mirror of
https://gitlab.com/qemu-project/qemu
synced 2024-11-05 20:35:44 +00:00
3794cb9485
Due to multiple capabilities associated with the dirty ring for different architectures: KVM_CAP_DIRTY_{LOG_RING, LOG_RING_ACQ_REL} for x86 and arm64 separately. There will be more to be done in order to support the dirty ring for arm64. Lets add helper kvm_dirty_ring_init() to enable the dirty ring. With this, the code looks a bit clean. No functional change intended. Signed-off-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Peter Xu <peterx@redhat.com> Tested-by: Zhenyu Zhang <zhenyzha@redhat.com> Message-Id: <20230509022122.20888-4-gshan@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
4206 lines
116 KiB
C
4206 lines
116 KiB
C
/*
|
|
* QEMU KVM support
|
|
*
|
|
* Copyright IBM, Corp. 2008
|
|
* Red Hat, Inc. 2008
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
* Glauber Costa <gcosta@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include <sys/ioctl.h>
|
|
#include <poll.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu/atomic.h"
|
|
#include "qemu/option.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/pci/msi.h"
|
|
#include "hw/pci/msix.h"
|
|
#include "hw/s390x/adapter.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "sysemu/kvm_int.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/accel-blocker.h"
|
|
#include "qemu/bswap.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "qemu/event_notifier.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "trace.h"
|
|
#include "hw/irq.h"
|
|
#include "qapi/visitor.h"
|
|
#include "qapi/qapi-types-common.h"
|
|
#include "qapi/qapi-visit-common.h"
|
|
#include "sysemu/reset.h"
|
|
#include "qemu/guest-random.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "kvm-cpus.h"
|
|
#include "sysemu/dirtylimit.h"
|
|
#include "qemu/range.h"
|
|
|
|
#include "hw/boards.h"
|
|
#include "sysemu/stats.h"
|
|
|
|
/* This check must be after config-host.h is included */
|
|
#ifdef CONFIG_EVENTFD
|
|
#include <sys/eventfd.h>
|
|
#endif
|
|
|
|
/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
|
|
* need to use the real host PAGE_SIZE, as that's what KVM will use.
|
|
*/
|
|
#ifdef PAGE_SIZE
|
|
#undef PAGE_SIZE
|
|
#endif
|
|
#define PAGE_SIZE qemu_real_host_page_size()
|
|
|
|
#ifndef KVM_GUESTDBG_BLOCKIRQ
|
|
#define KVM_GUESTDBG_BLOCKIRQ 0
|
|
#endif
|
|
|
|
//#define DEBUG_KVM
|
|
|
|
#ifdef DEBUG_KVM
|
|
#define DPRINTF(fmt, ...) \
|
|
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
struct KVMParkedVcpu {
|
|
unsigned long vcpu_id;
|
|
int kvm_fd;
|
|
QLIST_ENTRY(KVMParkedVcpu) node;
|
|
};
|
|
|
|
KVMState *kvm_state;
|
|
bool kvm_kernel_irqchip;
|
|
bool kvm_split_irqchip;
|
|
bool kvm_async_interrupts_allowed;
|
|
bool kvm_halt_in_kernel_allowed;
|
|
bool kvm_eventfds_allowed;
|
|
bool kvm_irqfds_allowed;
|
|
bool kvm_resamplefds_allowed;
|
|
bool kvm_msi_via_irqfd_allowed;
|
|
bool kvm_gsi_routing_allowed;
|
|
bool kvm_gsi_direct_mapping;
|
|
bool kvm_allowed;
|
|
bool kvm_readonly_mem_allowed;
|
|
bool kvm_vm_attributes_allowed;
|
|
bool kvm_direct_msi_allowed;
|
|
bool kvm_ioeventfd_any_length_allowed;
|
|
bool kvm_msi_use_devid;
|
|
bool kvm_has_guest_debug;
|
|
static int kvm_sstep_flags;
|
|
static bool kvm_immediate_exit;
|
|
static hwaddr kvm_max_slot_size = ~0;
|
|
|
|
static const KVMCapabilityInfo kvm_required_capabilites[] = {
|
|
KVM_CAP_INFO(USER_MEMORY),
|
|
KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
|
|
KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
static NotifierList kvm_irqchip_change_notifiers =
|
|
NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
|
|
|
|
struct KVMResampleFd {
|
|
int gsi;
|
|
EventNotifier *resample_event;
|
|
QLIST_ENTRY(KVMResampleFd) node;
|
|
};
|
|
typedef struct KVMResampleFd KVMResampleFd;
|
|
|
|
/*
|
|
* Only used with split irqchip where we need to do the resample fd
|
|
* kick for the kernel from userspace.
