qemu/tests/qtest/npcm7xx_adc-test.c
Hao Wu 4a84e85413 hw/adc: Fix CONV bit in NPCM7XX ADC CON register
The correct bit for the CONV bit in NPCM7XX ADC is bit 13. This patch
fixes that in the module, and also lower the IRQ when the guest
is done handling an interrupt event from the ADC module.

Signed-off-by: Hao Wu <wuhaotsh@google.com>
Reviewed-by: Patrick Venture<venture@google.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20220714182836.89602-4-wuhaotsh@google.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2022-07-18 13:20:14 +01:00

379 lines
11 KiB
C

/*
* QTests for Nuvoton NPCM7xx ADCModules.
*
* Copyright 2020 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "qemu/timer.h"
#include "libqtest.h"
#include "qapi/qmp/qdict.h"
#define REF_HZ (25000000)
#define CON_OFFSET 0x0
#define DATA_OFFSET 0x4
#define NUM_INPUTS 8
#define DEFAULT_IREF 2000000
#define CONV_CYCLES 20
#define RESET_CYCLES 10
#define R0_INPUT 500000
#define R1_INPUT 1500000
#define MAX_RESULT 1023
#define DEFAULT_CLKDIV 5
#define FUSE_ARRAY_BA 0xf018a000
#define FCTL_OFFSET 0x14
#define FST_OFFSET 0x0
#define FADDR_OFFSET 0x4
#define FDATA_OFFSET 0x8
#define ADC_CALIB_ADDR 24
#define FUSE_READ 0x2
/* Register field definitions. */
#define CON_MUX(rv) ((rv) << 24)
#define CON_INT_EN BIT(21)
#define CON_REFSEL BIT(19)
#define CON_INT BIT(18)
#define CON_EN BIT(17)
#define CON_RST BIT(16)
#define CON_CONV BIT(13)
#define CON_DIV(rv) extract32(rv, 1, 8)
#define FST_RDST BIT(1)
#define FDATA_MASK 0xff
#define MAX_ERROR 10000
#define MIN_CALIB_INPUT 100000
#define MAX_CALIB_INPUT 1800000
static const uint32_t input_list[] = {
100000,
500000,
1000000,
1500000,
1800000,
2000000,
};
static const uint32_t vref_list[] = {
2000000,
2200000,
2500000,
};
static const uint32_t iref_list[] = {
1800000,
1900000,
2000000,
2100000,
2200000,
};
static const uint32_t div_list[] = {0, 1, 3, 7, 15};
typedef struct ADC {
int irq;
uint64_t base_addr;
} ADC;
ADC adc = {
.irq = 0,
.base_addr = 0xf000c000
};
static uint32_t adc_read_con(QTestState *qts, const ADC *adc)
{
return qtest_readl(qts, adc->base_addr + CON_OFFSET);
}
static void adc_write_con(QTestState *qts, const ADC *adc, uint32_t value)
{
qtest_writel(qts, adc->base_addr + CON_OFFSET, value);
}
static uint32_t adc_read_data(QTestState *qts, const ADC *adc)
{
return qtest_readl(qts, adc->base_addr + DATA_OFFSET);
}
static uint32_t adc_calibrate(uint32_t measured, uint32_t *rv)
{
return R0_INPUT + (R1_INPUT - R0_INPUT) * (int32_t)(measured - rv[0])
/ (int32_t)(rv[1] - rv[0]);
}
static void adc_qom_set(QTestState *qts, const ADC *adc,
const char *name, uint32_t value)
{
QDict *response;
const char *path = "/machine/soc/adc";
g_test_message("Setting properties %s of %s with value %u",
name, path, value);
response = qtest_qmp(qts, "{ 'execute': 'qom-set',"
" 'arguments': { 'path': %s, 'property': %s, 'value': %u}}",
path, name, value);
/* The qom set message returns successfully. */
g_assert_true(qdict_haskey(response, "return"));
qobject_unref(response);
}
static void adc_write_input(QTestState *qts, const ADC *adc,
uint32_t index, uint32_t value)
{
char name[100];
sprintf(name, "adci[%u]", index);
adc_qom_set(qts, adc, name, value);
}
static void adc_write_vref(QTestState *qts, const ADC *adc, uint32_t value)
{
adc_qom_set(qts, adc, "vref", value);
}
static uint32_t adc_calculate_output(uint32_t input, uint32_t ref)
{
uint32_t output;
g_assert_cmpuint(input, <=, ref);
output = (input * (MAX_RESULT + 1)) / ref;
if (output > MAX_RESULT) {
output = MAX_RESULT;
}
return output;
}
static uint32_t adc_prescaler(QTestState *qts, const ADC *adc)
{
uint32_t div = extract32(adc_read_con(qts, adc), 1, 8);
return 2 * (div + 1);
}
static int64_t adc_calculate_steps(uint32_t cycles, uint32_t prescale,
uint32_t clkdiv)
{
return (NANOSECONDS_PER_SECOND / (REF_HZ >> clkdiv)) * cycles * prescale;
}
static void adc_wait_conv_finished(QTestState *qts, const ADC *adc,
uint32_t clkdiv)
{
uint32_t prescaler = adc_prescaler(qts, adc);
/*
* ADC should takes roughly 20 cycles to convert one sample. So we assert it
* should take 10~30 cycles here.
