qemu/target/microblaze/op_helper.c
Peter Maydell bdff8123f2 target/microblaze: Switch to transaction_failed hook
Switch the microblaze target from the old unassigned_access hook
to the transaction_failed hook.

The notable difference is that rather than it being called
for all physical memory accesses which fail (including
those made by DMA devices or by the gdbstub), it is only
called for those made by the CPU via its MMU. For
microblaze this makes no difference because none of the
target CPU code needs to make loads or stores by physical
address.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
[EI: Add space in qemu_log()]
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
2019-01-22 02:10:12 -08:00

523 lines
14 KiB
C

/*
* Microblaze helper routines.
*
* Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
* Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "fpu/softfloat.h"
#define D(x)
#if !defined(CONFIG_USER_ONLY)
/* Try to fill the TLB and return an exception if error. If retaddr is
* NULL, it means that the function was called in C code (i.e. not
* from generated code or from helper.c)
*/
void tlb_fill(CPUState *cs, target_ulong addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
int ret;
ret = mb_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
if (unlikely(ret)) {
/* now we have a real cpu fault */
cpu_loop_exit_restore(cs, retaddr);
}
}
#endif
void helper_put(uint32_t id, uint32_t ctrl, uint32_t data)
{
int test = ctrl & STREAM_TEST;
int atomic = ctrl & STREAM_ATOMIC;
int control = ctrl & STREAM_CONTROL;
int nonblock = ctrl & STREAM_NONBLOCK;
int exception = ctrl & STREAM_EXCEPTION;
qemu_log_mask(LOG_UNIMP, "Unhandled stream put to stream-id=%d data=%x %s%s%s%s%s\n",
id, data,
test ? "t" : "",
nonblock ? "n" : "",
exception ? "e" : "",
control ? "c" : "",
atomic ? "a" : "");
}
uint32_t helper_get(uint32_t id, uint32_t ctrl)
{
int test = ctrl & STREAM_TEST;
int atomic = ctrl & STREAM_ATOMIC;
int control = ctrl & STREAM_CONTROL;
int nonblock = ctrl & STREAM_NONBLOCK;
int exception = ctrl & STREAM_EXCEPTION;
qemu_log_mask(LOG_UNIMP, "Unhandled stream get from stream-id=%d %s%s%s%s%s\n",
id,
test ? "t" : "",
nonblock ? "n" : "",
exception ? "e" : "",
control ? "c" : "",
atomic ? "a" : "");
return 0xdead0000 | id;
}
void helper_raise_exception(CPUMBState *env, uint32_t index)
{
CPUState *cs = CPU(mb_env_get_cpu(env));
cs->exception_index = index;
cpu_loop_exit(cs);
}
void helper_debug(CPUMBState *env)
{
int i;
qemu_log("PC=%" PRIx64 "\n", env->sregs[SR_PC]);
qemu_log("rmsr=%" PRIx64 " resr=%" PRIx64 " rear=%" PRIx64 " "
"debug[%x] imm=%x iflags=%x\n",
env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
env->debug, env->imm, env->iflags);
qemu_log("btaken=%d btarget=%" PRIx64 " mode=%s(saved=%s) eip=%d ie=%d\n",
env->btaken, env->btarget,
(env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
(env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
(bool)(env->sregs[SR_MSR] & MSR_EIP),
(bool)(env->sregs[SR_MSR] & MSR_IE));
for (i = 0; i < 32; i++) {
qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
if ((i + 1) % 4 == 0)
qemu_log("\n");
}
qemu_log("\n\n");
}
static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
{
uint32_t cout = 0;
if ((b == ~0) && cin)
cout = 1;
else if ((~0 - a) < (b + cin))
cout = 1;
return cout;
}
uint32_t helper_cmp(uint32_t a, uint32_t b)
{
uint32_t t;
t = b + ~a + 1;
if ((b & 0x80000000) ^ (a & 0x80000000))
t = (t & 0x7fffffff) | (b & 0x80000000);
return t;
}
uint32_t helper_cmpu(uint32_t a, uint32_t b)
{
uint32_t t;
t = b + ~a + 1;
if ((b & 0x80000000) ^ (a & 0x80000000))
t = (t & 0x7fffffff) | (a & 0x80000000);
return t;
}
uint32_t helper_carry(uint32_t a, uint32_t b, uint32_t cf)
{
return compute_carry(a, b, cf);
}
static inline int div_prepare(CPUMBState *env, uint32_t a, uint32_t b)
{
if (b == 0) {
env->sregs[SR_MSR] |= MSR_DZ;
if ((env->sregs[SR_MSR] & MSR_EE)
&& !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
env->sregs[SR_ESR] = ESR_EC_DIVZERO;
helper_raise_exception(env, EXCP_HW_EXCP);
}
return 0;
}
env->sregs[SR_MSR] &= ~MSR_DZ;
return 1;
}
uint32_t helper_divs(CPUMBState *env, uint32_t a, uint32_t b)
{
if (!div_prepare(env, a, b)) {
return 0;
}
return (int32_t)a / (int32_t)b;
}
uint32_t helper_divu(CPUMBState *env, uint32_t a, uint32_t b)
{
if (!div_prepare(env, a, b)) {
return 0;
}
return a / b;
}
/* raise FPU exception. */
static void raise_fpu_exception(CPUMBState *env)
{
env->sregs[SR_ESR] = ESR_EC_FPU;
helper_raise_exception(env, EXCP_HW_EXCP);
}
static void update_fpu_flags(CPUMBState *env, int flags)
{
int raise = 0;
if (flags & float_flag_invalid) {
env->sregs[SR_FSR] |= FSR_IO;
raise = 1;
}
if (flags & float_flag_divbyzero) {
env->sregs[SR_FSR] |= FSR_DZ;
raise = 1;
}
if (flags & float_flag_overflow) {
env->sregs[SR_FSR] |= FSR_OF;
raise = 1;
}
if (flags & float_flag_underflow) {
env->sregs[SR_FSR] |= FSR_UF;
raise = 1;
}
if (raise
&& (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
&& (env->sregs[SR_MSR] & MSR_EE)) {
raise_fpu_exception(env);
}
}
uint32_t helper_fadd(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fd, fa, fb;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