|
|
*/
|
|
static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
|
|
QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
|
|
|
|
static QemuMutex kml_slots_lock;
|
|
|
|
#define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
|
|
#define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
|
|
|
|
static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
|
|
|
|
static inline void kvm_resample_fd_remove(int gsi)
|
|
{
|
|
KVMResampleFd *rfd;
|
|
|
|
QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
|
|
if (rfd->gsi == gsi) {
|
|
QLIST_REMOVE(rfd, node);
|
|
g_free(rfd);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
|
|
{
|
|
KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
|
|
|
|
rfd->gsi = gsi;
|
|
rfd->resample_event = event;
|
|
|
|
QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
|
|
}
|
|
|
|
void kvm_resample_fd_notify(int gsi)
|
|
{
|
|
KVMResampleFd *rfd;
|
|
|
|
QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
|
|
if (rfd->gsi == gsi) {
|
|
event_notifier_set(rfd->resample_event);
|
|
trace_kvm_resample_fd_notify(gsi);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
int kvm_get_max_memslots(void)
|
|
{
|
|
KVMState *s = KVM_STATE(current_accel());
|
|
|
|
return s->nr_slots;
|
|
}
|
|
|
|
/* Called with KVMMemoryListener.slots_lock held */
|
|
static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
int i;
|
|
|
|
for (i = 0; i < s->nr_slots; i++) {
|
|
if (kml->slots[i].memory_size == 0) {
|
|
return &kml->slots[i];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
bool kvm_has_free_slot(MachineState *ms)
|
|
{
|
|
KVMState *s = KVM_STATE(ms->accelerator);
|
|
bool result;
|
|
KVMMemoryListener *kml = &s->memory_listener;
|
|
|
|
kvm_slots_lock();
|
|
result = !!kvm_get_free_slot(kml);
|
|
kvm_slots_unlock();
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Called with KVMMemoryListener.slots_lock held */
|
|
static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
|
|
{
|
|
KVMSlot *slot = kvm_get_free_slot(kml);
|
|
|
|
if (slot) {
|
|
return slot;
|
|
}
|
|
|
|
fprintf(stderr, "%s: no free slot available\n", __func__);
|
|
abort();
|
|
}
|
|
|
|
static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
|
|
hwaddr start_addr,
|
|
hwaddr size)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
int i;
|
|
|
|
for (i = 0; i < s->nr_slots; i++) {
|
|
KVMSlot *mem = &kml->slots[i];
|
|
|
|
if (start_addr == mem->start_addr && size == mem->memory_size) {
|
|
return mem;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Calculate and align the start address and the size of the section.
|
|
* Return the size. If the size is 0, the aligned section is empty.
|
|
*/
|
|
static hwaddr kvm_align_section(MemoryRegionSection *section,
|
|
hwaddr *start)
|
|
{
|
|
hwaddr size = int128_get64(section->size);
|
|
hwaddr delta, aligned;
|
|
|
|
/* kvm works in page size chunks, but the function may be called
|
|
with sub-page size and unaligned start address. Pad the start
|
|
address to next and truncate size to previous page boundary. */
|
|
aligned = ROUND_UP(section->offset_within_address_space,
|
|
qemu_real_host_page_size());
|
|
delta = aligned - section->offset_within_address_space;
|
|
*start = aligned;
|
|
if (delta > size) {
|
|
return 0;
|
|
}
|
|
|
|
return (size - delta) & qemu_real_host_page_mask();
|
|
}
|
|
|
|
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
|
|
hwaddr *phys_addr)
|
|
{
|
|
KVMMemoryListener *kml = &s->memory_listener;
|
|
int i, ret = 0;
|
|
|
|
kvm_slots_lock();
|
|
for (i = 0; i < s->nr_slots; i++) {
|
|
KVMSlot *mem = &kml->slots[i];
|
|
|
|
if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
|
|
*phys_addr = mem->start_addr + (ram - mem->ram);
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
kvm_slots_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
struct kvm_userspace_memory_region mem;
|
|
int ret;
|
|
|
|
mem.slot = slot->slot | (kml->as_id << 16);
|
|
mem.guest_phys_addr = slot->start_addr;
|
|
mem.userspace_addr = (unsigned long)slot->ram;
|
|
mem.flags = slot->flags;
|
|
|
|
if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
|
|
/* Set the slot size to 0 before setting the slot to the desired
|
|
* value. This is needed based on KVM commit 75d61fbc. */
|
|
mem.memory_size = 0;
|
|
ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
}
|
|
mem.memory_size = slot->memory_size;
|
|
ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
|
|
slot->old_flags = mem.flags;
|
|
err:
|
|
trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
|
|
mem.memory_size, mem.userspace_addr, ret);
|
|
if (ret < 0) {
|
|
error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
|
|
" start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
|
|
__func__, mem.slot, slot->start_addr,
|
|
(uint64_t)mem.memory_size, strerror(errno));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int do_kvm_destroy_vcpu(CPUState *cpu)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
long mmap_size;
|
|
struct KVMParkedVcpu *vcpu = NULL;
|
|
int ret = 0;
|
|
|
|
DPRINTF("kvm_destroy_vcpu\n");
|
|
|
|
ret = kvm_arch_destroy_vcpu(cpu);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
|
|
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
|
|
if (mmap_size < 0) {
|
|
ret = mmap_size;
|
|
DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = munmap(cpu->kvm_run, mmap_size);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
|
|
if (cpu->kvm_dirty_gfns) {
|
|
ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
vcpu = g_malloc0(sizeof(*vcpu));
|
|
vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
|
|
vcpu->kvm_fd = cpu->kvm_fd;
|
|
QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
void kvm_destroy_vcpu(CPUState *cpu)
|
|
{
|
|
if (do_kvm_destroy_vcpu(cpu) < 0) {
|
|