*/
qtest_clock_step(qts, adc_calculate_steps(CONV_CYCLES / 2, prescaler,
clkdiv));
/* ADC is still converting. */
g_assert_true(adc_read_con(qts, adc) & CON_CONV);
qtest_clock_step(qts, adc_calculate_steps(CONV_CYCLES, prescaler, clkdiv));
/* ADC has finished conversion. */
g_assert_false(adc_read_con(qts, adc) & CON_CONV);
}
/* Check ADC can be reset to default value. */
static void test_init(gconstpointer adc_p)
{
const ADC *adc = adc_p;
QTestState *qts = qtest_init("-machine quanta-gsj");
adc_write_con(qts, adc, CON_REFSEL | CON_INT);
g_assert_cmphex(adc_read_con(qts, adc), ==, CON_REFSEL);
qtest_quit(qts);
}
/* Check ADC can convert from an internal reference. */
static void test_convert_internal(gconstpointer adc_p)
{
const ADC *adc = adc_p;
uint32_t index, input, output, expected_output;
QTestState *qts = qtest_init("-machine quanta-gsj");
qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
for (index = 0; index < NUM_INPUTS; ++index) {
for (size_t i = 0; i < ARRAY_SIZE(input_list); ++i) {
input = input_list[i];
expected_output = adc_calculate_output(input, DEFAULT_IREF);
adc_write_input(qts, adc, index, input);
adc_write_con(qts, adc, CON_MUX(index) | CON_REFSEL | CON_INT |
CON_EN | CON_CONV);
adc_wait_conv_finished(qts, adc, DEFAULT_CLKDIV);
g_assert_cmphex(adc_read_con(qts, adc), ==, CON_MUX(index) |
CON_REFSEL | CON_EN);
g_assert_false(qtest_get_irq(qts, adc->irq));
output = adc_read_data(qts, adc);
g_assert_cmpuint(output, ==, expected_output);
}
}
qtest_quit(qts);
}
/* Check ADC can convert from an external reference. */
static void test_convert_external(gconstpointer adc_p)
{
const ADC *adc = adc_p;
uint32_t index, input, vref, output, expected_output;
QTestState *qts = qtest_init("-machine quanta-gsj");
qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
for (index = 0; index < NUM_INPUTS; ++index) {
for (size_t i = 0; i < ARRAY_SIZE(input_list); ++i) {
for (size_t j = 0; j < ARRAY_SIZE(vref_list); ++j) {
input = input_list[i];
vref = vref_list[j];
expected_output = adc_calculate_output(input, vref);
adc_write_input(qts, adc, index, input);
adc_write_vref(qts, adc, vref);
adc_write_con(qts, adc, CON_MUX(index) | CON_INT | CON_EN |
CON_CONV);
adc_wait_conv_finished(qts, adc, DEFAULT_CLKDIV);
g_assert_cmphex(adc_read_con(qts, adc), ==,
CON_MUX(index) | CON_EN);
g_assert_false(qtest_get_irq(qts, adc->irq));
output = adc_read_data(qts, adc);
g_assert_cmpuint(output, ==, expected_output);
}
}
}
qtest_quit(qts);
}
/* Check ADC interrupt files if and only if CON_INT_EN is set. */
static void test_interrupt(gconstpointer adc_p)
{
const ADC *adc = adc_p;
uint32_t index, input, output, expected_output;
QTestState *qts = qtest_init("-machine quanta-gsj");
index = 1;
input = input_list[1];
expected_output = adc_calculate_output(input, DEFAULT_IREF);
qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
