qemu/docs/tracing.txt
Paolo Bonzini b9a7b74f77 build: do not use TARGET_ARCH
TARGET_ARCH is generally wrong to use, there are better variables
provided in config-target.mak.  The right one is usually TARGET_NAME
(previously TARGET_ARCH2), but for bsd-user we can also use TARGET_ABI_DIR
for consistency with linux-user.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 1370349928-20419-4-git-send-email-pbonzini@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2013-06-14 15:33:10 +01:00

273 lines
10 KiB
Text

= Tracing =
== Introduction ==
This document describes the tracing infrastructure in QEMU and how to use it
for debugging, profiling, and observing execution.
== Quickstart ==
1. Build with the 'simple' trace backend:
./configure --enable-trace-backend=simple
make
2. Create a file with the events you want to trace:
echo bdrv_aio_readv > /tmp/events
echo bdrv_aio_writev >> /tmp/events
3. Run the virtual machine to produce a trace file:
qemu -trace events=/tmp/events ... # your normal QEMU invocation
4. Pretty-print the binary trace file:
./scripts/simpletrace.py trace-events trace-*
== Trace events ==
There is a set of static trace events declared in the "trace-events" source
file. Each trace event declaration names the event, its arguments, and the
format string which can be used for pretty-printing:
qemu_vmalloc(size_t size, void *ptr) "size %zu ptr %p"
qemu_vfree(void *ptr) "ptr %p"
The "trace-events" file is processed by the "tracetool" script during build to
generate code for the trace events. Trace events are invoked directly from
source code like this:
#include "trace.h" /* needed for trace event prototype */
void *qemu_vmalloc(size_t size)
{
void *ptr;
size_t align = QEMU_VMALLOC_ALIGN;
if (size < align) {
align = getpagesize();
}
ptr = qemu_memalign(align, size);
trace_qemu_vmalloc(size, ptr);
return ptr;
}
=== Declaring trace events ===
The "tracetool" script produces the trace.h header file which is included by
every source file that uses trace events. Since many source files include
trace.h, it uses a minimum of types and other header files included to keep the
namespace clean and compile times and dependencies down.
Trace events should use types as follows:
* Use stdint.h types for fixed-size types. Most offsets and guest memory
addresses are best represented with uint32_t or uint64_t. Use fixed-size
types over primitive types whose size may change depending on the host
(32-bit versus 64-bit) so trace events don't truncate values or break
the build.
* Use void * for pointers to structs or for arrays. The trace.h header
cannot include all user-defined struct declarations and it is therefore
necessary to use void * for pointers to structs.
* For everything else, use primitive scalar types (char, int, long) with the
appropriate signedness.
Format strings should reflect the types defined in the trace event. Take
special care to use PRId64 and PRIu64 for int64_t and uint64_t types,
respectively. This ensures portability between 32- and 64-bit platforms.
=== Hints for adding new trace events ===
1. Trace state changes in the code. Interesting points in the code usually
involve a state change like starting, stopping, allocating, freeing. State
changes are good trace events because they can be used to understand the
execution of the system.
2. Trace guest operations. Guest I/O accesses like reading device registers
are good trace events because they can be used to understand guest
interactions.
3. Use correlator fields so the context of an individual line of trace output
can be understood. For example, trace the pointer returned by malloc and
used as an argument to free. This way mallocs and frees can be matched up.
Trace events with no context are not very useful.
4. Name trace events after their function. If there are multiple trace events
in one function, append a unique distinguisher at the end of the name.
== Generic interface and monitor commands ==
You can programmatically query and control the state of trace events through a
backend-agnostic interface provided by the header "trace/control.h".
Note that some of the backends do not provide an implementation for some parts
of this interface, in which case QEMU will just print a warning (please refer to
header "trace/control.h" to see which routines are backend-dependent).
The state of events can also be queried and modified through monitor commands:
* info trace-events
View available trace events and their state. State 1 means enabled, state 0
means disabled.
* trace-event NAME on|off
Enable/disable a given trace event or a group of events (using wildcards).
The "-trace events=<file>" command line argument can be used to enable the
events listed in <file> from the very beginning of the program. This file must
contain one event name per line.
If a line in the "-trace events=<file>" file begins with a '-', the trace event
will be disabled instead of enabled. This is useful when a wildcard was used
to enable an entire family of events but one noisy event needs to be disabled.