error_report("kvm_destroy_vcpu failed");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
|
|
{
|
|
struct KVMParkedVcpu *cpu;
|
|
|
|
QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
|
|
if (cpu->vcpu_id == vcpu_id) {
|
|
int kvm_fd;
|
|
|
|
QLIST_REMOVE(cpu, node);
|
|
kvm_fd = cpu->kvm_fd;
|
|
g_free(cpu);
|
|
return kvm_fd;
|
|
}
|
|
}
|
|
|
|
return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
|
|
}
|
|
|
|
int kvm_init_vcpu(CPUState *cpu, Error **errp)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
long mmap_size;
|
|
int ret;
|
|
|
|
trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
|
|
|
|
ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
|
|
if (ret < 0) {
|
|
error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
|
|
kvm_arch_vcpu_id(cpu));
|
|
goto err;
|
|
}
|
|
|
|
cpu->kvm_fd = ret;
|
|
cpu->kvm_state = s;
|
|
cpu->vcpu_dirty = true;
|
|
cpu->dirty_pages = 0;
|
|
cpu->throttle_us_per_full = 0;
|
|
|
|
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
|
|
if (mmap_size < 0) {
|
|
ret = mmap_size;
|
|
error_setg_errno(errp, -mmap_size,
|
|
"kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
|
|
goto err;
|
|
}
|
|
|
|
cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
cpu->kvm_fd, 0);
|
|
if (cpu->kvm_run == MAP_FAILED) {
|
|
ret = -errno;
|
|
error_setg_errno(errp, ret,
|
|
"kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
|
|
kvm_arch_vcpu_id(cpu));
|
|
goto err;
|
|
}
|
|
|
|
if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
|
|
s->coalesced_mmio_ring =
|
|
(void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
|
|
}
|
|
|
|
if (s->kvm_dirty_ring_size) {
|
|
/* Use MAP_SHARED to share pages with the kernel */
|
|
cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
cpu->kvm_fd,
|
|
PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
|
|
if (cpu->kvm_dirty_gfns == MAP_FAILED) {
|
|
ret = -errno;
|
|
DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
ret = kvm_arch_init_vcpu(cpu);
|
|
if (ret < 0) {
|
|
error_setg_errno(errp, -ret,
|
|
"kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
|
|
kvm_arch_vcpu_id(cpu));
|
|
}
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* dirty pages logging control
|
|
*/
|
|
|
|
static int kvm_mem_flags(MemoryRegion *mr)
|
|
{
|
|
bool readonly = mr->readonly || memory_region_is_romd(mr);
|
|
int flags = 0;
|
|
|
|
if (memory_region_get_dirty_log_mask(mr) != 0) {
|
|
flags |= KVM_MEM_LOG_DIRTY_PAGES;
|
|
}
|
|
if (readonly && kvm_readonly_mem_allowed) {
|
|
flags |= KVM_MEM_READONLY;
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
/* Called with KVMMemoryListener.slots_lock held */
|
|
static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
|
|
MemoryRegion *mr)
|
|
{
|
|
mem->flags = kvm_mem_flags(mr);
|
|
|
|
/* If nothing changed effectively, no need to issue ioctl */
|
|
if (mem->flags == mem->old_flags) {
|
|
return 0;
|
|
}
|
|
|
|
kvm_slot_init_dirty_bitmap(mem);
|
|
return kvm_set_user_memory_region(kml, mem, false);
|
|
}
|
|
|
|
static int kvm_section_update_flags(KVMMemoryListener *kml,
|
|
MemoryRegionSection *section)
|
|
{
|
|
hwaddr start_addr, size, slot_size;
|
|
KVMSlot *mem;
|
|
int ret = 0;
|
|
|
|
size = kvm_align_section(section, &start_addr);
|
|
if (!size) {
|
|
return 0;
|
|
}
|
|
|
|
kvm_slots_lock();
|
|
|
|
while (size && !ret) {
|
|
slot_size = MIN(kvm_max_slot_size, size);
|
|
mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
|
|
if (!mem) {
|
|
/* We don't have a slot if we want to trap every access. */
|
|
goto out;
|
|
}
|
|
|
|
ret = kvm_slot_update_flags(kml, mem, section->mr);
|
|
start_addr += slot_size;
|
|
size -= slot_size;
|
|
}
|
|
|
|
out:
|
|
kvm_slots_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_log_start(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
int old, int new)
|
|
{
|
|
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
|
|
int r;
|
|
|
|
if (old != 0) {
|
|
return;
|
|
}
|
|
|
|
r = kvm_section_update_flags(kml, section);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_log_stop(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
int old, int new)
|
|
{
|
|
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
|
|
int r;
|
|
|
|
if (new != 0) {
|
|
return;
|
|
}
|
|
|
|
r = kvm_section_update_flags(kml, section);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/* get kvm's dirty pages bitmap and update qemu's */
|
|
static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
|
|
{
|
|
ram_addr_t start = slot->ram_start_offset;
|
|
ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
|
|
|
|
cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
|
|
}
|
|
|
|
static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
|
|
{
|
|
memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
|
|
}
|
|
|
|
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
|
|
|
|
/* Allocate the dirty bitmap for a slot */
|
|
static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
|
|
{
|
|
if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX bad kernel interface alert
|
|
* For dirty bitmap, kernel allocates array of size aligned to
|
|
* bits-per-long. But for case when the kernel is 64bits and
|
|
* the userspace is 32bits, userspace can't align to the same
|
|
* bits-per-long, since sizeof(long) is different between kernel
|
|
* and user space. This way, userspace will provide buffer which
|
|
* may be 4 bytes less than the kernel will use, resulting in
|
|
* userspace memory corruption (which is not detectable by valgrind
|
|
* too, in most cases).
|
|
* So for now, let's align to 64 instead of HOST_LONG_BITS here, in
|
|
* a hope that sizeof(long) won't become >8 any time soon.
|
|
*
|
|
* Note: the granule of kvm dirty log is qemu_real_host_page_size.
|
|
* And mem->memory_size is aligned to it (otherwise this mem can't
|
|
* be registered to KVM).
