mirror of
https://gitlab.com/qemu-project/qemu
synced 2024-11-05 20:35:44 +00:00
d7fe931818
Now the esp_update_drq() is called for all reads/writes to the FIFO, there is no need to manually raise and lower the DRQ signal. Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk> Resolves: https://gitlab.com/qemu-project/qemu/-/issues/611 Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1831 Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20240324191707.623175-18-mark.cave-ayland@ilande.co.uk> Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
1657 lines
42 KiB
C
1657 lines
42 KiB
C
/*
|
|
* QEMU ESP/NCR53C9x emulation
|
|
*
|
|
* Copyright (c) 2005-2006 Fabrice Bellard
|
|
* Copyright (c) 2012 Herve Poussineau
|
|
* Copyright (c) 2023 Mark Cave-Ayland
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "hw/sysbus.h"
|
|
#include "migration/vmstate.h"
|
|
#include "hw/irq.h"
|
|
#include "hw/scsi/esp.h"
|
|
#include "trace.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
|
|
/*
|
|
* On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
|
|
* also produced as NCR89C100. See
|
|
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
|
|
* and
|
|
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
|
|
*
|
|
* On Macintosh Quadra it is a NCR53C96.
|
|
*/
|
|
|
|
static void esp_raise_irq(ESPState *s)
|
|
{
|
|
if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
|
|
s->rregs[ESP_RSTAT] |= STAT_INT;
|
|
qemu_irq_raise(s->irq);
|
|
trace_esp_raise_irq();
|
|
}
|
|
}
|
|
|
|
static void esp_lower_irq(ESPState *s)
|
|
{
|
|
if (s->rregs[ESP_RSTAT] & STAT_INT) {
|
|
s->rregs[ESP_RSTAT] &= ~STAT_INT;
|
|
qemu_irq_lower(s->irq);
|
|
trace_esp_lower_irq();
|
|
}
|
|
}
|
|
|
|
static void esp_raise_drq(ESPState *s)
|
|
{
|
|
if (!(s->drq_state)) {
|
|
qemu_irq_raise(s->drq_irq);
|
|
trace_esp_raise_drq();
|
|
s->drq_state = true;
|
|
}
|
|
}
|
|
|
|
static void esp_lower_drq(ESPState *s)
|
|
{
|
|
if (s->drq_state) {
|
|
qemu_irq_lower(s->drq_irq);
|
|
trace_esp_lower_drq();
|
|
s->drq_state = false;
|
|
}
|
|
}
|
|
|
|
static const char *esp_phase_names[8] = {
|
|
"DATA OUT", "DATA IN", "COMMAND", "STATUS",
|
|
"(reserved)", "(reserved)", "MESSAGE OUT", "MESSAGE IN"
|
|
};
|
|
|
|
static void esp_set_phase(ESPState *s, uint8_t phase)
|
|
{
|
|
s->rregs[ESP_RSTAT] &= ~7;
|
|
s->rregs[ESP_RSTAT] |= phase;
|
|
|
|
trace_esp_set_phase(esp_phase_names[phase]);
|
|
}
|
|
|
|
static uint8_t esp_get_phase(ESPState *s)
|
|
{
|
|
return s->rregs[ESP_RSTAT] & 7;
|
|
}
|
|
|
|
void esp_dma_enable(ESPState *s, int irq, int level)
|
|
{
|
|
if (level) {
|
|
s->dma_enabled = 1;
|
|
trace_esp_dma_enable();
|
|
if (s->dma_cb) {
|
|
s->dma_cb(s);
|
|
s->dma_cb = NULL;
|
|
}
|
|
} else {
|
|
trace_esp_dma_disable();
|
|
s->dma_enabled = 0;
|
|
}
|
|
}
|
|
|
|
void esp_request_cancelled(SCSIRequest *req)
|
|
{
|
|
ESPState *s = req->hba_private;
|
|
|
|
if (req == s->current_req) {
|
|
scsi_req_unref(s->current_req);
|
|
s->current_req = NULL;
|
|
s->current_dev = NULL;
|
|
s->async_len = 0;
|
|
}
|
|
}
|
|
|
|
static void esp_update_drq(ESPState *s)
|
|
{
|
|
bool to_device;
|
|
|
|
switch (esp_get_phase(s)) {
|
|
case STAT_MO:
|
|
case STAT_CD:
|
|
case STAT_DO:
|
|
to_device = true;
|
|
break;
|
|
|
|
case STAT_DI:
|
|
case STAT_ST:
|
|
case STAT_MI:
|
|
to_device = false;
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (s->dma) {
|
|
/* DMA request so update DRQ according to transfer direction */
|
|
if (to_device) {
|
|
if (fifo8_num_free(&s->fifo) < 2) {
|
|
esp_lower_drq(s);
|
|
} else {
|
|
esp_raise_drq(s);
|
|
}
|
|
} else {
|
|
if (fifo8_num_used(&s->fifo) < 2) {
|
|
esp_lower_drq(s);
|
|
} else {
|
|
esp_raise_drq(s);
|
|
}
|
|
}
|
|
} else {
|
|
/* Not a DMA request */
|
|
esp_lower_drq(s);
|
|
}
|
|
}
|
|
|
|
static void esp_fifo_push(ESPState *s, uint8_t val)
|
|
{
|
|
if (fifo8_num_used(&s->fifo) == s->fifo.capacity) {
|
|
trace_esp_error_fifo_overrun();
|
|
} else {
|
|
fifo8_push(&s->fifo, val);
|
|
}
|
|
|
|
esp_update_drq(s);
|
|
}
|
|
|
|
static void esp_fifo_push_buf(ESPState *s, uint8_t *buf, int len)
|
|
{
|
|
fifo8_push_all(&s->fifo, buf, len);
|
|
esp_update_drq(s);
|
|
}
|
|
|
|
static uint8_t esp_fifo_pop(ESPState *s)
|
|
{
|
|
uint8_t val;
|
|
|
|
if (fifo8_is_empty(&s->fifo)) {
|
|
val = 0;
|
|
} else {
|
|
val = fifo8_pop(&s->fifo);
|
|
}
|
|
|
|
esp_update_drq(s);
|
|
return val;
|
|
}
|
|
|
|
static uint32_t esp_fifo8_pop_buf(Fifo8 *fifo, uint8_t *dest, int maxlen)
|
|
{
|
|
const uint8_t *buf;
|
|
uint32_t n, n2;
|
|
int len;
|
|
|
|
if (maxlen == 0) {
|
|
return 0;
|
|
}
|
|
|
|
len = maxlen;
|
|
buf = fifo8_pop_buf(fifo, len, &n);
|
|
if (dest) {
|
|
memcpy(dest, buf, n);
|
|
}
|
|
|
|
/* Add FIFO wraparound if needed */
|
|
len -= n;
|
|
len = MIN(len, fifo8_num_used(fifo));
|
|
if (len) {
|
|
buf = fifo8_pop_buf(fifo, len, &n2);
|
|
if (dest) {
|
|
memcpy(&dest[n], buf, n2);
|
|
}
|
|
n += n2;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static uint32_t esp_fifo_pop_buf(ESPState *s, uint8_t *dest, int maxlen)
|
|
{
|
|
uint32_t len = esp_fifo8_pop_buf(&s->fifo, dest, maxlen);
