mirror of
https://gitlab.com/qemu-project/qemu
synced 2024-11-05 20:35:44 +00:00
dfd3bb0a99
get_relocated_path() did not have error handling for PathCchSkipRoot() because a path given to get_relocated_path() was expected to be a valid path containing a drive letter or UNC server/share path elements on Windows, but sometimes it turned out otherwise. The paths passed to get_relocated_path() are defined by macros generated by Meson. Meson in turn uses a prefix given by the configure script to generate them. For Windows, the script passes /qemu as a prefix to Meson by default. As documented in docs/about/build-platforms.rst, typically MSYS2 is used for the build system, but it is also possible to use Linux as well. When MSYS2 is used, its Bash variant recognizes /qemu as a MSYS2 path, and converts it to a Windows path, adding the MSYS2 prefix including a drive letter or UNC server/share path elements. Such a conversion does not happen on a shell on Linux however, and /qemu will be passed as is in the case. Implement a proper error handling of PathCchSkipRoot() in get_relocated_path() so that it can handle a path without a drive letter or UNC server/share path elements. Reported-by: Stefan Weil <sw@weilnetz.de> Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Message-ID: <20231005064726.6945-1-akihiko.odaki@daynix.com> Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
1218 lines
32 KiB
C
1218 lines
32 KiB
C
/*
|
|
* Simple C functions to supplement the C library
|
|
*
|
|
* Copyright (c) 2006 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/host-utils.h"
|
|
#include <math.h>
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <sys/sysctl.h>
|
|
#include <sys/user.h>
|
|
#endif
|
|
|
|
#ifdef __NetBSD__
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
|
|
#ifdef __HAIKU__
|
|
#include <kernel/image.h>
|
|
#endif
|
|
|
|
#ifdef __APPLE__
|
|
#include <mach-o/dyld.h>
|
|
#endif
|
|
|
|
#ifdef G_OS_WIN32
|
|
#include <pathcch.h>
|
|
#include <wchar.h>
|
|
#endif
|
|
|
|
#include "qemu/ctype.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qemu/error-report.h"
|
|
|
|
void strpadcpy(char *buf, int buf_size, const char *str, char pad)
|
|
{
|
|
int len = qemu_strnlen(str, buf_size);
|
|
memcpy(buf, str, len);
|
|
memset(buf + len, pad, buf_size - len);
|
|
}
|
|
|
|
void pstrcpy(char *buf, int buf_size, const char *str)
|
|
{
|
|
int c;
|
|
char *q = buf;
|
|
|
|
if (buf_size <= 0)
|
|
return;
|
|
|
|
for(;;) {
|
|
c = *str++;
|
|
if (c == 0 || q >= buf + buf_size - 1)
|
|
break;
|
|
*q++ = c;
|
|
}
|
|
*q = '\0';
|
|
}
|
|
|
|
/* strcat and truncate. */
|
|
char *pstrcat(char *buf, int buf_size, const char *s)
|
|
{
|
|
int len;
|
|
len = strlen(buf);
|
|
if (len < buf_size)
|
|
pstrcpy(buf + len, buf_size - len, s);
|
|
return buf;
|
|
}
|
|
|
|
int strstart(const char *str, const char *val, const char **ptr)
|
|
{
|
|
const char *p, *q;
|
|
p = str;
|
|
q = val;
|
|
while (*q != '\0') {
|
|
if (*p != *q)
|
|
return 0;
|
|
p++;
|
|
q++;
|
|
}
|
|
if (ptr)
|
|
*ptr = p;
|
|
return 1;
|
|
}
|
|
|
|
int stristart(const char *str, const char *val, const char **ptr)
|
|
{
|
|
const char *p, *q;
|
|
p = str;
|
|
q = val;
|
|
while (*q != '\0') {
|
|
if (qemu_toupper(*p) != qemu_toupper(*q))
|
|
return 0;
|
|
p++;
|
|
q++;
|
|
}
|
|
if (ptr)
|
|
*ptr = p;
|
|
return 1;
|
|
}
|
|
|
|
/* XXX: use host strnlen if available ? */
|
|
int qemu_strnlen(const char *s, int max_len)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < max_len; i++) {
|
|
if (s[i] == '\0') {
|
|
break;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
char *qemu_strsep(char **input, const char *delim)
|
|
{
|
|
char *result = *input;
|
|
if (result != NULL) {
|
|
char *p;
|
|
|
|
for (p = result; *p != '\0'; p++) {
|
|
if (strchr(delim, *p)) {
|
|
break;
|
|
}
|
|
}
|
|
if (*p == '\0') {
|
|
*input = NULL;
|
|
} else {
|
|
*p = '\0';
|
|
*input = p + 1;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
time_t mktimegm(struct tm *tm)
|
|
{
|
|
time_t t;
|
|
int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
|
|
if (m < 3) {
|
|
m += 12;
|
|
y--;
|
|
}
|
|
t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
|
|
y / 400 - 719469);
|
|
t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
|
|
return t;
|
|
}
|
|
|
|
static int64_t suffix_mul(char suffix, int64_t unit)
|
|
{
|
|
switch (qemu_toupper(suffix)) {
|
|
case 'B':
|
|
return 1;
|
|
case 'K':
|
|
return unit;
|
|
case 'M':
|
|
return unit * unit;
|
|
case 'G':
|
|
return unit * unit * unit;
|
|
case 'T':
|
|
return unit * unit * unit * unit;
|
|
case 'P':
|
|
return unit * unit * unit * unit * unit;
|
|
case 'E':
|
|
return unit * unit * unit * unit * unit * unit;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Convert size string to bytes.
