qemu/util/oslib-posix.c
Mark Kanda 04accf43df oslib-posix: initialize backend memory objects in parallel
QEMU initializes preallocated backend memory as the objects are parsed from
the command line. This is not optimal in some cases (e.g. memory spanning
multiple NUMA nodes) because the memory objects are initialized in series.

Allow the initialization to occur in parallel (asynchronously). In order to
ensure optimal thread placement, asynchronous initialization requires prealloc
context threads to be in use.

Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Message-ID: <20240131165327.3154970-2-mark.kanda@oracle.com>
Tested-by: Mario Casquero <mcasquer@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
2024-02-06 08:15:22 +01:00

808 lines
22 KiB
C

/*
* os-posix-lib.c
*
* Copyright (c) 2003-2008 Fabrice Bellard
* Copyright (c) 2010 Red Hat, Inc.
*
* QEMU library functions on POSIX which are shared between QEMU and
* the QEMU tools.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include <termios.h>
#include <glib/gprintf.h>
#include "sysemu/sysemu.h"
#include "trace.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/madvise.h"
#include "qemu/sockets.h"
#include "qemu/thread.h"
#include <libgen.h>
#include "qemu/cutils.h"
#include "qemu/units.h"
#include "qemu/thread-context.h"
#include "qemu/main-loop.h"
#ifdef CONFIG_LINUX
#include <sys/syscall.h>
#endif
#ifdef __FreeBSD__
#include <sys/thr.h>
#include <sys/user.h>
#include <libutil.h>
#endif
#ifdef __NetBSD__
#include <lwp.h>
#endif
#include "qemu/mmap-alloc.h"
#define MAX_MEM_PREALLOC_THREAD_COUNT 16
struct MemsetThread;
static QLIST_HEAD(, MemsetContext) memset_contexts =
QLIST_HEAD_INITIALIZER(memset_contexts);
typedef struct MemsetContext {
bool all_threads_created;
bool any_thread_failed;
struct MemsetThread *threads;
int num_threads;
QLIST_ENTRY(MemsetContext) next;
} MemsetContext;
struct MemsetThread {
char *addr;
size_t numpages;
size_t hpagesize;
QemuThread pgthread;
sigjmp_buf env;
MemsetContext *context;
};
typedef struct MemsetThread MemsetThread;
/* used by sigbus_handler() */
static MemsetContext *sigbus_memset_context;
struct sigaction sigbus_oldact;
static QemuMutex sigbus_mutex;
static QemuMutex page_mutex;
static QemuCond page_cond;
int qemu_get_thread_id(void)
{
#if defined(__linux__)
return syscall(SYS_gettid);
#elif defined(__FreeBSD__)
/* thread id is up to INT_MAX */
long tid;
thr_self(&tid);
return (int)tid;
#elif defined(__NetBSD__)
return _lwp_self();
#elif defined(__OpenBSD__)
return getthrid();
#else
return getpid();
#endif
}
int qemu_daemon(int nochdir, int noclose)
{
return daemon(nochdir, noclose);
}
bool qemu_write_pidfile(const char *path, Error **errp)
{
int fd;
char pidstr[32];
while (1) {
struct stat a, b;
struct flock lock = {
.l_type = F_WRLCK,
.l_whence = SEEK_SET,
.l_len = 0,
};
fd = qemu_create(path, O_WRONLY, S_IRUSR | S_IWUSR, errp);
if (fd == -1) {
return false;
}
if (fstat(fd, &b) < 0) {
error_setg_errno(errp, errno, "Cannot stat file");
goto fail_close;
}
if (fcntl(fd, F_SETLK, &lock)) {
error_setg_errno(errp, errno, "Cannot lock pid file");
goto fail_close;
}
/*
* Now make sure the path we locked is the same one that now
* exists on the filesystem.
*/
if (stat(path, &a) < 0) {
/*
* PID file disappeared, someone else must be racing with
* us, so try again.