|
|
|
|
esp_update_drq(s);
|
|
return len;
|
|
}
|
|
|
|
static uint32_t esp_get_tc(ESPState *s)
|
|
{
|
|
uint32_t dmalen;
|
|
|
|
dmalen = s->rregs[ESP_TCLO];
|
|
dmalen |= s->rregs[ESP_TCMID] << 8;
|
|
dmalen |= s->rregs[ESP_TCHI] << 16;
|
|
|
|
return dmalen;
|
|
}
|
|
|
|
static void esp_set_tc(ESPState *s, uint32_t dmalen)
|
|
{
|
|
uint32_t old_tc = esp_get_tc(s);
|
|
|
|
s->rregs[ESP_TCLO] = dmalen;
|
|
s->rregs[ESP_TCMID] = dmalen >> 8;
|
|
s->rregs[ESP_TCHI] = dmalen >> 16;
|
|
|
|
if (old_tc && dmalen == 0) {
|
|
s->rregs[ESP_RSTAT] |= STAT_TC;
|
|
}
|
|
}
|
|
|
|
static uint32_t esp_get_stc(ESPState *s)
|
|
{
|
|
uint32_t dmalen;
|
|
|
|
dmalen = s->wregs[ESP_TCLO];
|
|
dmalen |= s->wregs[ESP_TCMID] << 8;
|
|
dmalen |= s->wregs[ESP_TCHI] << 16;
|
|
|
|
return dmalen;
|
|
}
|
|
|
|
static uint8_t esp_pdma_read(ESPState *s)
|
|
{
|
|
uint8_t val;
|
|
|
|
val = esp_fifo_pop(s);
|
|
return val;
|
|
}
|
|
|
|
static void esp_pdma_write(ESPState *s, uint8_t val)
|
|
{
|
|
uint32_t dmalen = esp_get_tc(s);
|
|
|
|
esp_fifo_push(s, val);
|
|
|
|
if (dmalen && s->drq_state) {
|
|
dmalen--;
|
|
esp_set_tc(s, dmalen);
|
|
}
|
|
}
|
|
|
|
static int esp_select(ESPState *s)
|
|
{
|
|
int target;
|
|
|
|
target = s->wregs[ESP_WBUSID] & BUSID_DID;
|
|
|
|
s->ti_size = 0;
|
|
s->rregs[ESP_RSEQ] = SEQ_0;
|
|
|
|
if (s->current_req) {
|
|
/* Started a new command before the old one finished. Cancel it. */
|
|
scsi_req_cancel(s->current_req);
|
|
}
|
|
|
|
s->current_dev = scsi_device_find(&s->bus, 0, target, 0);
|
|
if (!s->current_dev) {
|
|
/* No such drive */
|
|
s->rregs[ESP_RSTAT] = 0;
|
|
s->rregs[ESP_RINTR] = INTR_DC;
|
|
esp_raise_irq(s);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Note that we deliberately don't raise the IRQ here: this will be done
|
|
* either in esp_transfer_data() or esp_command_complete()
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static void esp_do_dma(ESPState *s);
|
|
static void esp_do_nodma(ESPState *s);
|
|
|
|
static void do_command_phase(ESPState *s)
|
|
{
|
|
uint32_t cmdlen;
|
|
int32_t datalen;
|
|
SCSIDevice *current_lun;
|
|
uint8_t buf[ESP_CMDFIFO_SZ];
|
|
|
|
trace_esp_do_command_phase(s->lun);
|
|
cmdlen = fifo8_num_used(&s->cmdfifo);
|
|
if (!cmdlen || !s->current_dev) {
|
|
return;
|
|
}
|
|
esp_fifo8_pop_buf(&s->cmdfifo, buf, cmdlen);
|
|
|
|
current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, s->lun);
|
|
if (!current_lun) {
|
|
/* No such drive */
|
|
s->rregs[ESP_RSTAT] = 0;
|
|
s->rregs[ESP_RINTR] = INTR_DC;
|
|
s->rregs[ESP_RSEQ] = SEQ_0;
|
|
esp_raise_irq(s);
|
|
return;
|
|
}
|
|
|
|
s->current_req = scsi_req_new(current_lun, 0, s->lun, buf, cmdlen, s);
|
|
datalen = scsi_req_enqueue(s->current_req);
|
|
s->ti_size = datalen;
|
|
fifo8_reset(&s->cmdfifo);
|
|
s->data_ready = false;
|
|
if (datalen != 0) {
|
|
/*
|
|
* Switch to DATA phase but wait until initial data xfer is
|
|
* complete before raising the command completion interrupt
|
|
*/
|
|
if (datalen > 0) {
|
|
esp_set_phase(s, STAT_DI);
|
|
} else {
|
|
esp_set_phase(s, STAT_DO);
|
|
}
|
|
scsi_req_continue(s->current_req);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void do_message_phase(ESPState *s)
|
|
{
|
|
if (s->cmdfifo_cdb_offset) {
|
|
uint8_t message = fifo8_is_empty(&s->cmdfifo) ? 0 :
|
|
fifo8_pop(&s->cmdfifo);
|
|
|
|
trace_esp_do_identify(message);
|
|
s->lun = message & 7;
|
|
s->cmdfifo_cdb_offset--;
|
|
}
|
|
|
|
/* Ignore extended messages for now */
|
|
if (s->cmdfifo_cdb_offset) {
|
|
int len = MIN(s->cmdfifo_cdb_offset, fifo8_num_used(&s->cmdfifo));
|
|
esp_fifo8_pop_buf(&s->cmdfifo, NULL, len);
|
|
s->cmdfifo_cdb_offset = 0;
|
|
}
|
|
}
|
|
|
|
static void do_cmd(ESPState *s)
|
|
{
|
|
do_message_phase(s);
|
|
assert(s->cmdfifo_cdb_offset == 0);
|
|
do_command_phase(s);
|
|
}
|
|
|
|
static void handle_satn(ESPState *s)
|
|
{
|
|
if (s->dma && !s->dma_enabled) {
|
|
s->dma_cb = handle_satn;
|
|
return;
|
|
}
|
|
|
|
if (esp_select(s) < 0) {
|
|
return;
|
|
}
|
|
|
|
esp_set_phase(s, STAT_MO);
|
|
|
|
if (s->dma) {
|
|
esp_do_dma(s);
|
|
} else {
|
|
esp_do_nodma(s);
|
|
}
|
|
}
|
|
|
|
static void handle_s_without_atn(ESPState *s)
|
|
{
|
|
if (s->dma && !s->dma_enabled) {
|
|
s->dma_cb = handle_s_without_atn;
|
|
return;
|
|
}
|
|
|
|
if (esp_select(s) < 0) {
|
|
return;
|
|
}
|
|
|
|
esp_set_phase(s, STAT_CD);
|
|
s->cmdfifo_cdb_offset = 0;
|
|
|
|
if (s->dma) {
|
|
esp_do_dma(s);
|
|
} else {
|
|
esp_do_nodma(s);
|
|
}
|
|
}
|
|
|
|
static void handle_satn_stop(ESPState *s)
|
|
{
|
|
if (s->dma && !s->dma_enabled) {
|
|
s->dma_cb = handle_satn_stop;
|
|
return;
|
|
}
|
|
|
|
if (esp_select(s) < 0) {
|
|
return;
|
|
}
|
|
|
|
esp_set_phase(s, STAT_MO);
|
|
s->cmdfifo_cdb_offset = 0;
|
|
|
|
if (s->dma) {
|
|
esp_do_dma(s);
|
|
} else {
|
|
esp_do_nodma(s);
|
|
}
|
|
}
|
|
|
|
static void handle_pad(ESPState *s)
|
|
{
|
|
if (s->dma) {
|
|
esp_do_dma(s);
|
|
} else {
|
|
esp_do_nodma(s);
|
|
}
|
|
}
|
|
|
|
static void write_response(ESPState *s)
|
|
{
|
|
trace_esp_write_response(s->status);
|
|
|
|
if (s->dma) {