|
|
*
|
|
* The size parsing supports the following syntaxes
|
|
* - 12345 - decimal, scale determined by @default_suffix and @unit
|
|
* - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
|
|
* - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
|
|
* fractional portion is truncated to byte, either side of . may be empty
|
|
* - 0x7fEE - hexadecimal, unit determined by @default_suffix
|
|
*
|
|
* The following are intentionally not supported
|
|
* - hex with scaling suffix, such as 0x20M or 0x1p3 (both fail with
|
|
* -EINVAL), while 0x1b is 27 (not 1 with byte scale)
|
|
* - octal, such as 08 (parsed as decimal instead)
|
|
* - binary, such as 0b1000 (parsed as 0b with trailing garbage "1000")
|
|
* - fractional hex, such as 0x1.8 (parsed as 0 with trailing garbage "x1.8")
|
|
* - negative values, including -0 (fail with -ERANGE)
|
|
* - floating point exponents, such as 1e3 (parsed as 1e with trailing
|
|
* garbage "3") or 0x1p3 (rejected as hex with scaling suffix)
|
|
* - non-finite values, such as inf or NaN (fail with -EINVAL)
|
|
*
|
|
* The end pointer will be returned in *end, if not NULL. If there is
|
|
* no fraction, the input can be decimal or hexadecimal; if there is a
|
|
* non-zero fraction, then the input must be decimal and there must be
|
|
* a suffix (possibly by @default_suffix) larger than Byte, and the
|
|
* fractional portion may suffer from precision loss or rounding. The
|
|
* input must be positive.
|
|
*
|
|
* Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
|
|
* other error (with *@end at @nptr). Unlike strtoull, *@result is
|
|
* set to 0 on all errors, as returning UINT64_MAX on overflow is less
|
|
* likely to be usable as a size.
|
|
*/
|
|
static int do_strtosz(const char *nptr, const char **end,
|
|
const char default_suffix, int64_t unit,
|
|
uint64_t *result)
|
|
{
|
|
int retval;
|
|
const char *endptr;
|
|
unsigned char c;
|
|
uint64_t val = 0, valf = 0;
|
|
int64_t mul;
|
|
|
|
/* Parse integral portion as decimal. */
|
|
retval = parse_uint(nptr, &endptr, 10, &val);
|
|
if (retval == -ERANGE || !nptr) {
|
|
goto out;
|
|
}
|
|
if (retval == 0 && val == 0 && (*endptr == 'x' || *endptr == 'X')) {
|
|
/* Input looks like hex; reparse, and insist on no fraction or suffix. */
|
|
retval = qemu_strtou64(nptr, &endptr, 16, &val);
|
|
if (retval) {
|
|
goto out;
|
|
}
|
|
if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) {
|
|
endptr = nptr;
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else if (*endptr == '.' || (endptr == nptr && strchr(nptr, '.'))) {
|
|
/*
|
|
* Input looks like a fraction. Make sure even 1.k works
|
|
* without fractional digits. strtod tries to treat 'e' as an
|
|
* exponent, but we want to treat it as a scaling suffix;
|
|
* doing this requires modifying a copy of the fraction.
|
|
*/
|
|
double fraction = 0.0;
|
|
|
|
if (retval == 0 && *endptr == '.' && !isdigit(endptr[1])) {
|
|
/* If we got here, we parsed at least one digit already. */
|
|
endptr++;
|
|
} else {
|
|
char *e;
|
|
const char *tail;
|
|
g_autofree char *copy = g_strdup(endptr);
|
|
|
|
e = strchr(copy, 'e');
|
|
if (e) {
|
|
*e = '\0';
|
|
}
|
|
e = strchr(copy, 'E');
|
|
if (e) {
|
|
*e = '\0';
|
|
}
|
|
/*
|
|
* If this is a floating point, we are guaranteed that '.'
|
|
* appears before any possible digits in copy. If it is
|
|
* not a floating point, strtod will fail. Either way,
|
|
* there is now no exponent in copy, so if it parses, we
|
|
* know 0.0 <= abs(result) <= 1.0 (after rounding), and
|
|
* ERANGE is only possible on underflow which is okay.