*/
close(fd);
continue;
}
if (a.st_ino == b.st_ino) {
break;
}
/*
* PID file was recreated, someone else must be racing with
* us, so try again.
*/
close(fd);
}
if (ftruncate(fd, 0) < 0) {
error_setg_errno(errp, errno, "Failed to truncate pid file");
goto fail_unlink;
}
snprintf(pidstr, sizeof(pidstr), FMT_pid "\n", getpid());
if (qemu_write_full(fd, pidstr, strlen(pidstr)) != strlen(pidstr)) {
error_setg(errp, "Failed to write pid file");
goto fail_unlink;
}
return true;
fail_unlink:
unlink(path);
fail_close:
close(fd);
return false;
}
/* alloc shared memory pages */
void *qemu_anon_ram_alloc(size_t size, uint64_t *alignment, bool shared,
bool noreserve)
{
const uint32_t qemu_map_flags = (shared ? QEMU_MAP_SHARED : 0) |
(noreserve ? QEMU_MAP_NORESERVE : 0);
size_t align = QEMU_VMALLOC_ALIGN;
void *ptr = qemu_ram_mmap(-1, size, align, qemu_map_flags, 0);
if (ptr == MAP_FAILED) {
return NULL;
}
if (alignment) {
*alignment = align;
}
trace_qemu_anon_ram_alloc(size, ptr);
return ptr;
}
void qemu_anon_ram_free(void *ptr, size_t size)
{
trace_qemu_anon_ram_free(ptr, size);
qemu_ram_munmap(-1, ptr, size);
}
void qemu_socket_set_block(int fd)
{
g_unix_set_fd_nonblocking(fd, false, NULL);
}
int qemu_socket_try_set_nonblock(int fd)
{
return g_unix_set_fd_nonblocking(fd, true, NULL) ? 0 : -errno;
}
void qemu_socket_set_nonblock(int fd)
{
int f;
f = qemu_socket_try_set_nonblock(fd);
assert(f == 0);
}
int socket_set_fast_reuse(int fd)
{
int val = 1, ret;
ret = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(const char *)&val, sizeof(val));
assert(ret == 0);
return ret;
}
void qemu_set_cloexec(int fd)
{
int f;
f = fcntl(fd, F_GETFD);
assert(f != -1);
f = fcntl(fd, F_SETFD, f | FD_CLOEXEC);
assert(f != -1);
}
int qemu_socketpair(int domain, int type, int protocol, int sv[2])
{
int ret;
#ifdef SOCK_CLOEXEC
ret = socketpair(domain, type | SOCK_CLOEXEC, protocol, sv);
if (ret != -1 || errno != EINVAL) {
return ret;
}
#endif
ret = socketpair(domain, type, protocol, sv);;
if (ret == 0) {
qemu_set_cloexec(sv[0]);
qemu_set_cloexec(sv[1]);
}
return ret;
}
char *
qemu_get_local_state_dir(void)
{
return get_relocated_path(CONFIG_QEMU_LOCALSTATEDIR);
}
void qemu_set_tty_echo(int fd, bool echo)
{
struct termios tty;
tcgetattr(fd, &tty);
if (echo) {
tty.c_lflag |= ECHO | ECHONL | ICANON | IEXTEN;
} else {
tty.c_lflag &= ~(ECHO | ECHONL | ICANON | IEXTEN);
}
tcsetattr(fd, TCSANOW, &tty);
}
#ifdef CONFIG_LINUX
static void sigbus_handler(int signal, siginfo_t *siginfo, void *ctx)
#else /* CONFIG_LINUX */
static void sigbus_handler(int signal)
#endif /* CONFIG_LINUX */
{
int i;
if (sigbus_memset_context) {
for (i = 0; i < sigbus_memset_context->num_threads; i++) {
MemsetThread *thread = &sigbus_memset_context->threads[i];
if (qemu_thread_is_self(&thread->pgthread)) {
siglongjmp(thread->env, 1);
}
}
}
#ifdef CONFIG_LINUX
/*
* We assume that the MCE SIGBUS handler could have been registered. We
* should never receive BUS_MCEERR_AO on any of our threads, but only on
* the main thread registered for PR_MCE_KILL_EARLY. Further, we should not
* receive BUS_MCEERR_AR triggered by action of other threads on one of
* our threads. So, no need to check for unrelated SIGBUS when seeing one
* for our threads.