|
|
esp_do_dma(s);
|
|
} else {
|
|
esp_do_nodma(s);
|
|
}
|
|
}
|
|
|
|
static bool esp_cdb_ready(ESPState *s)
|
|
{
|
|
int len = fifo8_num_used(&s->cmdfifo) - s->cmdfifo_cdb_offset;
|
|
const uint8_t *pbuf;
|
|
uint32_t n;
|
|
int cdblen;
|
|
|
|
if (len <= 0) {
|
|
return false;
|
|
}
|
|
|
|
pbuf = fifo8_peek_buf(&s->cmdfifo, len, &n);
|
|
if (n < len) {
|
|
/*
|
|
* In normal use the cmdfifo should never wrap, but include this check
|
|
* to prevent a malicious guest from reading past the end of the
|
|
* cmdfifo data buffer below
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
cdblen = scsi_cdb_length((uint8_t *)&pbuf[s->cmdfifo_cdb_offset]);
|
|
|
|
return cdblen < 0 ? false : (len >= cdblen);
|
|
}
|
|
|
|
static void esp_dma_ti_check(ESPState *s)
|
|
{
|
|
if (esp_get_tc(s) == 0 && fifo8_num_used(&s->fifo) < 2) {
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
esp_raise_irq(s);
|
|
}
|
|
}
|
|
|
|
static void esp_do_dma(ESPState *s)
|
|
{
|
|
uint32_t len, cmdlen;
|
|
uint8_t buf[ESP_CMDFIFO_SZ];
|
|
|
|
len = esp_get_tc(s);
|
|
|
|
switch (esp_get_phase(s)) {
|
|
case STAT_MO:
|
|
if (s->dma_memory_read) {
|
|
len = MIN(len, fifo8_num_free(&s->cmdfifo));
|
|
s->dma_memory_read(s->dma_opaque, buf, len);
|
|
esp_set_tc(s, esp_get_tc(s) - len);
|
|
} else {
|
|
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
|
|
len = MIN(fifo8_num_free(&s->cmdfifo), len);
|
|
}
|
|
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
s->cmdfifo_cdb_offset += len;
|
|
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_SELATN | CMD_DMA:
|
|
if (fifo8_num_used(&s->cmdfifo) >= 1) {
|
|
/* First byte received, switch to command phase */
|
|
esp_set_phase(s, STAT_CD);
|
|
s->rregs[ESP_RSEQ] = SEQ_CD;
|
|
s->cmdfifo_cdb_offset = 1;
|
|
|
|
if (fifo8_num_used(&s->cmdfifo) > 1) {
|
|
/* Process any additional command phase data */
|
|
esp_do_dma(s);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CMD_SELATNS | CMD_DMA:
|
|
if (fifo8_num_used(&s->cmdfifo) == 1) {
|
|
/* First byte received, stop in message out phase */
|
|
s->rregs[ESP_RSEQ] = SEQ_MO;
|
|
s->cmdfifo_cdb_offset = 1;
|
|
|
|
/* Raise command completion interrupt */
|
|
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
|
|
esp_raise_irq(s);
|
|
}
|
|
break;
|
|
|
|
case CMD_TI | CMD_DMA:
|
|
/* ATN remains asserted until TC == 0 */
|
|
if (esp_get_tc(s) == 0) {
|
|
esp_set_phase(s, STAT_CD);
|
|
s->rregs[ESP_CMD] = 0;
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
esp_raise_irq(s);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case STAT_CD:
|
|
cmdlen = fifo8_num_used(&s->cmdfifo);
|
|
trace_esp_do_dma(cmdlen, len);
|
|
if (s->dma_memory_read) {
|
|
len = MIN(len, fifo8_num_free(&s->cmdfifo));
|
|
s->dma_memory_read(s->dma_opaque, buf, len);
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
esp_set_tc(s, esp_get_tc(s) - len);
|
|
} else {
|
|
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
|
|
len = MIN(fifo8_num_free(&s->cmdfifo), len);
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
}
|
|
trace_esp_handle_ti_cmd(cmdlen);
|
|
s->ti_size = 0;
|
|
if (esp_get_tc(s) == 0) {
|
|
/* Command has been received */
|
|
do_cmd(s);
|
|
}
|
|
break;
|
|
|
|
case STAT_DO:
|
|
if (!s->current_req) {
|
|
return;
|
|
}
|
|
if (s->async_len == 0 && esp_get_tc(s) && s->ti_size) {
|
|
/* Defer until data is available. */
|
|
return;
|
|
}
|
|
if (len > s->async_len) {
|
|
len = s->async_len;
|
|
}
|
|
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_TI | CMD_DMA:
|
|
if (s->dma_memory_read) {
|
|
s->dma_memory_read(s->dma_opaque, s->async_buf, len);
|
|
esp_set_tc(s, esp_get_tc(s) - len);
|
|
} else {
|
|
/* Copy FIFO data to device */
|
|
len = MIN(s->async_len, ESP_FIFO_SZ);
|
|
len = MIN(len, fifo8_num_used(&s->fifo));
|
|
len = esp_fifo_pop_buf(s, s->async_buf, len);
|
|
}
|
|
|
|
s->async_buf += len;
|
|
s->async_len -= len;
|
|
s->ti_size += len;
|
|
break;
|
|
|
|
case CMD_PAD | CMD_DMA:
|
|
/* Copy TC zero bytes into the incoming stream */
|
|
if (!s->dma_memory_read) {
|
|
len = MIN(s->async_len, ESP_FIFO_SZ);
|
|
len = MIN(len, fifo8_num_free(&s->fifo));
|
|
}
|
|
|
|
memset(s->async_buf, 0, len);
|
|
|
|
s->async_buf += len;
|
|
s->async_len -= len;
|
|
s->ti_size += len;
|
|
break;
|
|
}
|
|
|
|
if (s->async_len == 0 && fifo8_num_used(&s->fifo) < 2) {
|
|
/* Defer until the scsi layer has completed */
|
|
scsi_req_continue(s->current_req);
|
|
return;
|
|
}
|
|
|
|
esp_dma_ti_check(s);
|
|
break;
|
|
|
|
case STAT_DI:
|
|
if (!s->current_req) {
|
|
return;
|
|
}
|
|
if (s->async_len == 0 && esp_get_tc(s) && s->ti_size) {
|
|
/* Defer until data is available. */
|
|
return;
|
|
}
|
|
if (len > s->async_len) {
|
|
len = s->async_len;
|
|
}
|
|
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_TI | CMD_DMA:
|
|
if (s->dma_memory_write) {
|
|
s->dma_memory_write(s->dma_opaque, s->async_buf, len);
|
|
} else {
|
|
/* Copy device data to FIFO */
|
|
len = MIN(len, fifo8_num_free(&s->fifo));
|
|
esp_fifo_push_buf(s, s->async_buf, len);
|
|
}
|
|
|
|
s->async_buf += len;
|
|
s->async_len -= len;