|
|
*/
|
|
retval = qemu_strtod_finite(copy, &tail, &fraction);
|
|
endptr += tail - copy;
|
|
if (signbit(fraction)) {
|
|
retval = -ERANGE;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Extract into a 64-bit fixed-point fraction. */
|
|
if (fraction == 1.0) {
|
|
if (val == UINT64_MAX) {
|
|
retval = -ERANGE;
|
|
goto out;
|
|
}
|
|
val++;
|
|
} else if (retval == -ERANGE) {
|
|
/* See comments above about underflow */
|
|
valf = 1;
|
|
retval = 0;
|
|
} else {
|
|
/* We want non-zero valf for any non-zero fraction */
|
|
valf = (uint64_t)(fraction * 0x1p64);
|
|
if (valf == 0 && fraction > 0.0) {
|
|
valf = 1;
|
|
}
|
|
}
|
|
}
|
|
if (retval) {
|
|
goto out;
|
|
}
|
|
c = *endptr;
|
|
mul = suffix_mul(c, unit);
|
|
if (mul > 0) {
|
|
endptr++;
|
|
} else {
|
|
mul = suffix_mul(default_suffix, unit);
|
|
assert(mul > 0);
|
|
}
|
|
if (mul == 1) {
|
|
/* When a fraction is present, a scale is required. */
|
|
if (valf != 0) {
|
|
endptr = nptr;
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
uint64_t valh, tmp;
|
|
|
|
/* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
|
|
mulu64(&val, &valh, val, mul);
|
|
mulu64(&valf, &tmp, valf, mul);
|
|
val += tmp;
|
|
valh += val < tmp;
|
|
|
|
/* Round 0.5 upward. */
|
|
tmp = valf >> 63;
|
|
val += tmp;
|
|
valh += val < tmp;
|
|
|
|
/* Report overflow. */
|
|
if (valh != 0) {
|
|
retval = -ERANGE;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
retval = 0;
|
|
|
|
out:
|
|
if (end) {
|
|
*end = endptr;
|
|
} else if (nptr && *endptr) {
|
|
retval = -EINVAL;
|
|
}
|
|
if (retval == 0) {
|
|
*result = val;
|
|
} else {
|
|
*result = 0;
|
|
if (end && retval == -EINVAL) {
|
|
*end = nptr;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
|
|
{
|
|
return do_strtosz(nptr, end, 'B', 1024, result);
|
|
}
|
|
|
|
int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
|
|
{
|
|
return do_strtosz(nptr, end, 'M', 1024, result);
|
|
}
|
|
|
|
int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
|
|
{
|
|
return do_strtosz(nptr, end, 'B', 1000, result);
|
|
}
|
|
|
|
/**
|
|
* Helper function for error checking after strtol() and the like
|
|
*/
|
|
static int check_strtox_error(const char *nptr, char *ep,
|
|
const char **endptr, bool check_zero,
|
|
int libc_errno)
|
|
{
|
|
assert(ep >= nptr);
|
|
|
|
/* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */
|
|
if (check_zero && ep == nptr && libc_errno == 0) {
|
|
char *tmp;
|
|
|
|
errno = 0;
|
|
if (strtol(nptr, &tmp, 10) == 0 && errno == 0 &&
|
|
(*tmp == 'x' || *tmp == 'X')) {
|
|
ep = tmp;
|
|
}
|
|
}
|
|
|
|
if (endptr) {
|
|
*endptr = ep;
|
|
}
|
|
|
|
/* Turn "no conversion" into an error */
|
|
if (libc_errno == 0 && ep == nptr) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Fail when we're expected to consume the string, but didn't */
|
|
if (!endptr && *ep) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return -libc_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert string @nptr to an integer, and store it in @result.
|
|
*
|
|
* This is a wrapper around strtol() that is harder to misuse.
|
|
* Semantics of @nptr, @endptr, @base match strtol() with differences
|
|
* noted below.
|
|
*
|
|
* @nptr may be null, and no conversion is performed then.
|
|
*
|
|
* If no conversion is performed, store @nptr in *@endptr, 0 in
|
|
* @result, and return -EINVAL.
|
|
*
|
|
* If @endptr is null, and the string isn't fully converted, return
|
|
* -EINVAL with @result set to the parsed value. This is the case
|
|
* when the pointer that would be stored in a non-null @endptr points
|
|
* to a character other than '\0'.
|
|
*
|
|
* If the conversion overflows @result, store INT_MAX in @result,
|
|
* and return -ERANGE.
|
|
*
|
|
* If the conversion underflows @result, store INT_MIN in @result,
|
|
* and return -ERANGE.
|
|
*
|
|
* Else store the converted value in @result, and return zero.
|
|
*
|
|
* This matches the behavior of strtol() on 32-bit platforms, even on
|
|
* platforms where long is 64-bits.