*
* We will forward to the MCE handler, which will either handle the SIGBUS
* or reinstall the default SIGBUS handler and reraise the SIGBUS. The
* default SIGBUS handler will crash the process, so we don't care.
*/
if (sigbus_oldact.sa_flags & SA_SIGINFO) {
sigbus_oldact.sa_sigaction(signal, siginfo, ctx);
return;
}
#endif /* CONFIG_LINUX */
warn_report("qemu_prealloc_mem: unrelated SIGBUS detected and ignored");
}
static void *do_touch_pages(void *arg)
{
MemsetThread *memset_args = (MemsetThread *)arg;
sigset_t set, oldset;
int ret = 0;
/*
* On Linux, the page faults from the loop below can cause mmap_sem
* contention with allocation of the thread stacks. Do not start
* clearing until all threads have been created.
*/
qemu_mutex_lock(&page_mutex);
while (!memset_args->context->all_threads_created) {
qemu_cond_wait(&page_cond, &page_mutex);
}
qemu_mutex_unlock(&page_mutex);
/* unblock SIGBUS */
sigemptyset(&set);
sigaddset(&set, SIGBUS);
pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
if (sigsetjmp(memset_args->env, 1)) {
ret = -EFAULT;
} else {
char *addr = memset_args->addr;
size_t numpages = memset_args->numpages;
size_t hpagesize = memset_args->hpagesize;
size_t i;
for (i = 0; i < numpages; i++) {
/*
* Read & write back the same value, so we don't
* corrupt existing user/app data that might be
* stored.
*
* 'volatile' to stop compiler optimizing this away
* to a no-op
*/
*(volatile char *)addr = *addr;
addr += hpagesize;
}
}
pthread_sigmask(SIG_SETMASK, &oldset, NULL);
return (void *)(uintptr_t)ret;
}
static void *do_madv_populate_write_pages(void *arg)
{
MemsetThread *memset_args = (MemsetThread *)arg;
const size_t size = memset_args->numpages * memset_args->hpagesize;
char * const addr = memset_args->addr;
int ret = 0;
/* See do_touch_pages(). */
qemu_mutex_lock(&page_mutex);
while (!memset_args->context->all_threads_created) {
qemu_cond_wait(&page_cond, &page_mutex);
}
qemu_mutex_unlock(&page_mutex);
if (size && qemu_madvise(addr, size, QEMU_MADV_POPULATE_WRITE)) {
ret = -errno;
}
return (void *)(uintptr_t)ret;
}
static inline int get_memset_num_threads(size_t hpagesize, size_t numpages,
int max_threads)
{
long host_procs = sysconf(_SC_NPROCESSORS_ONLN);
int ret = 1;
if (host_procs > 0) {
ret = MIN(MIN(host_procs, MAX_MEM_PREALLOC_THREAD_COUNT), max_threads);
}
/* Especially with gigantic pages, don't create more threads than pages. */
ret = MIN(ret, numpages);
/* Don't start threads to prealloc comparatively little memory. */
ret = MIN(ret, MAX(1, hpagesize * numpages / (64 * MiB)));
/* In case sysconf() fails, we fall back to single threaded */
return ret;
}
static int wait_and_free_mem_prealloc_context(MemsetContext *context)
{
int i, ret = 0, tmp;
for (i = 0; i < context->num_threads; i++) {
tmp = (uintptr_t)qemu_thread_join(&context->threads[i].pgthread);
if (tmp) {
ret = tmp;
}
}
g_free(context->threads);
g_free(context);
return ret;
}
static int touch_all_pages(char *area, size_t hpagesize, size_t numpages,
int max_threads, ThreadContext *tc, bool async,
bool use_madv_populate_write)
{
static gsize initialized = 0;
MemsetContext *context = g_malloc0(sizeof(MemsetContext));
size_t numpages_per_thread, leftover;
void *(*touch_fn)(void *);
int ret, i = 0;
char *addr = area;
/*
* Asynchronous preallocation is only allowed when using MADV_POPULATE_WRITE
* and prealloc context for thread placement.