|
|
*/
|
|
hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
|
|
/*HOST_LONG_BITS*/ 64) / 8;
|
|
mem->dirty_bmap = g_malloc0(bitmap_size);
|
|
mem->dirty_bmap_size = bitmap_size;
|
|
}
|
|
|
|
/*
|
|
* Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
|
|
* succeeded, false otherwise
|
|
*/
|
|
static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
|
|
{
|
|
struct kvm_dirty_log d = {};
|
|
int ret;
|
|
|
|
d.dirty_bitmap = slot->dirty_bmap;
|
|
d.slot = slot->slot | (slot->as_id << 16);
|
|
ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
|
|
|
|
if (ret == -ENOENT) {
|
|
/* kernel does not have dirty bitmap in this slot */
|
|
ret = 0;
|
|
}
|
|
if (ret) {
|
|
error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
|
|
__func__, ret);
|
|
}
|
|
return ret == 0;
|
|
}
|
|
|
|
/* Should be with all slots_lock held for the address spaces. */
|
|
static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
|
|
uint32_t slot_id, uint64_t offset)
|
|
{
|
|
KVMMemoryListener *kml;
|
|
KVMSlot *mem;
|
|
|
|
if (as_id >= s->nr_as) {
|
|
return;
|
|
}
|
|
|
|
kml = s->as[as_id].ml;
|
|
mem = &kml->slots[slot_id];
|
|
|
|
if (!mem->memory_size || offset >=
|
|
(mem->memory_size / qemu_real_host_page_size())) {
|
|
return;
|
|
}
|
|
|
|
set_bit(offset, mem->dirty_bmap);
|
|
}
|
|
|
|
static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
|
|
{
|
|
/*
|
|
* Read the flags before the value. Pairs with barrier in
|
|
* KVM's kvm_dirty_ring_push() function.
|
|
*/
|
|
return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
|
|
}
|
|
|
|
static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
|
|
{
|
|
/*
|
|
* Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
|
|
* sees the full content of the ring:
|
|
*
|
|
* CPU0 CPU1 CPU2
|
|
* ------------------------------------------------------------------------------
|
|
* fill gfn0
|
|
* store-rel flags for gfn0
|
|
* load-acq flags for gfn0
|
|
* store-rel RESET for gfn0
|
|
* ioctl(RESET_RINGS)
|
|
* load-acq flags for gfn0
|
|
* check if flags have RESET
|
|
*
|
|
* The synchronization goes from CPU2 to CPU0 to CPU1.
|
|
*/
|
|
qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
|
|
}
|
|
|
|
/*
|
|
* Should be with all slots_lock held for the address spaces. It returns the
|
|
* dirty page we've collected on this dirty ring.
|
|
*/
|
|
static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
|
|
{
|
|
struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
|
|
uint32_t ring_size = s->kvm_dirty_ring_size;
|
|
uint32_t count = 0, fetch = cpu->kvm_fetch_index;
|
|
|
|
/*
|
|
* It's possible that we race with vcpu creation code where the vcpu is
|
|
* put onto the vcpus list but not yet initialized the dirty ring
|
|
* structures. If so, skip it.
|
|
*/
|
|
if (!cpu->created) {
|
|
return 0;
|
|
}
|
|
|
|
assert(dirty_gfns && ring_size);
|
|
trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
|
|
|
|
while (true) {
|
|
cur = &dirty_gfns[fetch % ring_size];
|
|
if (!dirty_gfn_is_dirtied(cur)) {
|
|
break;
|
|
}
|
|
kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
|
|
cur->offset);
|
|
dirty_gfn_set_collected(cur);
|
|
trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
|
|
fetch++;
|
|
count++;
|
|
}
|
|
cpu->kvm_fetch_index = fetch;
|
|
cpu->dirty_pages += count;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Must be with slots_lock held */
|
|
static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
|
|
{
|
|
int ret;
|
|
uint64_t total = 0;
|
|
int64_t stamp;
|
|
|
|
stamp = get_clock();
|
|
|
|
if (cpu) {
|
|
total = kvm_dirty_ring_reap_one(s, cpu);
|
|
} else {
|
|
CPU_FOREACH(cpu) {
|
|
total += kvm_dirty_ring_reap_one(s, cpu);
|
|
}
|
|
}
|
|
|
|
if (total) {
|
|
ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
|
|
assert(ret == total);
|
|
}
|
|
|
|
stamp = get_clock() - stamp;
|
|
|
|
if (total) {
|
|
trace_kvm_dirty_ring_reap(total, stamp / 1000);
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
* Currently for simplicity, we must hold BQL before calling this. We can
|
|
* consider to drop the BQL if we're clear with all the race conditions.
|
|
*/
|
|
static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
|
|
{
|
|
uint64_t total;
|
|
|
|
/*
|
|
* We need to lock all kvm slots for all address spaces here,
|
|
* because:
|
|
*
|
|
* (1) We need to mark dirty for dirty bitmaps in multiple slots
|
|
* and for tons of pages, so it's better to take the lock here
|
|
* once rather than once per page. And more importantly,
|
|
*
|
|
* (2) We must _NOT_ publish dirty bits to the other threads
|
|
* (e.g., the migration thread) via the kvm memory slot dirty
|
|
* bitmaps before correctly re-protect those dirtied pages.
|
|
* Otherwise we can have potential risk of data corruption if
|
|
* the page data is read in the other thread before we do
|
|
* reset below.
|
|
*/
|
|
kvm_slots_lock();
|
|
total = kvm_dirty_ring_reap_locked(s, cpu);
|
|
kvm_slots_unlock();
|
|
|
|
return total;
|
|
}
|
|
|
|
static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
/* No need to do anything */
|
|
}
|
|
|
|
/*
|
|
* Kick all vcpus out in a synchronized way. When returned, we
|
|
* guarantee that every vcpu has been kicked and at least returned to
|
|
* userspace once.
|
|
*/
|
|
static void kvm_cpu_synchronize_kick_all(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all the existing dirty pages to the KVM slot buffers. When
|
|
* this call returns, we guarantee that all the touched dirty pages
|
|
* before calling this function have been put into the per-kvmslot
|
|
* dirty bitmap.
|
|
*
|
|
* This function must be called with BQL held.
|
|
*/
|
|
static void kvm_dirty_ring_flush(void)
|
|
{
|
|
trace_kvm_dirty_ring_flush(0);
|
|
/*
|
|
* The function needs to be serialized. Since this function
|
|
* should always be with BQL held, serialization is guaranteed.