|
|
*/
|
|
int qemu_strtoi(const char *nptr, const char **endptr, int base,
|
|
int *result)
|
|
{
|
|
char *ep;
|
|
long long lresult;
|
|
|
|
assert((unsigned) base <= 36 && base != 1);
|
|
if (!nptr) {
|
|
*result = 0;
|
|
if (endptr) {
|
|
*endptr = nptr;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
errno = 0;
|
|
lresult = strtoll(nptr, &ep, base);
|
|
if (lresult < INT_MIN) {
|
|
*result = INT_MIN;
|
|
errno = ERANGE;
|
|
} else if (lresult > INT_MAX) {
|
|
*result = INT_MAX;
|
|
errno = ERANGE;
|
|
} else {
|
|
*result = lresult;
|
|
}
|
|
return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
|
|
}
|
|
|
|
/**
|
|
* Convert string @nptr to an unsigned integer, and store it in @result.
|
|
*
|
|
* This is a wrapper around strtoul() that is harder to misuse.
|
|
* Semantics of @nptr, @endptr, @base match strtoul() with differences
|
|
* noted below.
|
|
*
|
|
* @nptr may be null, and no conversion is performed then.
|
|
*
|
|
* If no conversion is performed, store @nptr in *@endptr, 0 in
|
|
* @result, and return -EINVAL.
|
|
*
|
|
* If @endptr is null, and the string isn't fully converted, return
|
|
* -EINVAL with @result set to the parsed value. This is the case
|
|
* when the pointer that would be stored in a non-null @endptr points
|
|
* to a character other than '\0'.
|
|
*
|
|
* If the conversion overflows @result, store UINT_MAX in @result,
|
|
* and return -ERANGE.
|
|
*
|
|
* Else store the converted value in @result, and return zero.
|
|
*
|
|
* Note that a number with a leading minus sign gets converted without
|
|
* the minus sign, checked for overflow (see above), then negated (in
|
|
* @result's type). This matches the behavior of strtoul() on 32-bit
|
|
* platforms, even on platforms where long is 64-bits.
|
|
*/
|
|
int qemu_strtoui(const char *nptr, const char **endptr, int base,
|
|
unsigned int *result)
|
|
{
|
|
char *ep;
|
|
unsigned long long lresult;
|
|
bool neg;
|
|
|
|
assert((unsigned) base <= 36 && base != 1);
|
|
if (!nptr) {
|
|
*result = 0;
|
|
if (endptr) {
|
|
*endptr = nptr;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
errno = 0;
|
|
lresult = strtoull(nptr, &ep, base);
|
|
|
|
/* Windows returns 1 for negative out-of-range values. */
|
|
if (errno == ERANGE) {
|
|
*result = -1;
|
|
} else {
|
|
/*
|
|
* Note that platforms with 32-bit strtoul only accept input
|
|
* in the range [-4294967295, 4294967295]; but we used 64-bit
|
|
* strtoull which wraps -18446744073709551615 to 1 instead of
|
|
* declaring overflow. So we must check if '-' was parsed,
|
|
* and if so, undo the negation before doing our bounds check.
|
|
*/
|
|
neg = memchr(nptr, '-', ep - nptr) != NULL;
|
|
if (neg) {
|
|
lresult = -lresult;
|
|
}
|
|
if (lresult > UINT_MAX) {
|
|
*result = UINT_MAX;
|
|
errno = ERANGE;
|
|
} else {
|
|
*result = neg ? -lresult : lresult;
|
|
}
|
|
}
|
|
return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
|
|
}
|
|
|
|
/**
|
|
* Convert string @nptr to a long integer, and store it in @result.
|
|
*
|
|
* This is a wrapper around strtol() that is harder to misuse.
|
|
* Semantics of @nptr, @endptr, @base match strtol() with differences
|
|
* noted below.
|
|
*
|
|
* @nptr may be null, and no conversion is performed then.
|
|
*
|
|
* If no conversion is performed, store @nptr in *@endptr, 0 in
|
|
* @result, and return -EINVAL.
|
|
*
|
|
* If @endptr is null, and the string isn't fully converted, return
|
|
* -EINVAL with @result set to the parsed value. This is the case
|
|
* when the pointer that would be stored in a non-null @endptr points
|
|
* to a character other than '\0'.
|
|
*
|
|
* If the conversion overflows @result, store LONG_MAX in @result,
|
|
* and return -ERANGE.
|
|
*
|
|
* If the conversion underflows @result, store LONG_MIN in @result,
|
|
* and return -ERANGE.
|
|
*
|
|
* Else store the converted value in @result, and return zero.
|
|
*/
|
|
int qemu_strtol(const char *nptr, const char **endptr, int base,
|
|
long *result)
|
|
{
|
|
char *ep;
|
|
|
|
assert((unsigned) base <= 36 && base != 1);
|
|
if (!nptr) {
|
|
*result = 0;
|
|
if (endptr) {
|
|
*endptr = nptr;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
errno = 0;
|
|
*result = strtol(nptr, &ep, base);
|
|
return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
|
|
}
|
|
|
|
/**
|
|
* Convert string @nptr to an unsigned long, and store it in @result.