|
|
s->ti_size -= len;
|
|
esp_set_tc(s, esp_get_tc(s) - len);
|
|
break;
|
|
|
|
case CMD_PAD | CMD_DMA:
|
|
/* Drop TC bytes from the incoming stream */
|
|
if (!s->dma_memory_write) {
|
|
len = MIN(len, fifo8_num_free(&s->fifo));
|
|
}
|
|
|
|
s->async_buf += len;
|
|
s->async_len -= len;
|
|
s->ti_size -= len;
|
|
esp_set_tc(s, esp_get_tc(s) - len);
|
|
break;
|
|
}
|
|
|
|
if (s->async_len == 0 && s->ti_size == 0 && esp_get_tc(s)) {
|
|
/* If the guest underflows TC then terminate SCSI request */
|
|
scsi_req_continue(s->current_req);
|
|
return;
|
|
}
|
|
|
|
if (s->async_len == 0 && fifo8_num_used(&s->fifo) < 2) {
|
|
/* Defer until the scsi layer has completed */
|
|
scsi_req_continue(s->current_req);
|
|
return;
|
|
}
|
|
|
|
esp_dma_ti_check(s);
|
|
break;
|
|
|
|
case STAT_ST:
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_ICCS | CMD_DMA:
|
|
len = MIN(len, 1);
|
|
|
|
if (len) {
|
|
buf[0] = s->status;
|
|
|
|
if (s->dma_memory_write) {
|
|
s->dma_memory_write(s->dma_opaque, buf, len);
|
|
} else {
|
|
esp_fifo_push_buf(s, buf, len);
|
|
}
|
|
|
|
esp_set_tc(s, esp_get_tc(s) - len);
|
|
esp_set_phase(s, STAT_MI);
|
|
|
|
if (esp_get_tc(s) > 0) {
|
|
/* Process any message in phase data */
|
|
esp_do_dma(s);
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Consume remaining data if the guest underflows TC */
|
|
if (fifo8_num_used(&s->fifo) < 2) {
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
esp_raise_irq(s);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case STAT_MI:
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_ICCS | CMD_DMA:
|
|
len = MIN(len, 1);
|
|
|
|
if (len) {
|
|
buf[0] = 0;
|
|
|
|
if (s->dma_memory_write) {
|
|
s->dma_memory_write(s->dma_opaque, buf, len);
|
|
} else {
|
|
esp_fifo_push_buf(s, buf, len);
|
|
}
|
|
|
|
esp_set_tc(s, esp_get_tc(s) - len);
|
|
|
|
/* Raise end of command interrupt */
|
|
s->rregs[ESP_RINTR] |= INTR_FC;
|
|
esp_raise_irq(s);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void esp_nodma_ti_dataout(ESPState *s)
|
|
{
|
|
int len;
|
|
|
|
if (!s->current_req) {
|
|
return;
|
|
}
|
|
if (s->async_len == 0) {
|
|
/* Defer until data is available. */
|
|
return;
|
|
}
|
|
len = MIN(s->async_len, ESP_FIFO_SZ);
|
|
len = MIN(len, fifo8_num_used(&s->fifo));
|
|
esp_fifo_pop_buf(s, s->async_buf, len);
|
|
s->async_buf += len;
|
|
s->async_len -= len;
|
|
s->ti_size += len;
|
|
|
|
if (s->async_len == 0) {
|
|
scsi_req_continue(s->current_req);
|
|
return;
|
|
}
|
|
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
esp_raise_irq(s);
|
|
}
|
|
|
|
static void esp_do_nodma(ESPState *s)
|
|
{
|
|
uint8_t buf[ESP_FIFO_SZ];
|
|
uint32_t cmdlen;
|
|
int len;
|
|
|
|
switch (esp_get_phase(s)) {
|
|
case STAT_MO:
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_SELATN:
|
|
/* Copy FIFO into cmdfifo */
|
|
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
|
|
len = MIN(fifo8_num_free(&s->cmdfifo), len);
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
|
|
if (fifo8_num_used(&s->cmdfifo) >= 1) {
|
|
/* First byte received, switch to command phase */
|
|
esp_set_phase(s, STAT_CD);
|
|
s->rregs[ESP_RSEQ] = SEQ_CD;
|
|
s->cmdfifo_cdb_offset = 1;
|
|
|
|
if (fifo8_num_used(&s->cmdfifo) > 1) {
|
|
/* Process any additional command phase data */
|
|
esp_do_nodma(s);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CMD_SELATNS:
|
|
/* Copy one byte from FIFO into cmdfifo */
|
|
len = esp_fifo_pop_buf(s, buf,
|
|
MIN(fifo8_num_used(&s->fifo), 1));
|
|
len = MIN(fifo8_num_free(&s->cmdfifo), len);
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
|
|
if (fifo8_num_used(&s->cmdfifo) >= 1) {
|
|
/* First byte received, stop in message out phase */
|
|
s->rregs[ESP_RSEQ] = SEQ_MO;
|
|
s->cmdfifo_cdb_offset = 1;
|
|
|
|
/* Raise command completion interrupt */
|
|
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
|
|
esp_raise_irq(s);
|
|
}
|
|
break;
|
|
|
|
case CMD_TI:
|
|
/* Copy FIFO into cmdfifo */
|
|
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
|
|
len = MIN(fifo8_num_free(&s->cmdfifo), len);
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
|
|
/* ATN remains asserted until FIFO empty */
|
|
s->cmdfifo_cdb_offset = fifo8_num_used(&s->cmdfifo);
|
|
esp_set_phase(s, STAT_CD);
|
|
s->rregs[ESP_CMD] = 0;
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
esp_raise_irq(s);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case STAT_CD:
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_TI:
|
|
/* Copy FIFO into cmdfifo */
|
|
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
|
|
len = MIN(fifo8_num_free(&s->cmdfifo), len);
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
|
|
cmdlen = fifo8_num_used(&s->cmdfifo);
|
|
trace_esp_handle_ti_cmd(cmdlen);
|
|
|
|
/* CDB may be transferred in one or more TI commands */
|
|
if (esp_cdb_ready(s)) {
|
|
/* Command has been received */
|
|
do_cmd(s);
|
|
} else {
|
|
/*
|
|
* If data was transferred from the FIFO then raise bus
|
|
* service interrupt to indicate transfer complete. Otherwise
|
|
* defer until the next FIFO write.