adc_write_input(qts, adc, index, input);
g_assert_false(qtest_get_irq(qts, adc->irq));
adc_write_con(qts, adc, CON_MUX(index) | CON_INT_EN | CON_REFSEL | CON_INT
| CON_EN | CON_CONV);
adc_wait_conv_finished(qts, adc, DEFAULT_CLKDIV);
g_assert_cmphex(adc_read_con(qts, adc), ==, CON_MUX(index) | CON_INT_EN
| CON_REFSEL | CON_INT | CON_EN);
g_assert_true(qtest_get_irq(qts, adc->irq));
output = adc_read_data(qts, adc);
g_assert_cmpuint(output, ==, expected_output);
qtest_quit(qts);
}
/* Check ADC is reset after setting ADC_RST for 10 ADC cycles. */
static void test_reset(gconstpointer adc_p)
{
const ADC *adc = adc_p;
QTestState *qts = qtest_init("-machine quanta-gsj");
for (size_t i = 0; i < ARRAY_SIZE(div_list); ++i) {
uint32_t div = div_list[i];
adc_write_con(qts, adc, CON_INT | CON_EN | CON_RST | CON_DIV(div));
qtest_clock_step(qts, adc_calculate_steps(RESET_CYCLES,
adc_prescaler(qts, adc), DEFAULT_CLKDIV));
g_assert_false(adc_read_con(qts, adc) & CON_EN);
}
qtest_quit(qts);
}
/* Check ADC Calibration works as desired. */
static void test_calibrate(gconstpointer adc_p)
{
int i, j;
const ADC *adc = adc_p;
for (j = 0; j < ARRAY_SIZE(iref_list); ++j) {
uint32_t iref = iref_list[j];
uint32_t expected_rv[] = {
adc_calculate_output(R0_INPUT, iref),
adc_calculate_output(R1_INPUT, iref),
};
char buf[100];
QTestState *qts;
sprintf(buf, "-machine quanta-gsj -global npcm7xx-adc.iref=%u", iref);
qts = qtest_init(buf);
/* Check the converted value is correct using the calibration value. */
for (i = 0; i < ARRAY_SIZE(input_list); ++i) {
uint32_t input;
uint32_t output;
uint32_t expected_output;
uint32_t calibrated_voltage;
uint32_t index = 0;
input = input_list[i];
/* Calibration only works for input range 0.1V ~ 1.8V. */
if (input < MIN_CALIB_INPUT || input > MAX_CALIB_INPUT) {
continue;
}
expected_output = adc_calculate_output(input, iref);
adc_write_input(qts, adc, index, input);
adc_write_con(qts, adc, CON_MUX(index) | CON_REFSEL | CON_INT |
CON_EN | CON_CONV);
adc_wait_conv_finished(qts, adc, DEFAULT_CLKDIV);
g_assert_cmphex(adc_read_con(qts, adc), ==,
CON_REFSEL | CON_MUX(index) | CON_EN);
output = adc_read_data(qts, adc);
g_assert_cmpuint(output, ==, expected_output);
calibrated_voltage = adc_calibrate(output, expected_rv);
g_assert_cmpuint(calibrated_voltage, >, input - MAX_ERROR);
g_assert_cmpuint(calibrated_voltage, <, input + MAX_ERROR);
}
qtest_quit(qts);
}
}
static void adc_add_test(const char *name, const ADC* wd,
GTestDataFunc fn)
{
g_autofree char *full_name = g_strdup_printf("npcm7xx_adc/%s", name);
qtest_add_data_func(full_name, wd, fn);
}
#define add_test(name, td) adc_add_test(#name, td, test_##name)
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
add_test(init, &adc);
add_test(convert_internal, &adc);
add_test(convert_external, &adc);
add_test(interrupt, &adc);
add_test(reset, &adc);
add_test(calibrate, &adc);
return g_test_run();
}