|
|
*
|
|
* This is a wrapper around strtoul() that is harder to misuse.
|
|
* Semantics of @nptr, @endptr, @base match strtoul() with differences
|
|
* noted below.
|
|
*
|
|
* @nptr may be null, and no conversion is performed then.
|
|
*
|
|
* If no conversion is performed, store @nptr in *@endptr, 0 in
|
|
* @result, and return -EINVAL.
|
|
*
|
|
* If @endptr is null, and the string isn't fully converted, return
|
|
* -EINVAL with @result set to the parsed value. This is the case
|
|
* when the pointer that would be stored in a non-null @endptr points
|
|
* to a character other than '\0'.
|
|
*
|
|
* If the conversion overflows @result, store ULONG_MAX in @result,
|
|
* and return -ERANGE.
|
|
*
|
|
* Else store the converted value in @result, and return zero.
|
|
*
|
|
* Note that a number with a leading minus sign gets converted without
|
|
* the minus sign, checked for overflow (see above), then negated (in
|
|
* @result's type). This is exactly how strtoul() works.
|
|
*/
|
|
int qemu_strtoul(const char *nptr, const char **endptr, int base,
|
|
unsigned long *result)
|
|
{
|
|
char *ep;
|
|
|
|
assert((unsigned) base <= 36 && base != 1);
|
|
if (!nptr) {
|
|
*result = 0;
|
|
if (endptr) {
|
|
*endptr = nptr;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
errno = 0;
|
|
*result = strtoul(nptr, &ep, base);
|
|
/* Windows returns 1 for negative out-of-range values. */
|
|
if (errno == ERANGE) {
|
|
*result = -1;
|
|
}
|
|
return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
|
|
}
|
|
|
|
/**
|
|
* Convert string @nptr to an int64_t.
|
|
*
|
|
* Works like qemu_strtol(), except it stores INT64_MAX on overflow,
|
|
* and INT64_MIN on underflow.
|
|
*/
|
|
int qemu_strtoi64(const char *nptr, const char **endptr, int base,
|
|
int64_t *result)
|
|
{
|
|
char *ep;
|
|
|
|
assert((unsigned) base <= 36 && base != 1);
|
|
if (!nptr) {
|
|
*result = 0;
|
|
if (endptr) {
|
|
*endptr = nptr;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This assumes int64_t is long long TODO relax */
|
|
QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
|
|
errno = 0;
|
|
*result = strtoll(nptr, &ep, base);
|
|
return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
|
|
}
|
|
|
|
/**
|
|
* Convert string @nptr to an uint64_t.
|
|
*
|
|
* Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
|
|
* (If you want to prohibit negative numbers that wrap around to
|
|
* positive, use parse_uint()).
|
|
*/
|
|
int qemu_strtou64(const char *nptr, const char **endptr, int base,
|
|
uint64_t *result)
|
|
{
|
|
char *ep;
|
|
|
|
assert((unsigned) base <= 36 && base != 1);
|
|
if (!nptr) {
|
|
*result = 0;
|
|
if (endptr) {
|
|
*endptr = nptr;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This assumes uint64_t is unsigned long long TODO relax */
|
|
QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
|
|
errno = 0;
|
|
*result = strtoull(nptr, &ep, base);
|
|
/* Windows returns 1 for negative out-of-range values. */
|
|
if (errno == ERANGE) {
|
|
*result = -1;
|
|
}
|
|
return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
|
|
}
|
|
|
|
/**
|
|
* Convert string @nptr to a double.
|
|
*
|
|
* This is a wrapper around strtod() that is harder to misuse.
|
|
* Semantics of @nptr and @endptr match strtod() with differences
|
|
* noted below.
|
|
*
|
|
* @nptr may be null, and no conversion is performed then.
|
|
*
|
|
* If no conversion is performed, store @nptr in *@endptr, +0.0 in
|
|
* @result, and return -EINVAL.
|
|
*
|
|
* If @endptr is null, and the string isn't fully converted, return
|
|
* -EINVAL with @result set to the parsed value. This is the case
|
|
* when the pointer that would be stored in a non-null @endptr points
|
|
* to a character other than '\0'.
|
|
*
|
|
* If the conversion overflows, store +/-HUGE_VAL in @result, depending
|
|
* on the sign, and return -ERANGE.
|
|
*
|
|
* If the conversion underflows, store +/-0.0 in @result, depending on the
|
|
* sign, and return -ERANGE.
|
|
*
|
|
* Else store the converted value in @result, and return zero.
|
|
*/
|
|
int qemu_strtod(const char *nptr, const char **endptr, double *result)
|
|
{
|
|
char *ep;
|
|
|
|
if (!nptr) {
|
|
*result = 0.0;
|
|
if (endptr) {
|
|
*endptr = nptr;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
errno = 0;
|
|
*result = strtod(nptr, &ep);
|
|
return check_strtox_error(nptr, ep, endptr, false, errno);
|
|
}
|
|
|
|
/**
|
|
* Convert string @nptr to a finite double.