|
|
* However, let's be sure of it.
|
|
*/
|
|
assert(qemu_mutex_iothread_locked());
|
|
/*
|
|
* First make sure to flush the hardware buffers by kicking all
|
|
* vcpus out in a synchronous way.
|
|
*/
|
|
kvm_cpu_synchronize_kick_all();
|
|
kvm_dirty_ring_reap(kvm_state, NULL);
|
|
trace_kvm_dirty_ring_flush(1);
|
|
}
|
|
|
|
/**
|
|
* kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
|
|
*
|
|
* This function will first try to fetch dirty bitmap from the kernel,
|
|
* and then updates qemu's dirty bitmap.
|
|
*
|
|
* NOTE: caller must be with kml->slots_lock held.
|
|
*
|
|
* @kml: the KVM memory listener object
|
|
* @section: the memory section to sync the dirty bitmap with
|
|
*/
|
|
static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
KVMSlot *mem;
|
|
hwaddr start_addr, size;
|
|
hwaddr slot_size;
|
|
|
|
size = kvm_align_section(section, &start_addr);
|
|
while (size) {
|
|
slot_size = MIN(kvm_max_slot_size, size);
|
|
mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
|
|
if (!mem) {
|
|
/* We don't have a slot if we want to trap every access. */
|
|
return;
|
|
}
|
|
if (kvm_slot_get_dirty_log(s, mem)) {
|
|
kvm_slot_sync_dirty_pages(mem);
|
|
}
|
|
start_addr += slot_size;
|
|
size -= slot_size;
|
|
}
|
|
}
|
|
|
|
/* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
|
|
#define KVM_CLEAR_LOG_SHIFT 6
|
|
#define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
|
|
#define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
|
|
|
|
static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
|
|
uint64_t size)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
uint64_t end, bmap_start, start_delta, bmap_npages;
|
|
struct kvm_clear_dirty_log d;
|
|
unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
|
|
int ret;
|
|
|
|
/*
|
|
* We need to extend either the start or the size or both to
|
|
* satisfy the KVM interface requirement. Firstly, do the start
|
|
* page alignment on 64 host pages
|
|
*/
|
|
bmap_start = start & KVM_CLEAR_LOG_MASK;
|
|
start_delta = start - bmap_start;
|
|
bmap_start /= psize;
|
|
|
|
/*
|
|
* The kernel interface has restriction on the size too, that either:
|
|
*
|
|
* (1) the size is 64 host pages aligned (just like the start), or
|
|
* (2) the size fills up until the end of the KVM memslot.
|
|
*/
|
|
bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
|
|
<< KVM_CLEAR_LOG_SHIFT;
|
|
end = mem->memory_size / psize;
|
|
if (bmap_npages > end - bmap_start) {
|
|
bmap_npages = end - bmap_start;
|
|
}
|
|
start_delta /= psize;
|
|
|
|
/*
|
|
* Prepare the bitmap to clear dirty bits. Here we must guarantee
|
|
* that we won't clear any unknown dirty bits otherwise we might
|
|
* accidentally clear some set bits which are not yet synced from
|
|
* the kernel into QEMU's bitmap, then we'll lose track of the
|
|
* guest modifications upon those pages (which can directly lead
|
|
* to guest data loss or panic after migration).
|
|
*
|
|
* Layout of the KVMSlot.dirty_bmap:
|
|
*
|
|
* |<-------- bmap_npages -----------..>|
|
|
* [1]
|
|
* start_delta size
|
|
* |----------------|-------------|------------------|------------|
|
|
* ^ ^ ^ ^
|
|
* | | | |
|
|
* start bmap_start (start) end
|
|
* of memslot of memslot
|
|
*
|
|
* [1] bmap_npages can be aligned to either 64 pages or the end of slot
|
|
*/
|
|
|
|
assert(bmap_start % BITS_PER_LONG == 0);
|
|
/* We should never do log_clear before log_sync */
|
|
assert(mem->dirty_bmap);
|
|
if (start_delta || bmap_npages - size / psize) {
|
|
/* Slow path - we need to manipulate a temp bitmap */
|
|
bmap_clear = bitmap_new(bmap_npages);
|
|
bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
|
|
bmap_start, start_delta + size / psize);
|
|
/*
|
|
* We need to fill the holes at start because that was not
|
|
* specified by the caller and we extended the bitmap only for
|
|
* 64 pages alignment
|
|
*/
|
|
bitmap_clear(bmap_clear, 0, start_delta);
|
|
d.dirty_bitmap = bmap_clear;
|
|
} else {
|
|
/*
|
|
* Fast path - both start and size align well with BITS_PER_LONG
|
|
* (or the end of memory slot)
|
|
*/
|
|
d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
|
|
}
|
|
|
|
d.first_page = bmap_start;
|
|
/* It should never overflow. If it happens, say something */
|
|
assert(bmap_npages <= UINT32_MAX);
|
|
d.num_pages = bmap_npages;
|
|
d.slot = mem->slot | (as_id << 16);
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
|
|
"start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
|
|
__func__, d.slot, (uint64_t)d.first_page,
|
|
(uint32_t)d.num_pages, ret);
|
|
} else {
|
|
ret = 0;
|
|
trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
|
|
}
|
|
|
|
/*
|
|
* After we have updated the remote dirty bitmap, we update the
|
|
* cached bitmap as well for the memslot, then if another user
|
|
* clears the same region we know we shouldn't clear it again on
|
|
* the remote otherwise it's data loss as well.
|
|
*/
|
|
bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
|
|
size / psize);
|
|
/* This handles the NULL case well */
|
|
g_free(bmap_clear);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
|
|
*
|
|
* NOTE: this will be a no-op if we haven't enabled manual dirty log
|
|
* protection in the host kernel because in that case this operation
|
|
* will be done within log_sync().