Wildcard matching is supported in both the monitor command "trace-event" and the
events list file. That means you can enable/disable the events having a common
prefix in a batch. For example, virtio-blk trace events could be enabled using
the following monitor command:
trace-event virtio_blk_* on
== Trace backends ==
The "tracetool" script automates tedious trace event code generation and also
keeps the trace event declarations independent of the trace backend. The trace
events are not tightly coupled to a specific trace backend, such as LTTng or
SystemTap. Support for trace backends can be added by extending the "tracetool"
script.
The trace backend is chosen at configure time and only one trace backend can
be built into the binary:
./configure --trace-backend=simple
For a list of supported trace backends, try ./configure --help or see below.
The following subsections describe the supported trace backends.
=== Nop ===
The "nop" backend generates empty trace event functions so that the compiler
can optimize out trace events completely. This is the default and imposes no
performance penalty.
Note that regardless of the selected trace backend, events with the "disable"
property will be generated with the "nop" backend.
=== Stderr ===
The "stderr" backend sends trace events directly to standard error. This
effectively turns trace events into debug printfs.
This is the simplest backend and can be used together with existing code that
uses DPRINTF().
=== Simpletrace ===
The "simple" backend supports common use cases and comes as part of the QEMU
source tree. It may not be as powerful as platform-specific or third-party
trace backends but it is portable. This is the recommended trace backend
unless you have specific needs for more advanced backends.
The "simple" backend currently does not capture string arguments, it simply
records the char* pointer value instead of the string that is pointed to.
=== Ftrace ===
The "ftrace" backend writes trace data to ftrace marker. This effectively
sends trace events to ftrace ring buffer, and you can compare qemu trace
data and kernel(especially kvm.ko when using KVM) trace data.
if you use KVM, enable kvm events in ftrace:
# echo 1 > /sys/kernel/debug/tracing/events/kvm/enable
After running qemu by root user, you can get the trace:
# cat /sys/kernel/debug/tracing/trace
Restriction: "ftrace" backend is restricted to Linux only.
==== Monitor commands ====
* trace-file on|off|flush|set <path>
Enable/disable/flush the trace file or set the trace file name.
==== Analyzing trace files ====
The "simple" backend produces binary trace files that can be formatted with the
simpletrace.py script. The script takes the "trace-events" file and the binary
trace:
./scripts/simpletrace.py trace-events trace-12345
You must ensure that the same "trace-events" file was used to build QEMU,
otherwise trace event declarations may have changed and output will not be
consistent.
=== LTTng Userspace Tracer ===
The "ust" backend uses the LTTng Userspace Tracer library. There are no
monitor commands built into QEMU, instead UST utilities should be used to list,
enable/disable, and dump traces.
=== SystemTap ===
The "dtrace" backend uses DTrace sdt probes but has only been tested with
SystemTap. When SystemTap support is detected a .stp file with wrapper probes
is generated to make use in scripts more convenient. This step can also be
performed manually after a build in order to change the binary name in the .stp
probes:
scripts/tracetool --dtrace --stap \
--binary path/to/qemu-binary \
--target-type system \
--target-name x86_64 \
<trace-events >qemu.stp
== Trace event properties ==
Each event in the "trace-events" file can be prefixed with a space-separated
list of zero or more of the following event properties.
=== "disable" ===
If a specific trace event is going to be invoked a huge number of times, this
might have a noticeable performance impact even when the event is
programmatically disabled.
In this case you should declare such event with the "disable" property. This
will effectively disable the event at compile time (by using the "nop" backend),
thus having no performance impact at all on regular builds (i.e., unless you
edit the "trace-events" file).
In addition, there might be cases where relatively complex computations must be
performed to generate values that are only used as arguments for a trace
function. In these cases you can use the macro 'TRACE_${EVENT_NAME}_ENABLED' to
guard such computations and avoid its compilation when the event is disabled:
#include "trace.h" /* needed for trace event prototype */
void *qemu_vmalloc(size_t size)
{
void *ptr;
size_t align = QEMU_VMALLOC_ALIGN;
if (size < align) {
align = getpagesize();
}
ptr = qemu_memalign(align, size);
if (TRACE_QEMU_VMALLOC_ENABLED) { /* preprocessor macro */
void *complex;
/* some complex computations to produce the 'complex' value */
trace_qemu_vmalloc(size, ptr, complex);
}
return ptr;
}
You can check both if the event has been disabled and is dynamically enabled at
the same time using the 'trace_event_get_state' routine (see header
"trace/control.h" for more information).