->ras);
if (!sysbus_realize(sbd, errp)) {
return;
}
memory_region_add_subregion_overlap(&s->container, 0xe0005000,
sysbus_mmio_get_region(sbd, 0), 1);
}
for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
if (s->enable_bitband) {
Object *obj = OBJECT(&s->bitband[i]);
SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
if (!object_property_set_int(obj, "base",
bitband_input_addr[i], errp)) {
return;
}
object_property_set_link(obj, "source-memory",
OBJECT(s->board_memory), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
return;
}
memory_region_add_subregion(&s->container, bitband_output_addr[i],
sysbus_mmio_get_region(sbd, 0));
} else {
object_unparent(OBJECT(&s->bitband[i]));
}
}
}
static Property armv7m_properties[] = {
DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
false),
DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
DEFINE_PROP_UINT32("mpu-ns-regions", ARMv7MState, mpu_ns_regions, UINT_MAX),
DEFINE_PROP_UINT32("mpu-s-regions", ARMv7MState, mpu_s_regions, UINT_MAX),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_armv7m = {
.name = "armv7m",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(refclk, ARMv7MState),
VMSTATE_CLOCK(cpuclk, ARMv7MState),
VMSTATE_END_OF_LIST()
}
};
static void armv7m_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = armv7m_realize;
dc->vmsd = &vmstate_armv7m;
device_class_set_props(dc, armv7m_properties);
}
static const TypeInfo armv7m_info = {
.name = TYPE_ARMV7M,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ARMv7MState),
.instance_init = armv7m_instance_init,
.class_init = armv7m_class_init,
};
static void armv7m_reset(void *opaque)
{
ARMCPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename,
hwaddr mem_base, int mem_size)
{
ssize_t image_size;
uint64_t entry;
AddressSpace *as;
int asidx;
CPUState *cs = CPU(cpu);
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
asidx = ARMASIdx_S;
} else {
asidx = ARMASIdx_NS;
}
as = cpu_get_address_space(cs, asidx);
if (kernel_filename) {
image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
&entry, NULL, NULL,
NULL, 0, EM_ARM, 1, 0, as);
if (image_size < 0) {
image_size = load_image_targphys_as(kernel_filename, mem_base,
mem_size, as);
}
if (image_size < 0) {
error_report("Could not load kernel '%s'", kernel_filename);
exit(1);
}
}
/* CPU objects (unlike devices) are not automatically reset on system
* reset, so we must always register a handler to do so. Unlike
* A-profile CPUs, we don't need to do anything special in the
* handler to arrange that it starts correctly.
* This is arguably the wrong place to do this, but it matches the
* way A-profile does it. Note that this means that every M profile
* board must call this function!
*/
qemu_register_reset(armv7m_reset, cpu);
}
static Property bitband_properties[] = {
DEFINE_PROP_UINT32("base", BitBandState, base, 0),
DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void bitband_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = bitband_realize;
device_class_set_props(dc, bitband_properties);
}
static const TypeInfo bitband_info = {
.name = TYPE_BITBAND,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(BitBandState),
.instance_init = bitband_init,
.class_init = bitband_class_init,
};
static void armv7m_register_types(void)
{
type_register_static(&bitband_info);
type_register_static(&armv7m_info);
}
type_init(armv7m_register_types)