|
|
*/
|
|
if (len) {
|
|
/* Raise interrupt to indicate transfer complete */
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
esp_raise_irq(s);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CMD_SEL | CMD_DMA:
|
|
case CMD_SELATN | CMD_DMA:
|
|
/* Copy FIFO into cmdfifo */
|
|
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
|
|
len = MIN(fifo8_num_free(&s->cmdfifo), len);
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
|
|
/* Handle when DMA transfer is terminated by non-DMA FIFO write */
|
|
if (esp_cdb_ready(s)) {
|
|
/* Command has been received */
|
|
do_cmd(s);
|
|
}
|
|
break;
|
|
|
|
case CMD_SEL:
|
|
case CMD_SELATN:
|
|
/* FIFO already contain entire CDB: copy to cmdfifo and execute */
|
|
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
|
|
len = MIN(fifo8_num_free(&s->cmdfifo), len);
|
|
fifo8_push_all(&s->cmdfifo, buf, len);
|
|
|
|
do_cmd(s);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case STAT_DO:
|
|
/* Accumulate data in FIFO until non-DMA TI is executed */
|
|
break;
|
|
|
|
case STAT_DI:
|
|
if (!s->current_req) {
|
|
return;
|
|
}
|
|
if (s->async_len == 0) {
|
|
/* Defer until data is available. */
|
|
return;
|
|
}
|
|
if (fifo8_is_empty(&s->fifo)) {
|
|
esp_fifo_push(s, s->async_buf[0]);
|
|
s->async_buf++;
|
|
s->async_len--;
|
|
s->ti_size--;
|
|
}
|
|
|
|
if (s->async_len == 0) {
|
|
scsi_req_continue(s->current_req);
|
|
return;
|
|
}
|
|
|
|
/* If preloading the FIFO, defer until TI command issued */
|
|
if (s->rregs[ESP_CMD] != CMD_TI) {
|
|
return;
|
|
}
|
|
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
esp_raise_irq(s);
|
|
break;
|
|
|
|
case STAT_ST:
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_ICCS:
|
|
esp_fifo_push(s, s->status);
|
|
esp_set_phase(s, STAT_MI);
|
|
|
|
/* Process any message in phase data */
|
|
esp_do_nodma(s);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case STAT_MI:
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_ICCS:
|
|
esp_fifo_push(s, 0);
|
|
|
|
/* Raise end of command interrupt */
|
|
s->rregs[ESP_RINTR] |= INTR_FC;
|
|
esp_raise_irq(s);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void esp_command_complete(SCSIRequest *req, size_t resid)
|
|
{
|
|
ESPState *s = req->hba_private;
|
|
int to_device = (esp_get_phase(s) == STAT_DO);
|
|
|
|
trace_esp_command_complete();
|
|
|
|
/*
|
|
* Non-DMA transfers from the target will leave the last byte in
|
|
* the FIFO so don't reset ti_size in this case
|
|
*/
|
|
if (s->dma || to_device) {
|
|
if (s->ti_size != 0) {
|
|
trace_esp_command_complete_unexpected();
|
|
}
|
|
}
|
|
|
|
s->async_len = 0;
|
|
if (req->status) {
|
|
trace_esp_command_complete_fail();
|
|
}
|
|
s->status = req->status;
|
|
|
|
/*
|
|
* Switch to status phase. For non-DMA transfers from the target the last
|
|
* byte is still in the FIFO
|
|
*/
|
|
s->ti_size = 0;
|
|
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_SEL | CMD_DMA:
|
|
case CMD_SEL:
|
|
case CMD_SELATN | CMD_DMA:
|
|
case CMD_SELATN:
|
|
/*
|
|
* No data phase for sequencer command so raise deferred bus service
|
|
* and function complete interrupt
|
|
*/
|
|
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
|
|
s->rregs[ESP_RSEQ] = SEQ_CD;
|
|
break;
|
|
|
|
case CMD_TI | CMD_DMA:
|
|
case CMD_TI:
|
|
s->rregs[ESP_CMD] = 0;
|
|
break;
|
|
}
|
|
|
|
/* Raise bus service interrupt to indicate change to STATUS phase */
|
|
esp_set_phase(s, STAT_ST);
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
esp_raise_irq(s);
|
|
|
|
if (s->current_req) {
|
|
scsi_req_unref(s->current_req);
|
|
s->current_req = NULL;
|
|
s->current_dev = NULL;
|
|
}
|
|
}
|
|
|
|
void esp_transfer_data(SCSIRequest *req, uint32_t len)
|
|
{
|
|
ESPState *s = req->hba_private;
|
|
uint32_t dmalen = esp_get_tc(s);
|
|
|
|
trace_esp_transfer_data(dmalen, s->ti_size);
|
|
s->async_len = len;
|
|
s->async_buf = scsi_req_get_buf(req);
|
|
|
|
if (!s->data_ready) {
|
|
s->data_ready = true;
|
|
|
|
switch (s->rregs[ESP_CMD]) {
|
|
case CMD_SEL | CMD_DMA:
|
|
case CMD_SEL:
|
|
case CMD_SELATN | CMD_DMA:
|
|
case CMD_SELATN:
|
|
/*
|
|
* Initial incoming data xfer is complete for sequencer command
|
|
* so raise deferred bus service and function complete interrupt
|
|
*/
|
|
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
|
|
s->rregs[ESP_RSEQ] = SEQ_CD;
|
|
break;
|
|
|
|
case CMD_SELATNS | CMD_DMA:
|
|
case CMD_SELATNS:
|
|
/*
|
|
* Initial incoming data xfer is complete so raise command
|
|
* completion interrupt
|
|
*/
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
s->rregs[ESP_RSEQ] = SEQ_MO;
|
|
break;
|
|
|
|
case CMD_TI | CMD_DMA:
|
|
case CMD_TI:
|
|
/*
|
|
* Bus service interrupt raised because of initial change to
|
|
* DATA phase
|
|
*/
|
|
s->rregs[ESP_CMD] = 0;
|
|
s->rregs[ESP_RINTR] |= INTR_BS;
|
|
break;
|
|
}
|
|
|
|
esp_raise_irq(s);
|
|
}
|
|
|
|
/*
|
|
* Always perform the initial transfer upon reception of the next TI
|
|
* command to ensure the DMA/non-DMA status of the command is correct.
|
|
* It is not possible to use s->dma directly in the section below as
|
|
* some OSs send non-DMA NOP commands after a DMA transfer. Hence if the
|
|
* async data transfer is delayed then s->dma is set incorrectly.