fd.f = float32_add(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags);
return fd.l;
}
uint32_t helper_frsub(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fd, fa, fb;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags);
return fd.l;
}
uint32_t helper_fmul(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fd, fa, fb;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags);
return fd.l;
}
uint32_t helper_fdiv(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fd, fa, fb;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
fd.f = float32_div(fb.f, fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags);
return fd.l;
}
uint32_t helper_fcmp_un(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
uint32_t r = 0;
fa.l = a;
fb.l = b;
if (float32_is_signaling_nan(fa.f, &env->fp_status) ||
float32_is_signaling_nan(fb.f, &env->fp_status)) {
update_fpu_flags(env, float_flag_invalid);
r = 1;
}
if (float32_is_quiet_nan(fa.f, &env->fp_status) ||
float32_is_quiet_nan(fb.f, &env->fp_status)) {
r = 1;
}
return r;
}
uint32_t helper_fcmp_lt(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int r;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
r = float32_lt(fb.f, fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid);
return r;
}
uint32_t helper_fcmp_eq(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags;
int r;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
r = float32_eq_quiet(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid);
return r;
}
uint32_t helper_fcmp_le(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags;
int r;
fa.l = a;
fb.l = b;
set_float_exception_flags(0, &env->fp_status);
r = float32_le(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid);
return r;
}
uint32_t helper_fcmp_gt(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags, r;
fa.l = a;
fb.l = b;
set_float_exception_flags(0, &env->fp_status);
r = float32_lt(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid);
return r;
}
uint32_t helper_fcmp_ne(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags, r;
fa.l = a;
fb.l = b;
set_float_exception_flags(0, &env->fp_status);
r = !float32_eq_quiet(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid);
return r;
}
uint32_t helper_fcmp_ge(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags, r;
fa.l = a;
fb.l = b;
set_float_exception_flags(0, &env->fp_status);
r = !float32_lt(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid);
return r;
}
uint32_t helper_flt(CPUMBState *env, uint32_t a)
{
CPU_FloatU fd, fa;
fa.l = a;
fd.f = int32_to_float32(fa.l, &env->fp_status);
return fd.l;
}
uint32_t helper_fint(CPUMBState *env, uint32_t a)
{
CPU_FloatU fa;
uint32_t r;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
r = float32_to_int32(fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags);
return r;
}
uint32_t helper_fsqrt(CPUMBState *env, uint32_t a)
{
CPU_FloatU fd, fa;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fd.l = float32_sqrt(fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags);
return fd.l;
}
uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
{
unsigned int i;
uint32_t mask = 0xff000000;
for (i = 0; i < 4; i++) {
if ((a & mask) == (b & mask))
return i + 1;
mask >>= 8;
}
return 0;
}
void helper_memalign(CPUMBState *env, target_ulong addr,
uint32_t dr, uint32_t wr,
uint32_t mask)
{
if (addr & mask) {
qemu_log_mask(CPU_LOG_INT,
"unaligned access addr=" TARGET_FMT_lx
" mask=%x, wr=%d dr=r%d\n",
addr, mask, wr, dr);
env->sregs[SR_EAR] = addr;
env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
| (dr & 31) << 5;
if (mask == 3) {
env->sregs[SR_ESR] |= 1 << 11;
}
if (!(env->sregs[SR_MSR] & MSR_EE)) {
return;
}
helper_raise_exception(env, EXCP_HW_EXCP);
}
}
void helper_stackprot(CPUMBState *env, target_ulong addr)
{
if (addr < env->slr || addr > env->shr) {
qemu_log_mask(CPU_LOG_INT, "Stack protector violation at "
TARGET_FMT_lx " %x %x\n",
addr, env->slr, env->shr);
env->sregs[SR_EAR] = addr;
env->sregs[SR_ESR] = ESR_EC_STACKPROT;
helper_raise_exception(env, EXCP_HW_EXCP);
}
}
#if !defined(CONFIG_USER_ONLY)
/* Writes/reads to the MMU's special regs end up here. */
uint32_t helper_mmu_read(CPUMBState *env, uint32_t ext, uint32_t rn)
{
return mmu_read(env, ext, rn);
}
void helper_mmu_write(CPUMBState *env, uint32_t ext, uint32_t rn, uint32_t v)
{
mmu_write(env, ext, rn, v);
}
void mb_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
unsigned size, MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
MicroBlazeCPU *cpu;
CPUMBState *env;
qemu_log_mask(CPU_LOG_INT, "Transaction failed: vaddr 0x%" VADDR_PRIx
" physaddr 0x" TARGET_FMT_plx " size %d access type %s\n",
addr, physaddr, size,
access_type == MMU_INST_FETCH ? "INST_FETCH" :
(access_type == MMU_DATA_LOAD ? "DATA_LOAD" : "DATA_STORE"));
cpu = MICROBLAZE_CPU(cs);
env = &cpu->env;
cpu_restore_state(cs, retaddr, true);
if (!(env->sregs[SR_MSR] & MSR_EE)) {
return;
}
env->sregs[SR_EAR] = addr;
if (access_type == MMU_INST_FETCH) {
if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
helper_raise_exception(env, EXCP_HW_EXCP);
}
} else {
if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
helper_raise_exception(env, EXCP_HW_EXCP);
}
}
}
#endif