|
|
*
|
|
* Works like qemu_strtod(), except that "NaN", "inf", and strings
|
|
* that cause ERANGE overflow errors are rejected with -EINVAL as if
|
|
* no conversion is performed, storing 0.0 into @result regardless of
|
|
* any sign. -ERANGE failures for underflow still preserve the parsed
|
|
* sign.
|
|
*/
|
|
int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
|
|
{
|
|
const char *tmp;
|
|
int ret;
|
|
|
|
ret = qemu_strtod(nptr, &tmp, result);
|
|
if (!isfinite(*result)) {
|
|
if (endptr) {
|
|
*endptr = nptr;
|
|
}
|
|
*result = 0.0;
|
|
ret = -EINVAL;
|
|
} else if (endptr) {
|
|
*endptr = tmp;
|
|
} else if (*tmp) {
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Searches for the first occurrence of 'c' in 's', and returns a pointer
|
|
* to the trailing null byte if none was found.
|
|
*/
|
|
#ifndef HAVE_STRCHRNUL
|
|
const char *qemu_strchrnul(const char *s, int c)
|
|
{
|
|
const char *e = strchr(s, c);
|
|
if (!e) {
|
|
e = s + strlen(s);
|
|
}
|
|
return e;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* parse_uint:
|
|
*
|
|
* @s: String to parse
|
|
* @endptr: Destination for pointer to first character not consumed
|
|
* @base: integer base, between 2 and 36 inclusive, or 0
|
|
* @value: Destination for parsed integer value
|
|
*
|
|
* Parse unsigned integer
|
|
*
|
|
* Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
|
|
* '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
|
|
*
|
|
* If @s is null, or @s doesn't start with an integer in the syntax
|
|
* above, set *@value to 0, *@endptr to @s, and return -EINVAL.
|
|
*
|
|
* Set *@endptr to point right beyond the parsed integer (even if the integer
|
|
* overflows or is negative, all digits will be parsed and *@endptr will
|
|
* point right beyond them). If @endptr is %NULL, any trailing character
|
|
* instead causes a result of -EINVAL with *@value of 0.
|
|
*
|
|
* If the integer is negative, set *@value to 0, and return -ERANGE.
|
|
* (If you want to allow negative numbers that wrap around within
|
|
* bounds, use qemu_strtou64()).
|
|
*
|
|
* If the integer overflows unsigned long long, set *@value to
|
|
* ULLONG_MAX, and return -ERANGE.
|
|
*
|
|
* Else, set *@value to the parsed integer, and return 0.
|
|
*/
|
|
int parse_uint(const char *s, const char **endptr, int base, uint64_t *value)
|
|
{
|
|
int r = 0;
|
|
char *endp = (char *)s;
|
|
unsigned long long val = 0;
|
|
|
|
assert((unsigned) base <= 36 && base != 1);
|
|
if (!s) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
errno = 0;
|
|
val = strtoull(s, &endp, base);
|
|
if (errno) {
|
|
r = -errno;
|
|
goto out;
|
|
}
|
|
|
|
if (endp == s) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* make sure we reject negative numbers: */
|
|
while (qemu_isspace(*s)) {
|
|
s++;
|
|
}
|
|
if (*s == '-') {
|
|
val = 0;
|
|
r = -ERANGE;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
*value = val;
|
|
if (endptr) {
|
|
*endptr = endp;
|
|
} else if (s && *endp) {
|
|
r = -EINVAL;
|
|
*value = 0;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* parse_uint_full:
|
|
*
|
|
* @s: String to parse
|
|
* @base: integer base, between 2 and 36 inclusive, or 0
|
|
* @value: Destination for parsed integer value
|
|
*
|
|
* Parse unsigned integer from entire string, rejecting any trailing slop.
|
|
*
|
|
* Shorthand for parse_uint(s, NULL, base, value).