|
|
*
|
|
* @kml: the kvm memory listener
|
|
* @section: the memory range to clear dirty bitmap
|
|
*/
|
|
static int kvm_physical_log_clear(KVMMemoryListener *kml,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
uint64_t start, size, offset, count;
|
|
KVMSlot *mem;
|
|
int ret = 0, i;
|
|
|
|
if (!s->manual_dirty_log_protect) {
|
|
/* No need to do explicit clear */
|
|
return ret;
|
|
}
|
|
|
|
start = section->offset_within_address_space;
|
|
size = int128_get64(section->size);
|
|
|
|
if (!size) {
|
|
/* Nothing more we can do... */
|
|
return ret;
|
|
}
|
|
|
|
kvm_slots_lock();
|
|
|
|
for (i = 0; i < s->nr_slots; i++) {
|
|
mem = &kml->slots[i];
|
|
/* Discard slots that are empty or do not overlap the section */
|
|
if (!mem->memory_size ||
|
|
mem->start_addr > start + size - 1 ||
|
|
start > mem->start_addr + mem->memory_size - 1) {
|
|
continue;
|
|
}
|
|
|
|
if (start >= mem->start_addr) {
|
|
/* The slot starts before section or is aligned to it. */
|
|
offset = start - mem->start_addr;
|
|
count = MIN(mem->memory_size - offset, size);
|
|
} else {
|
|
/* The slot starts after section. */
|
|
offset = 0;
|
|
count = MIN(mem->memory_size, size - (mem->start_addr - start));
|
|
}
|
|
ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
|
|
if (ret < 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
kvm_slots_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_coalesce_mmio_region(MemoryListener *listener,
|
|
MemoryRegionSection *secion,
|
|
hwaddr start, hwaddr size)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
|
|
if (s->coalesced_mmio) {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
|
|
zone.addr = start;
|
|
zone.size = size;
|
|
zone.pad = 0;
|
|
|
|
(void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
|
|
}
|
|
}
|
|
|
|
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
|
|
MemoryRegionSection *secion,
|
|
hwaddr start, hwaddr size)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
|
|
if (s->coalesced_mmio) {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
|
|
zone.addr = start;
|
|
zone.size = size;
|
|
zone.pad = 0;
|
|
|
|
(void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
|
|
}
|
|
}
|
|
|
|
static void kvm_coalesce_pio_add(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
hwaddr start, hwaddr size)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
|
|
if (s->coalesced_pio) {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
|
|
zone.addr = start;
|
|
zone.size = size;
|
|
zone.pio = 1;
|
|
|
|
(void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
|
|
}
|
|
}
|
|
|
|
static void kvm_coalesce_pio_del(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
hwaddr start, hwaddr size)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
|
|
if (s->coalesced_pio) {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
|
|
zone.addr = start;
|
|
zone.size = size;
|
|
zone.pio = 1;
|
|
|
|
(void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
|
|
}
|
|
}
|
|
|
|
static MemoryListener kvm_coalesced_pio_listener = {
|
|
.name = "kvm-coalesced-pio",
|
|
.coalesced_io_add = kvm_coalesce_pio_add,
|
|
.coalesced_io_del = kvm_coalesce_pio_del,
|
|
};
|
|
|
|
int kvm_check_extension(KVMState *s, unsigned int extension)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vm_check_extension(KVMState *s, unsigned int extension)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
|
|
if (ret < 0) {
|
|
/* VM wide version not implemented, use global one instead */
|
|
ret = kvm_check_extension(s, extension);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
typedef struct HWPoisonPage {
|
|
ram_addr_t ram_addr;
|
|
QLIST_ENTRY(HWPoisonPage) list;
|
|
} HWPoisonPage;
|
|
|
|
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
|
|
QLIST_HEAD_INITIALIZER(hwpoison_page_list);
|
|
|
|
static void kvm_unpoison_all(void *param)
|
|
{
|
|
HWPoisonPage *page, *next_page;
|
|
|
|
QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
|
|
QLIST_REMOVE(page, list);
|
|
qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
|
|
g_free(page);
|
|
}
|
|
}
|
|
|
|
void kvm_hwpoison_page_add(ram_addr_t ram_addr)
|
|
{
|
|
HWPoisonPage *page;
|
|
|
|
QLIST_FOREACH(page, &hwpoison_page_list, list) {
|
|
if (page->ram_addr == ram_addr) {
|
|
return;
|
|
}
|
|
}
|
|
page = g_new(HWPoisonPage, 1);
|
|
page->ram_addr = ram_addr;
|
|
QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
|
|
}
|
|
|
|
static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
|
|
{
|
|
#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
|
|
/* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
|
|
* endianness, but the memory core hands them in target endianness.
|
|
* For example, PPC is always treated as big-endian even if running
|
|
* on KVM and on PPC64LE. Correct here.