*/
if (!use_madv_populate_write || !tc) {
async = false;
}
context->num_threads =
get_memset_num_threads(hpagesize, numpages, max_threads);
if (g_once_init_enter(&initialized)) {
qemu_mutex_init(&page_mutex);
qemu_cond_init(&page_cond);
g_once_init_leave(&initialized, 1);
}
if (use_madv_populate_write) {
/*
* Avoid creating a single thread for MADV_POPULATE_WRITE when
* preallocating synchronously.
*/
if (context->num_threads == 1 && !async) {
if (qemu_madvise(area, hpagesize * numpages,
QEMU_MADV_POPULATE_WRITE)) {
return -errno;
}
return 0;
}
touch_fn = do_madv_populate_write_pages;
} else {
touch_fn = do_touch_pages;
}
context->threads = g_new0(MemsetThread, context->num_threads);
numpages_per_thread = numpages / context->num_threads;
leftover = numpages % context->num_threads;
for (i = 0; i < context->num_threads; i++) {
context->threads[i].addr = addr;
context->threads[i].numpages = numpages_per_thread + (i < leftover);
context->threads[i].hpagesize = hpagesize;
context->threads[i].context = context;
if (tc) {
thread_context_create_thread(tc, &context->threads[i].pgthread,
"touch_pages",
touch_fn, &context->threads[i],
QEMU_THREAD_JOINABLE);
} else {
qemu_thread_create(&context->threads[i].pgthread, "touch_pages",
touch_fn, &context->threads[i],
QEMU_THREAD_JOINABLE);
}
addr += context->threads[i].numpages * hpagesize;
}
if (async) {
/*
* async requests currently require the BQL. Add it to the list and kick
* preallocation off during qemu_finish_async_prealloc_mem().
*/
assert(bql_locked());
QLIST_INSERT_HEAD(&memset_contexts, context, next);
return 0;
}
if (!use_madv_populate_write) {
sigbus_memset_context = context;
}
qemu_mutex_lock(&page_mutex);
context->all_threads_created = true;
qemu_cond_broadcast(&page_cond);
qemu_mutex_unlock(&page_mutex);
ret = wait_and_free_mem_prealloc_context(context);
if (!use_madv_populate_write) {
sigbus_memset_context = NULL;
}
return ret;
}
bool qemu_finish_async_prealloc_mem(Error **errp)
{
int ret = 0, tmp;
MemsetContext *context, *next_context;
/* Waiting for preallocation requires the BQL. */
assert(bql_locked());
if (QLIST_EMPTY(&memset_contexts)) {
return true;
}
qemu_mutex_lock(&page_mutex);
QLIST_FOREACH(context, &memset_contexts, next) {
context->all_threads_created = true;
}
qemu_cond_broadcast(&page_cond);
qemu_mutex_unlock(&page_mutex);
QLIST_FOREACH_SAFE(context, &memset_contexts, next, next_context) {
QLIST_REMOVE(context, next);
tmp = wait_and_free_mem_prealloc_context(context);
if (tmp) {
ret = tmp;
}
}
if (ret) {
error_setg_errno(errp, -ret,
"qemu_prealloc_mem: preallocating memory failed");
return false;
}
return true;
}
static bool madv_populate_write_possible(char *area, size_t pagesize)
{
return !qemu_madvise(area, pagesize, QEMU_MADV_POPULATE_WRITE) ||
errno != EINVAL;
}
bool qemu_prealloc_mem(int fd, char *area, size_t sz, int max_threads,
ThreadContext *tc, bool async, Error **errp)
{
static gsize initialized;
int ret;
size_t hpagesize = qemu_fd_getpagesize(fd);
size_t numpages = DIV_ROUND_UP(sz, hpagesize);
bool use_madv_populate_write;
struct sigaction act;
bool rv = true;
/*
* Sense on every invocation, as MADV_POPULATE_WRITE cannot be used for
* some special mappings, such as mapping /dev/mem.