|
|
*/
|
|
int parse_uint_full(const char *s, int base, uint64_t *value)
|
|
{
|
|
return parse_uint(s, NULL, base, value);
|
|
}
|
|
|
|
int qemu_parse_fd(const char *param)
|
|
{
|
|
long fd;
|
|
char *endptr;
|
|
|
|
errno = 0;
|
|
fd = strtol(param, &endptr, 10);
|
|
if (param == endptr /* no conversion performed */ ||
|
|
errno != 0 /* not representable as long; possibly others */ ||
|
|
*endptr != '\0' /* final string not empty */ ||
|
|
fd < 0 /* invalid as file descriptor */ ||
|
|
fd > INT_MAX /* not representable as int */) {
|
|
return -1;
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
/*
|
|
* Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
|
|
* Input is limited to 14-bit numbers
|
|
*/
|
|
int uleb128_encode_small(uint8_t *out, uint32_t n)
|
|
{
|
|
g_assert(n <= 0x3fff);
|
|
if (n < 0x80) {
|
|
*out = n;
|
|
return 1;
|
|
} else {
|
|
*out++ = (n & 0x7f) | 0x80;
|
|
*out = n >> 7;
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
int uleb128_decode_small(const uint8_t *in, uint32_t *n)
|
|
{
|
|
if (!(*in & 0x80)) {
|
|
*n = *in;
|
|
return 1;
|
|
} else {
|
|
*n = *in++ & 0x7f;
|
|
/* we exceed 14 bit number */
|
|
if (*in & 0x80) {
|
|
return -1;
|
|
}
|
|
*n |= *in << 7;
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* helper to parse debug environment variables
|
|
*/
|
|
int parse_debug_env(const char *name, int max, int initial)
|
|
{
|
|
char *debug_env = getenv(name);
|
|
char *inv = NULL;
|
|
long debug;
|
|
|
|
if (!debug_env) {
|
|
return initial;
|
|
}
|
|
errno = 0;
|
|
debug = strtol(debug_env, &inv, 10);
|
|
if (inv == debug_env) {
|
|
return initial;
|
|
}
|
|
if (debug < 0 || debug > max || errno != 0) {
|
|
warn_report("%s not in [0, %d]", name, max);
|
|
return initial;
|
|
}
|
|
return debug;
|
|
}
|
|
|
|
const char *si_prefix(unsigned int exp10)
|
|
{
|
|
static const char *prefixes[] = {
|
|
"a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E"
|
|
};
|
|
|
|
exp10 += 18;
|
|
assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes));
|
|
return prefixes[exp10 / 3];
|
|
}
|
|
|
|
const char *iec_binary_prefix(unsigned int exp2)
|
|
{
|
|
static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
|
|
|
|
assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes));
|
|
return prefixes[exp2 / 10];
|
|
}
|
|
|
|
/*
|
|
* Return human readable string for size @val.
|
|
* @val can be anything that uint64_t allows (no more than "16 EiB").
|
|
* Use IEC binary units like KiB, MiB, and so forth.
|
|
* Caller is responsible for passing it to g_free().
|
|
*/
|
|
char *size_to_str(uint64_t val)
|
|
{
|
|
uint64_t div;
|
|
int i;
|
|
|
|
/*
|
|
* The exponent (returned in i) minus one gives us
|
|
* floor(log2(val * 1024 / 1000). The correction makes us
|
|
* switch to the higher power when the integer part is >= 1000.
|
|
* (see e41b509d68afb1f for more info)
|
|
*/
|
|
frexp(val / (1000.0 / 1024.0), &i);
|
|
i = (i - 1) / 10 * 10;
|
|
div = 1ULL << i;
|
|
|
|
return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i));
|
|
}
|
|
|
|
char *freq_to_str(uint64_t freq_hz)
|
|
{
|
|
double freq = freq_hz;
|
|
size_t exp10 = 0;
|
|
|
|
while (freq >= 1000.0) {
|
|
freq /= 1000.0;
|
|
exp10 += 3;
|
|
}
|
|
|
|
return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10));
|
|
}
|
|
|
|
int qemu_pstrcmp0(const char **str1, const char **str2)
|
|
{
|
|
return g_strcmp0(*str1, *str2);
|
|
}
|
|
|
|
static inline bool starts_with_prefix(const char *dir)
|
|
{
|
|
size_t prefix_len = strlen(CONFIG_PREFIX);
|
|
/*
|
|
* dir[prefix_len] is only accessed if the length of dir is
|
|
* >= prefix_len, so no out of bounds access is possible.