|
|
*/
|
|
|
|
if (s->rregs[ESP_CMD] == (CMD_TI | CMD_DMA)) {
|
|
/* When the SCSI layer returns more data, raise deferred INTR_BS */
|
|
esp_dma_ti_check(s);
|
|
|
|
esp_do_dma(s);
|
|
} else if (s->rregs[ESP_CMD] == CMD_TI) {
|
|
esp_do_nodma(s);
|
|
}
|
|
}
|
|
|
|
static void handle_ti(ESPState *s)
|
|
{
|
|
uint32_t dmalen;
|
|
|
|
if (s->dma && !s->dma_enabled) {
|
|
s->dma_cb = handle_ti;
|
|
return;
|
|
}
|
|
|
|
if (s->dma) {
|
|
dmalen = esp_get_tc(s);
|
|
trace_esp_handle_ti(dmalen);
|
|
esp_do_dma(s);
|
|
} else {
|
|
trace_esp_handle_ti(s->ti_size);
|
|
esp_do_nodma(s);
|
|
|
|
if (esp_get_phase(s) == STAT_DO) {
|
|
esp_nodma_ti_dataout(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
void esp_hard_reset(ESPState *s)
|
|
{
|
|
memset(s->rregs, 0, ESP_REGS);
|
|
memset(s->wregs, 0, ESP_REGS);
|
|
s->tchi_written = 0;
|
|
s->ti_size = 0;
|
|
s->async_len = 0;
|
|
fifo8_reset(&s->fifo);
|
|
fifo8_reset(&s->cmdfifo);
|
|
s->dma = 0;
|
|
s->dma_cb = NULL;
|
|
|
|
s->rregs[ESP_CFG1] = 7;
|
|
}
|
|
|
|
static void esp_soft_reset(ESPState *s)
|
|
{
|
|
qemu_irq_lower(s->irq);
|
|
qemu_irq_lower(s->drq_irq);
|
|
esp_hard_reset(s);
|
|
}
|
|
|
|
static void esp_bus_reset(ESPState *s)
|
|
{
|
|
bus_cold_reset(BUS(&s->bus));
|
|
}
|
|
|
|
static void parent_esp_reset(ESPState *s, int irq, int level)
|
|
{
|
|
if (level) {
|
|
esp_soft_reset(s);
|
|
}
|
|
}
|
|
|
|
static void esp_run_cmd(ESPState *s)
|
|
{
|
|
uint8_t cmd = s->rregs[ESP_CMD];
|
|
|
|
if (cmd & CMD_DMA) {
|
|
s->dma = 1;
|
|
/* Reload DMA counter. */
|
|
if (esp_get_stc(s) == 0) {
|
|
esp_set_tc(s, 0x10000);
|
|
} else {
|
|
esp_set_tc(s, esp_get_stc(s));
|
|
}
|
|
} else {
|
|
s->dma = 0;
|
|
}
|
|
switch (cmd & CMD_CMD) {
|
|
case CMD_NOP:
|
|
trace_esp_mem_writeb_cmd_nop(cmd);
|
|
break;
|
|
case CMD_FLUSH:
|
|
trace_esp_mem_writeb_cmd_flush(cmd);
|
|
fifo8_reset(&s->fifo);
|
|
break;
|
|
case CMD_RESET:
|
|
trace_esp_mem_writeb_cmd_reset(cmd);
|
|
esp_soft_reset(s);
|
|
break;
|
|
case CMD_BUSRESET:
|
|
trace_esp_mem_writeb_cmd_bus_reset(cmd);
|
|
esp_bus_reset(s);
|
|
if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
|
|
s->rregs[ESP_RINTR] |= INTR_RST;
|
|
esp_raise_irq(s);
|
|
}
|
|
break;
|
|
case CMD_TI:
|
|
trace_esp_mem_writeb_cmd_ti(cmd);
|
|
handle_ti(s);
|
|
break;
|
|
case CMD_ICCS:
|
|
trace_esp_mem_writeb_cmd_iccs(cmd);
|
|
write_response(s);
|
|
break;
|
|
case CMD_MSGACC:
|
|
trace_esp_mem_writeb_cmd_msgacc(cmd);
|
|
s->rregs[ESP_RINTR] |= INTR_DC;
|
|
s->rregs[ESP_RSEQ] = 0;
|
|
s->rregs[ESP_RFLAGS] = 0;
|
|
esp_raise_irq(s);
|
|
break;
|
|
case CMD_PAD:
|
|
trace_esp_mem_writeb_cmd_pad(cmd);
|
|
handle_pad(s);
|
|
break;
|
|
case CMD_SATN:
|
|
trace_esp_mem_writeb_cmd_satn(cmd);
|
|
break;
|
|
case CMD_RSTATN:
|
|
trace_esp_mem_writeb_cmd_rstatn(cmd);
|
|
break;
|
|
case CMD_SEL:
|
|
trace_esp_mem_writeb_cmd_sel(cmd);
|
|
handle_s_without_atn(s);
|
|
break;
|
|
case CMD_SELATN:
|
|
trace_esp_mem_writeb_cmd_selatn(cmd);
|
|
handle_satn(s);
|
|
break;
|
|
case CMD_SELATNS:
|
|
trace_esp_mem_writeb_cmd_selatns(cmd);
|
|
handle_satn_stop(s);
|
|
break;
|
|
case CMD_ENSEL:
|
|
trace_esp_mem_writeb_cmd_ensel(cmd);
|
|
s->rregs[ESP_RINTR] = 0;
|
|
break;
|
|
case CMD_DISSEL:
|
|
trace_esp_mem_writeb_cmd_dissel(cmd);
|
|
s->rregs[ESP_RINTR] = 0;
|
|
esp_raise_irq(s);
|
|
break;
|
|
default:
|
|
trace_esp_error_unhandled_command(cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
uint64_t esp_reg_read(ESPState *s, uint32_t saddr)
|
|
{
|
|
uint32_t val;
|
|
|
|
switch (saddr) {
|
|
case ESP_FIFO:
|
|
s->rregs[ESP_FIFO] = esp_fifo_pop(s);
|
|
val = s->rregs[ESP_FIFO];
|
|
break;
|
|
case ESP_RINTR:
|
|
/*
|
|
* Clear sequence step, interrupt register and all status bits
|
|
* except TC
|
|
*/
|
|
val = s->rregs[ESP_RINTR];
|
|
s->rregs[ESP_RINTR] = 0;
|
|
esp_lower_irq(s);
|
|
s->rregs[ESP_RSTAT] &= STAT_TC | 7;
|
|
/*
|
|
* According to the datasheet ESP_RSEQ should be cleared, but as the
|
|
* emulation currently defers information transfers to the next TI
|
|
* command leave it for now so that pedantic guests such as the old
|
|
* Linux 2.6 driver see the correct flags before the next SCSI phase
|
|
* transition.