*/
use_madv_populate_write = madv_populate_write_possible(area, hpagesize);
if (!use_madv_populate_write) {
if (g_once_init_enter(&initialized)) {
qemu_mutex_init(&sigbus_mutex);
g_once_init_leave(&initialized, 1);
}
qemu_mutex_lock(&sigbus_mutex);
memset(&act, 0, sizeof(act));
#ifdef CONFIG_LINUX
act.sa_sigaction = &sigbus_handler;
act.sa_flags = SA_SIGINFO;
#else /* CONFIG_LINUX */
act.sa_handler = &sigbus_handler;
act.sa_flags = 0;
#endif /* CONFIG_LINUX */
ret = sigaction(SIGBUS, &act, &sigbus_oldact);
if (ret) {
qemu_mutex_unlock(&sigbus_mutex);
error_setg_errno(errp, errno,
"qemu_prealloc_mem: failed to install signal handler");
return false;
}
}
/* touch pages simultaneously */
ret = touch_all_pages(area, hpagesize, numpages, max_threads, tc, async,
use_madv_populate_write);
if (ret) {
error_setg_errno(errp, -ret,
"qemu_prealloc_mem: preallocating memory failed");
rv = false;
}
if (!use_madv_populate_write) {
ret = sigaction(SIGBUS, &sigbus_oldact, NULL);
if (ret) {
/* Terminate QEMU since it can't recover from error */
perror("qemu_prealloc_mem: failed to reinstall signal handler");
exit(1);
}
qemu_mutex_unlock(&sigbus_mutex);
}
return rv;
}
char *qemu_get_pid_name(pid_t pid)
{
char *name = NULL;
#if defined(__FreeBSD__)
/* BSDs don't have /proc, but they provide a nice substitute */
struct kinfo_proc *proc = kinfo_getproc(pid);
if (proc) {
name = g_strdup(proc->ki_comm);
free(proc);
}
#else
/* Assume a system with reasonable procfs */
char *pid_path;
size_t len;
pid_path = g_strdup_printf("/proc/%d/cmdline", pid);
g_file_get_contents(pid_path, &name, &len, NULL);
g_free(pid_path);
#endif
return name;
}
void *qemu_alloc_stack(size_t *sz)
{
void *ptr;
int flags;
#ifdef CONFIG_DEBUG_STACK_USAGE
void *ptr2;
#endif
size_t pagesz = qemu_real_host_page_size();
#ifdef _SC_THREAD_STACK_MIN
/* avoid stacks smaller than _SC_THREAD_STACK_MIN */
long min_stack_sz = sysconf(_SC_THREAD_STACK_MIN);
*sz = MAX(MAX(min_stack_sz, 0), *sz);
#endif
/* adjust stack size to a multiple of the page size */
*sz = ROUND_UP(*sz, pagesz);
/* allocate one extra page for the guard page */
*sz += pagesz;
flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(MAP_STACK) && defined(__OpenBSD__)
/* Only enable MAP_STACK on OpenBSD. Other OS's such as
* Linux/FreeBSD/NetBSD have a flag with the same name
* but have differing functionality. OpenBSD will SEGV
* if it spots execution with a stack pointer pointing
* at memory that was not allocated with MAP_STACK.