|
|
*/
|
|
switch (size) {
|
|
case 2:
|
|
val = bswap16(val);
|
|
break;
|
|
case 4:
|
|
val = bswap32(val);
|
|
break;
|
|
}
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
|
|
bool assign, uint32_t size, bool datamatch)
|
|
{
|
|
int ret;
|
|
struct kvm_ioeventfd iofd = {
|
|
.datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
|
|
.addr = addr,
|
|
.len = size,
|
|
.flags = 0,
|
|
.fd = fd,
|
|
};
|
|
|
|
trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
|
|
datamatch);
|
|
if (!kvm_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
if (datamatch) {
|
|
iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
|
|
}
|
|
if (!assign) {
|
|
iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
|
|
}
|
|
|
|
ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
|
|
|
|
if (ret < 0) {
|
|
return -errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
|
|
bool assign, uint32_t size, bool datamatch)
|
|
{
|
|
struct kvm_ioeventfd kick = {
|
|
.datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
|
|
.addr = addr,
|
|
.flags = KVM_IOEVENTFD_FLAG_PIO,
|
|
.len = size,
|
|
.fd = fd,
|
|
};
|
|
int r;
|
|
trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
|
|
if (!kvm_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
if (datamatch) {
|
|
kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
|
|
}
|
|
if (!assign) {
|
|
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
|
|
}
|
|
r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int kvm_check_many_ioeventfds(void)
|
|
{
|
|
/* Userspace can use ioeventfd for io notification. This requires a host
|
|
* that supports eventfd(2) and an I/O thread; since eventfd does not
|
|
* support SIGIO it cannot interrupt the vcpu.
|
|
*
|
|
* Older kernels have a 6 device limit on the KVM io bus. Find out so we
|
|
* can avoid creating too many ioeventfds.
|
|
*/
|
|
#if defined(CONFIG_EVENTFD)
|
|
int ioeventfds[7];
|
|
int i, ret = 0;
|
|
for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
|
|
ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
|
|
if (ioeventfds[i] < 0) {
|
|
break;
|
|
}
|
|
ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
|
|
if (ret < 0) {
|
|
close(ioeventfds[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Decide whether many devices are supported or not */
|
|
ret = i == ARRAY_SIZE(ioeventfds);
|
|
|
|
while (i-- > 0) {
|
|
kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
|
|
close(ioeventfds[i]);
|
|
}
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static const KVMCapabilityInfo *
|
|
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
|
|
{
|
|
while (list->name) {
|
|
if (!kvm_check_extension(s, list->value)) {
|
|
return list;
|
|
}
|
|
list++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void kvm_set_max_memslot_size(hwaddr max_slot_size)
|
|
{
|
|
g_assert(
|
|
ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
|
|
);
|
|
kvm_max_slot_size = max_slot_size;
|
|
}
|
|
|
|
/* Called with KVMMemoryListener.slots_lock held */
|
|
static void kvm_set_phys_mem(KVMMemoryListener *kml,
|
|
MemoryRegionSection *section, bool add)
|
|
{
|
|
KVMSlot *mem;
|
|
int err;
|
|
MemoryRegion *mr = section->mr;
|
|
bool writable = !mr->readonly && !mr->rom_device;
|
|
hwaddr start_addr, size, slot_size, mr_offset;
|
|
ram_addr_t ram_start_offset;
|
|
void *ram;
|
|
|
|
if (!memory_region_is_ram(mr)) {
|
|
if (writable || !kvm_readonly_mem_allowed) {
|
|
return;
|
|
} else if (!mr->romd_mode) {
|
|
/* If the memory device is not in romd_mode, then we actually want
|
|
* to remove the kvm memory slot so all accesses will trap. */
|
|
add = false;
|
|
}
|
|
}
|
|
|
|
size = kvm_align_section(section, &start_addr);
|
|
if (!size) {
|
|
return;
|
|
}
|
|
|
|
/* The offset of the kvmslot within the memory region */
|
|
mr_offset = section->offset_within_region + start_addr -
|
|
section->offset_within_address_space;
|
|
|
|
/* use aligned delta to align the ram address and offset */
|
|
ram = memory_region_get_ram_ptr(mr) + mr_offset;
|
|
ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
|
|
|
|
if (!add) {
|
|
do {
|
|
slot_size = MIN(kvm_max_slot_size, size);
|
|
mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
|
|
if (!mem) {
|
|
return;
|
|
}
|
|
if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
/*
|
|
* NOTE: We should be aware of the fact that here we're only
|
|
* doing a best effort to sync dirty bits. No matter whether
|
|
* we're using dirty log or dirty ring, we ignored two facts:
|
|
*
|
|
* (1) dirty bits can reside in hardware buffers (PML)
|
|
*
|
|
* (2) after we collected dirty bits here, pages can be dirtied
|
|
* again before we do the final KVM_SET_USER_MEMORY_REGION to
|
|
* remove the slot.
|
|
*
|
|
* Not easy. Let's cross the fingers until it's fixed.
|
|
*/
|
|
if (kvm_state->kvm_dirty_ring_size) {
|
|
kvm_dirty_ring_reap_locked(kvm_state, NULL);
|
|
if (kvm_state->kvm_dirty_ring_with_bitmap) {
|
|
kvm_slot_sync_dirty_pages(mem);
|
|
kvm_slot_get_dirty_log(kvm_state, mem);
|
|
}
|
|
} else {
|
|
kvm_slot_get_dirty_log(kvm_state, mem);
|
|
}
|
|
kvm_slot_sync_dirty_pages(mem);
|
|
}
|
|
|
|
/* unregister the slot */
|
|
g_free(mem->dirty_bmap);
|
|
mem->dirty_bmap = NULL;
|
|
mem->memory_size = 0;
|
|
mem->flags = 0;
|
|
err = kvm_set_user_memory_region(kml, mem, false);
|
|
if (err) {
|
|
fprintf(stderr, "%s: error unregistering slot: %s\n",
|
|
__func__, strerror(-err));
|
|
abort();
|
|
}
|
|
start_addr += slot_size;
|
|
size -= slot_size;
|
|
} while (size);
|
|
return;
|
|
}
|
|
|
|
/* register the new slot */
|
|
do {
|
|
slot_size = MIN(kvm_max_slot_size, size);
|
|
mem = kvm_alloc_slot(kml);
|
|
mem->as_id = kml->as_id;
|
|
mem->memory_size = slot_size;
|
|
mem->start_addr = start_addr;
|
|
mem->ram_start_offset = ram_start_offset;
|
|
mem->ram = ram;
|
|
mem->flags = kvm_mem_flags(mr);
|
|
kvm_slot_init_dirty_bitmap(mem);
|
|
err = kvm_set_user_memory_region(kml, mem, true);
|
|
if (err) {
|
|
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
|
|
strerror(-err));
|
|
abort();
|
|
}
|
|
start_addr += slot_size;
|
|
ram_start_offset += slot_size;
|
|
ram += slot_size;
|
|
size -= slot_size;
|
|
} while (size);
|
|
}
|
|
|
|
static void *kvm_dirty_ring_reaper_thread(void *data)
|
|
{
|
|
KVMState *s = data;
|
|
struct KVMDirtyRingReaper *r = &s->reaper;
|
|
|
|
rcu_register_thread();
|
|
|
|
trace_kvm_dirty_ring_reaper("init");
|
|
|
|
while (true) {
|
|
r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
|
|
trace_kvm_dirty_ring_reaper("wait");
|
|
/*
|
|
* TODO: provide a smarter timeout rather than a constant?