|
|
*/
|
|
#pragma GCC diagnostic push
|
|
#if !defined(__clang__) || __has_warning("-Warray-bounds=")
|
|
#pragma GCC diagnostic ignored "-Warray-bounds="
|
|
#endif
|
|
return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
|
|
(!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
|
|
#pragma GCC diagnostic pop
|
|
}
|
|
|
|
/* Return the next path component in dir, and store its length in *p_len. */
|
|
static inline const char *next_component(const char *dir, int *p_len)
|
|
{
|
|
int len;
|
|
while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
|
|
(*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
|
|
dir++;
|
|
}
|
|
len = 0;
|
|
while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
|
|
len++;
|
|
}
|
|
*p_len = len;
|
|
return dir;
|
|
}
|
|
|
|
static const char *exec_dir;
|
|
|
|
void qemu_init_exec_dir(const char *argv0)
|
|
{
|
|
#ifdef G_OS_WIN32
|
|
char *p;
|
|
char buf[MAX_PATH];
|
|
DWORD len;
|
|
|
|
if (exec_dir) {
|
|
return;
|
|
}
|
|
|
|
len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
|
|
if (len == 0) {
|
|
return;
|
|
}
|
|
|
|
buf[len] = 0;
|
|
p = buf + len - 1;
|
|
while (p != buf && *p != '\\') {
|
|
p--;
|
|
}
|
|
*p = 0;
|
|
if (access(buf, R_OK) == 0) {
|
|
exec_dir = g_strdup(buf);
|
|
} else {
|
|
exec_dir = CONFIG_BINDIR;
|
|
}
|
|
#else
|
|
char *p = NULL;
|
|
char buf[PATH_MAX];
|
|
|
|
if (exec_dir) {
|
|
return;
|
|
}
|
|
|
|
#if defined(__linux__)
|
|
{
|
|
int len;
|
|
len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
|
|
if (len > 0) {
|
|
buf[len] = 0;
|
|
p = buf;
|
|
}
|
|
}
|
|
#elif defined(__FreeBSD__) \
|
|
|| (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME))
|
|
{
|
|
#if defined(__FreeBSD__)
|
|
static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
|
|
#else
|
|
static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
|
|
#endif
|
|
size_t len = sizeof(buf) - 1;
|
|
|
|
*buf = '\0';
|
|
if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) &&
|
|
*buf) {
|
|
buf[sizeof(buf) - 1] = '\0';
|
|
p = buf;
|
|
}
|
|
}
|
|
#elif defined(__APPLE__)
|
|
{
|
|
char fpath[PATH_MAX];
|
|
uint32_t len = sizeof(fpath);
|
|
if (_NSGetExecutablePath(fpath, &len) == 0) {
|
|
p = realpath(fpath, buf);
|
|
if (!p) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#elif defined(__HAIKU__)
|
|
{
|
|
image_info ii;
|
|
int32_t c = 0;
|
|
|
|
*buf = '\0';
|
|
while (get_next_image_info(0, &c, &ii) == B_OK) {
|
|
if (ii.type == B_APP_IMAGE) {
|
|
strncpy(buf, ii.name, sizeof(buf));
|
|
buf[sizeof(buf) - 1] = 0;
|
|
p = buf;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
/* If we don't have any way of figuring out the actual executable
|
|
location then try argv[0]. */
|
|
if (!p && argv0) {
|
|
p = realpath(argv0, buf);
|
|
}
|
|
if (p) {
|
|
exec_dir = g_path_get_dirname(p);
|
|
} else {
|
|
exec_dir = CONFIG_BINDIR;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
const char *qemu_get_exec_dir(void)
|
|
{
|
|
return exec_dir;
|
|
}
|
|
|
|
char *get_relocated_path(const char *dir)
|
|
{
|
|
size_t prefix_len = strlen(CONFIG_PREFIX);
|
|
const char *bindir = CONFIG_BINDIR;
|
|
GString *result;
|
|
int len_dir, len_bindir;
|
|
|
|
/* Fail if qemu_init_exec_dir was not called. */
|
|
assert(exec_dir[0]);
|
|
|
|
result = g_string_new(exec_dir);
|
|
g_string_append(result, "/qemu-bundle");
|
|
if (access(result->str, R_OK) == 0) {
|
|
#ifdef G_OS_WIN32
|
|
const char *src = dir;
|
|
size_t size = mbsrtowcs(NULL, &src, 0, &(mbstate_t){0}) + 1;
|
|
PWSTR wdir = g_new(WCHAR, size);
|
|
mbsrtowcs(wdir, &src, size, &(mbstate_t){0});
|
|
|
|
PCWSTR wdir_skipped_root;
|
|
if (PathCchSkipRoot(wdir, &wdir_skipped_root) == S_OK) {
|
|
size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0});
|
|
char *cursor = result->str + result->len;
|
|
g_string_set_size(result, result->len + size);
|
|
wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0});
|
|
} else {
|
|
g_string_append(result, dir);
|
|
}
|
|
|
|
g_free(wdir);
|
|
#else
|
|
g_string_append(result, dir);
|
|
#endif
|
|
goto out;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_RELOCATABLE) &&
|
|
starts_with_prefix(dir) && starts_with_prefix(bindir)) {
|
|
g_string_assign(result, exec_dir);
|
|
|
|
/* Advance over common components. */
|
|
len_dir = len_bindir = prefix_len;
|
|
do {
|
|
dir += len_dir;
|
|
bindir += len_bindir;
|
|
dir = next_component(dir, &len_dir);
|
|
bindir = next_component(bindir, &len_bindir);
|
|
} while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
|
|
|
|
/* Ascend from bindir to the common prefix with dir. */
|
|
while (len_bindir) {
|
|
bindir += len_bindir;
|
|
g_string_append(result, "/..");
|
|
bindir = next_component(bindir, &len_bindir);
|
|
}
|
|
|
|
if (*dir) {
|
|
assert(G_IS_DIR_SEPARATOR(dir[-1]));
|
|
g_string_append(result, dir - 1);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
g_string_assign(result, dir);
|
|
out:
|
|
return g_string_free(result, false);
|
|
}
|