|
|
*
|
|
* s->rregs[ESP_RSEQ] = SEQ_0;
|
|
*/
|
|
break;
|
|
case ESP_TCHI:
|
|
/* Return the unique id if the value has never been written */
|
|
if (!s->tchi_written) {
|
|
val = s->chip_id;
|
|
} else {
|
|
val = s->rregs[saddr];
|
|
}
|
|
break;
|
|
case ESP_RFLAGS:
|
|
/* Bottom 5 bits indicate number of bytes in FIFO */
|
|
val = fifo8_num_used(&s->fifo);
|
|
break;
|
|
default:
|
|
val = s->rregs[saddr];
|
|
break;
|
|
}
|
|
|
|
trace_esp_mem_readb(saddr, val);
|
|
return val;
|
|
}
|
|
|
|
void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val)
|
|
{
|
|
trace_esp_mem_writeb(saddr, s->wregs[saddr], val);
|
|
switch (saddr) {
|
|
case ESP_TCHI:
|
|
s->tchi_written = true;
|
|
/* fall through */
|
|
case ESP_TCLO:
|
|
case ESP_TCMID:
|
|
s->rregs[ESP_RSTAT] &= ~STAT_TC;
|
|
break;
|
|
case ESP_FIFO:
|
|
if (!fifo8_is_full(&s->fifo)) {
|
|
esp_fifo_push(s, val);
|
|
}
|
|
esp_do_nodma(s);
|
|
break;
|
|
case ESP_CMD:
|
|
s->rregs[saddr] = val;
|
|
esp_run_cmd(s);
|
|
break;
|
|
case ESP_WBUSID ... ESP_WSYNO:
|
|
break;
|
|
case ESP_CFG1:
|
|
case ESP_CFG2: case ESP_CFG3:
|
|
case ESP_RES3: case ESP_RES4:
|
|
s->rregs[saddr] = val;
|
|
break;
|
|
case ESP_WCCF ... ESP_WTEST:
|
|
break;
|
|
default:
|
|
trace_esp_error_invalid_write(val, saddr);
|
|
return;
|
|
}
|
|
s->wregs[saddr] = val;
|
|
}
|
|
|
|
static bool esp_mem_accepts(void *opaque, hwaddr addr,
|
|
unsigned size, bool is_write,
|
|
MemTxAttrs attrs)
|
|
{
|
|
return (size == 1) || (is_write && size == 4);
|
|
}
|
|
|
|
static bool esp_is_before_version_5(void *opaque, int version_id)
|
|
{
|
|
ESPState *s = ESP(opaque);
|
|
|
|
version_id = MIN(version_id, s->mig_version_id);
|
|
return version_id < 5;
|
|
}
|
|
|
|
static bool esp_is_version_5(void *opaque, int version_id)
|
|
{
|
|
ESPState *s = ESP(opaque);
|
|
|
|
version_id = MIN(version_id, s->mig_version_id);
|
|
return version_id >= 5;
|
|
}
|
|
|
|
static bool esp_is_version_6(void *opaque, int version_id)
|
|
{
|
|
ESPState *s = ESP(opaque);
|
|
|
|
version_id = MIN(version_id, s->mig_version_id);
|
|
return version_id >= 6;
|
|
}
|
|
|
|
static bool esp_is_between_version_5_and_6(void *opaque, int version_id)
|
|
{
|
|
ESPState *s = ESP(opaque);
|
|
|
|
version_id = MIN(version_id, s->mig_version_id);
|
|
return version_id >= 5 && version_id <= 6;
|
|
}
|
|
|
|
int esp_pre_save(void *opaque)
|
|
{
|
|
ESPState *s = ESP(object_resolve_path_component(
|
|
OBJECT(opaque), "esp"));
|
|
|
|
s->mig_version_id = vmstate_esp.version_id;
|
|
return 0;
|
|
}
|
|
|
|
static int esp_post_load(void *opaque, int version_id)
|
|
{
|
|
ESPState *s = ESP(opaque);
|
|
int len, i;
|
|
|
|
version_id = MIN(version_id, s->mig_version_id);
|
|
|
|
if (version_id < 5) {
|
|
esp_set_tc(s, s->mig_dma_left);
|
|
|
|
/* Migrate ti_buf to fifo */
|
|
len = s->mig_ti_wptr - s->mig_ti_rptr;
|
|
for (i = 0; i < len; i++) {
|
|
fifo8_push(&s->fifo, s->mig_ti_buf[i]);
|
|
}
|
|
|
|
/* Migrate cmdbuf to cmdfifo */
|
|
for (i = 0; i < s->mig_cmdlen; i++) {
|
|
fifo8_push(&s->cmdfifo, s->mig_cmdbuf[i]);
|
|
}
|
|
}
|
|
|
|
s->mig_version_id = vmstate_esp.version_id;
|
|
return 0;
|
|
}
|
|
|
|
const VMStateDescription vmstate_esp = {
|
|
.name = "esp",
|
|
.version_id = 7,
|
|
.minimum_version_id = 3,
|
|
.post_load = esp_post_load,
|
|
.fields = (const VMStateField[]) {
|
|
VMSTATE_BUFFER(rregs, ESPState),
|
|
VMSTATE_BUFFER(wregs, ESPState),
|
|
VMSTATE_INT32(ti_size, ESPState),
|
|
VMSTATE_UINT32_TEST(mig_ti_rptr, ESPState, esp_is_before_version_5),
|
|
VMSTATE_UINT32_TEST(mig_ti_wptr, ESPState, esp_is_before_version_5),
|
|
VMSTATE_BUFFER_TEST(mig_ti_buf, ESPState, esp_is_before_version_5),
|
|
VMSTATE_UINT32(status, ESPState),
|
|
VMSTATE_UINT32_TEST(mig_deferred_status, ESPState,
|
|
esp_is_before_version_5),
|
|
VMSTATE_BOOL_TEST(mig_deferred_complete, ESPState,
|
|
esp_is_before_version_5),
|
|
VMSTATE_UINT32(dma, ESPState),
|
|
VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 0,
|
|
esp_is_before_version_5, 0, 16),
|
|
VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 4,
|
|
esp_is_before_version_5, 16,
|
|
sizeof(typeof_field(ESPState, mig_cmdbuf))),
|
|
VMSTATE_UINT32_TEST(mig_cmdlen, ESPState, esp_is_before_version_5),
|
|
VMSTATE_UINT32(do_cmd, ESPState),
|
|
VMSTATE_UINT32_TEST(mig_dma_left, ESPState, esp_is_before_version_5),
|
|
VMSTATE_BOOL_TEST(data_ready, ESPState, esp_is_version_5),
|
|
VMSTATE_UINT8_TEST(cmdfifo_cdb_offset, ESPState, esp_is_version_5),
|
|
VMSTATE_FIFO8_TEST(fifo, ESPState, esp_is_version_5),
|
|
VMSTATE_FIFO8_TEST(cmdfifo, ESPState, esp_is_version_5),
|
|
VMSTATE_UINT8_TEST(mig_ti_cmd, ESPState,
|
|
esp_is_between_version_5_and_6),
|
|
VMSTATE_UINT8_TEST(lun, ESPState, esp_is_version_6),
|
|
VMSTATE_BOOL(drq_state, ESPState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static void sysbus_esp_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned int size)
|
|
{
|
|
SysBusESPState *sysbus = opaque;
|
|
ESPState *s = ESP(&sysbus->esp);
|
|
uint32_t saddr;
|
|
|
|
saddr = addr >> sysbus->it_shift;
|
|
esp_reg_write(s, saddr, val);
|
|
}
|
|
|
|
static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr,
|
|
unsigned int size)
|
|
{
|
|
SysBusESPState *sysbus = opaque;