*/
flags |= MAP_STACK;
#endif
ptr = mmap(NULL, *sz, PROT_READ | PROT_WRITE, flags, -1, 0);
if (ptr == MAP_FAILED) {
perror("failed to allocate memory for stack");
abort();
}
/* Stack grows down -- guard page at the bottom. */
if (mprotect(ptr, pagesz, PROT_NONE) != 0) {
perror("failed to set up stack guard page");
abort();
}
#ifdef CONFIG_DEBUG_STACK_USAGE
for (ptr2 = ptr + pagesz; ptr2 < ptr + *sz; ptr2 += sizeof(uint32_t)) {
*(uint32_t *)ptr2 = 0xdeadbeaf;
}
#endif
return ptr;
}
#ifdef CONFIG_DEBUG_STACK_USAGE
static __thread unsigned int max_stack_usage;
#endif
void qemu_free_stack(void *stack, size_t sz)
{
#ifdef CONFIG_DEBUG_STACK_USAGE
unsigned int usage;
void *ptr;
for (ptr = stack + qemu_real_host_page_size(); ptr < stack + sz;
ptr += sizeof(uint32_t)) {
if (*(uint32_t *)ptr != 0xdeadbeaf) {
break;
}
}
usage = sz - (uintptr_t) (ptr - stack);
if (usage > max_stack_usage) {
error_report("thread %d max stack usage increased from %u to %u",
qemu_get_thread_id(), max_stack_usage, usage);
max_stack_usage = usage;
}
#endif
munmap(stack, sz);
}
/*
* Disable CFI checks.
* We are going to call a signal handler directly. Such handler may or may not
* have been defined in our binary, so there's no guarantee that the pointer
* used to set the handler is a cfi-valid pointer. Since the handlers are
* stored in kernel memory, changing the handler to an attacker-defined
* function requires being able to call a sigaction() syscall,
* which is not as easy as overwriting a pointer in memory.
*/
QEMU_DISABLE_CFI
void sigaction_invoke(struct sigaction *action,
struct qemu_signalfd_siginfo *info)
{
siginfo_t si = {};
si.si_signo = info->ssi_signo;
si.si_errno = info->ssi_errno;
si.si_code = info->ssi_code;
/* Convert the minimal set of fields defined by POSIX.
* Positive si_code values are reserved for kernel-generated
* signals, where the valid siginfo fields are determined by
* the signal number. But according to POSIX, it is unspecified
* whether SI_USER and SI_QUEUE have values less than or equal to
* zero.
*/
if (info->ssi_code == SI_USER || info->ssi_code == SI_QUEUE ||
info->ssi_code <= 0) {
/* SIGTERM, etc. */
si.si_pid = info->ssi_pid;
si.si_uid = info->ssi_uid;
} else if (info->ssi_signo == SIGILL || info->ssi_signo == SIGFPE ||
info->ssi_signo == SIGSEGV || info->ssi_signo == SIGBUS) {
si.si_addr = (void *)(uintptr_t)info->ssi_addr;
} else if (info->ssi_signo == SIGCHLD) {
si.si_pid = info->ssi_pid;
si.si_status = info->ssi_status;
si.si_uid = info->ssi_uid;
}
action->sa_sigaction(info->ssi_signo, &si, NULL);
}
size_t qemu_get_host_physmem(void)
{
#ifdef _SC_PHYS_PAGES
long pages = sysconf(_SC_PHYS_PAGES);
if (pages > 0) {
if (pages > SIZE_MAX / qemu_real_host_page_size()) {
return SIZE_MAX;
} else {
return pages * qemu_real_host_page_size();
}
}
#endif
return 0;
}
int qemu_msync(void *addr, size_t length, int fd)
{
size_t align_mask = ~(qemu_real_host_page_size() - 1);
/**
* There are no strict reqs as per the length of mapping
* to be synced. Still the length needs to follow the address
* alignment changes. Additionally - round the size to the multiple
* of PAGE_SIZE
*/
length += ((uintptr_t)addr & (qemu_real_host_page_size() - 1));
length = (length + ~align_mask) & align_mask;
addr = (void *)((uintptr_t)addr & align_mask);
return msync(addr, length, MS_SYNC);
}