|
|
ESPState *s = ESP(&sysbus->esp);
|
|
uint32_t saddr;
|
|
|
|
saddr = addr >> sysbus->it_shift;
|
|
return esp_reg_read(s, saddr);
|
|
}
|
|
|
|
static const MemoryRegionOps sysbus_esp_mem_ops = {
|
|
.read = sysbus_esp_mem_read,
|
|
.write = sysbus_esp_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
.valid.accepts = esp_mem_accepts,
|
|
};
|
|
|
|
static void sysbus_esp_pdma_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned int size)
|
|
{
|
|
SysBusESPState *sysbus = opaque;
|
|
ESPState *s = ESP(&sysbus->esp);
|
|
|
|
trace_esp_pdma_write(size);
|
|
|
|
switch (size) {
|
|
case 1:
|
|
esp_pdma_write(s, val);
|
|
break;
|
|
case 2:
|
|
esp_pdma_write(s, val >> 8);
|
|
esp_pdma_write(s, val);
|
|
break;
|
|
}
|
|
esp_do_dma(s);
|
|
}
|
|
|
|
static uint64_t sysbus_esp_pdma_read(void *opaque, hwaddr addr,
|
|
unsigned int size)
|
|
{
|
|
SysBusESPState *sysbus = opaque;
|
|
ESPState *s = ESP(&sysbus->esp);
|
|
uint64_t val = 0;
|
|
|
|
trace_esp_pdma_read(size);
|
|
|
|
switch (size) {
|
|
case 1:
|
|
val = esp_pdma_read(s);
|
|
break;
|
|
case 2:
|
|
val = esp_pdma_read(s);
|
|
val = (val << 8) | esp_pdma_read(s);
|
|
break;
|
|
}
|
|
esp_do_dma(s);
|
|
return val;
|
|
}
|
|
|
|
static void *esp_load_request(QEMUFile *f, SCSIRequest *req)
|
|
{
|
|
ESPState *s = container_of(req->bus, ESPState, bus);
|
|
|
|
scsi_req_ref(req);
|
|
s->current_req = req;
|
|
return s;
|
|
}
|
|
|
|
static const MemoryRegionOps sysbus_esp_pdma_ops = {
|
|
.read = sysbus_esp_pdma_read,
|
|
.write = sysbus_esp_pdma_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
.valid.min_access_size = 1,
|
|
.valid.max_access_size = 4,
|
|
.impl.min_access_size = 1,
|
|
.impl.max_access_size = 2,
|
|
};
|
|
|
|
static const struct SCSIBusInfo esp_scsi_info = {
|
|
.tcq = false,
|
|
.max_target = ESP_MAX_DEVS,
|
|
.max_lun = 7,
|
|
|
|
.load_request = esp_load_request,
|
|
.transfer_data = esp_transfer_data,
|
|
.complete = esp_command_complete,
|
|
.cancel = esp_request_cancelled
|
|
};
|
|
|
|
static void sysbus_esp_gpio_demux(void *opaque, int irq, int level)
|
|
{
|
|
SysBusESPState *sysbus = SYSBUS_ESP(opaque);
|
|
ESPState *s = ESP(&sysbus->esp);
|
|
|
|
switch (irq) {
|
|
case 0:
|
|
parent_esp_reset(s, irq, level);
|
|
break;
|
|
case 1:
|
|
esp_dma_enable(s, irq, level);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void sysbus_esp_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
|
|
SysBusESPState *sysbus = SYSBUS_ESP(dev);
|
|
ESPState *s = ESP(&sysbus->esp);
|
|
|
|
if (!qdev_realize(DEVICE(s), NULL, errp)) {
|
|
return;
|
|
}
|
|
|
|
sysbus_init_irq(sbd, &s->irq);
|
|
sysbus_init_irq(sbd, &s->drq_irq);
|
|
assert(sysbus->it_shift != -1);
|
|
|
|
s->chip_id = TCHI_FAS100A;
|
|
memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops,
|
|
sysbus, "esp-regs", ESP_REGS << sysbus->it_shift);
|
|
sysbus_init_mmio(sbd, &sysbus->iomem);
|
|
memory_region_init_io(&sysbus->pdma, OBJECT(sysbus), &sysbus_esp_pdma_ops,
|
|
sysbus, "esp-pdma", 4);
|
|
sysbus_init_mmio(sbd, &sysbus->pdma);
|
|
|
|
qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2);
|
|
|
|
scsi_bus_init(&s->bus, sizeof(s->bus), dev, &esp_scsi_info);
|
|
}
|
|
|
|
static void sysbus_esp_hard_reset(DeviceState *dev)
|
|
{
|
|
SysBusESPState *sysbus = SYSBUS_ESP(dev);
|
|
ESPState *s = ESP(&sysbus->esp);
|
|
|
|
esp_hard_reset(s);
|
|
}
|
|
|
|
static void sysbus_esp_init(Object *obj)
|
|
{
|
|
SysBusESPState *sysbus = SYSBUS_ESP(obj);
|
|
|
|
object_initialize_child(obj, "esp", &sysbus->esp, TYPE_ESP);
|
|
}
|
|
|
|
static const VMStateDescription vmstate_sysbus_esp_scsi = {
|
|
.name = "sysbusespscsi",
|
|
.version_id = 2,
|
|
.minimum_version_id = 1,
|
|
.pre_save = esp_pre_save,
|
|
.fields = (const VMStateField[]) {
|
|
VMSTATE_UINT8_V(esp.mig_version_id, SysBusESPState, 2),
|
|
VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void sysbus_esp_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->realize = sysbus_esp_realize;
|
|
dc->reset = sysbus_esp_hard_reset;
|
|
dc->vmsd = &vmstate_sysbus_esp_scsi;
|
|
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
|
|
}
|
|
|
|
static void esp_finalize(Object *obj)
|
|
{
|
|
ESPState *s = ESP(obj);
|
|
|
|
fifo8_destroy(&s->fifo);
|
|
fifo8_destroy(&s->cmdfifo);
|
|
}
|
|
|
|
static void esp_init(Object *obj)
|
|
{
|
|
ESPState *s = ESP(obj);
|
|
|
|
fifo8_create(&s->fifo, ESP_FIFO_SZ);
|
|
fifo8_create(&s->cmdfifo, ESP_CMDFIFO_SZ);
|
|
}
|
|
|
|
static void esp_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
/* internal device for sysbusesp/pciespscsi, not user-creatable */
|
|
dc->user_creatable = false;
|
|
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
|
|
}
|
|
|
|
static const TypeInfo esp_info_types[] = {
|
|
{
|
|
.name = TYPE_SYSBUS_ESP,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_init = sysbus_esp_init,
|
|
.instance_size = sizeof(SysBusESPState),
|
|
.class_init = sysbus_esp_class_init,
|
|
},
|
|
{
|
|
.name = TYPE_ESP,
|
|
.parent = TYPE_DEVICE,
|
|
.instance_init = esp_init,
|
|
.instance_finalize = esp_finalize,
|
|
.instance_size = sizeof(ESPState),
|
|
.class_init = esp_class_init,
|
|
},
|
|
};
|
|
|
|
DEFINE_TYPES(esp_info_types)
|