|
|
*/
|
|
sleep(1);
|
|
|
|
/* keep sleeping so that dirtylimit not be interfered by reaper */
|
|
if (dirtylimit_in_service()) {
|
|
continue;
|
|
}
|
|
|
|
trace_kvm_dirty_ring_reaper("wakeup");
|
|
r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
|
|
|
|
qemu_mutex_lock_iothread();
|
|
kvm_dirty_ring_reap(s, NULL);
|
|
qemu_mutex_unlock_iothread();
|
|
|
|
r->reaper_iteration++;
|
|
}
|
|
|
|
trace_kvm_dirty_ring_reaper("exit");
|
|
|
|
rcu_unregister_thread();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int kvm_dirty_ring_reaper_init(KVMState *s)
|
|
{
|
|
struct KVMDirtyRingReaper *r = &s->reaper;
|
|
|
|
qemu_thread_create(&r->reaper_thr, "kvm-reaper",
|
|
kvm_dirty_ring_reaper_thread,
|
|
s, QEMU_THREAD_JOINABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_dirty_ring_init(KVMState *s)
|
|
{
|
|
uint32_t ring_size = s->kvm_dirty_ring_size;
|
|
uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
|
|
int ret;
|
|
|
|
s->kvm_dirty_ring_size = 0;
|
|
s->kvm_dirty_ring_bytes = 0;
|
|
|
|
/* Bail if the dirty ring size isn't specified */
|
|
if (!ring_size) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the max supported pages. Fall back to dirty logging mode
|
|
* if the dirty ring isn't supported.
|
|
*/
|
|
ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
|
|
if (ret <= 0) {
|
|
warn_report("KVM dirty ring not available, using bitmap method");
|
|
return 0;
|
|
}
|
|
|
|
if (ring_bytes > ret) {
|
|
error_report("KVM dirty ring size %" PRIu32 " too big "
|
|
"(maximum is %ld). Please use a smaller value.",
|
|
ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
|
|
if (ret) {
|
|
error_report("Enabling of KVM dirty ring failed: %s. "
|
|
"Suggested minimum value is 1024.", strerror(-ret));
|
|
return -EIO;
|
|
}
|
|
|
|
s->kvm_dirty_ring_size = ring_size;
|
|
s->kvm_dirty_ring_bytes = ring_bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_region_add(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
|
|
KVMMemoryUpdate *update;
|
|
|
|
update = g_new0(KVMMemoryUpdate, 1);
|
|
update->section = *section;
|
|
|
|
QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
|
|
}
|
|
|
|
static void kvm_region_del(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
|
|
KVMMemoryUpdate *update;
|
|
|
|
update = g_new0(KVMMemoryUpdate, 1);
|
|
update->section = *section;
|
|
|
|
QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
|
|
}
|
|
|
|
static void kvm_region_commit(MemoryListener *listener)
|
|
{
|
|
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
|
|
listener);
|
|
KVMMemoryUpdate *u1, *u2;
|
|
bool need_inhibit = false;
|
|
|
|
if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
|
|
QSIMPLEQ_EMPTY(&kml->transaction_del)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We have to be careful when regions to add overlap with ranges to remove.
|
|
* We have to simulate atomic KVM memslot updates by making sure no ioctl()
|
|
* is currently active.
|
|
*
|
|
* The lists are order by addresses, so it's easy to find overlaps.
|
|
*/
|
|
u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
|
|
u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
|
|
while (u1 && u2) {
|
|
Range r1, r2;
|
|
|
|
range_init_nofail(&r1, u1->section.offset_within_address_space,
|
|
int128_get64(u1->section.size));
|
|
range_init_nofail(&r2, u2->section.offset_within_address_space,
|
|
int128_get64(u2->section.size));
|
|
|
|
if (range_overlaps_range(&r1, &r2)) {
|
|
need_inhibit = true;
|
|
break;
|
|
}
|
|
if (range_lob(&r1) < range_lob(&r2)) {
|
|
u1 = QSIMPLEQ_NEXT(u1, next);
|
|
} else {
|
|
u2 = QSIMPLEQ_NEXT(u2, next);
|
|
}
|
|
}
|
|
|
|
kvm_slots_lock();
|
|
if (need_inhibit) {
|
|
accel_ioctl_inhibit_begin();
|
|
}
|
|
|
|
/* Remove all memslots before adding the new ones. */
|
|
while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
|
|
u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
|
|
QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
|
|
|
|
kvm_set_phys_mem(kml, &u1->section, false);
|
|
memory_region_unref(u1->section.mr);
|
|
|
|
g_free(u1);
|
|
}
|
|
while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
|
|
u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
|
|
QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
|
|
|
|
memory_region_ref(u1->section.mr);
|
|
kvm_set_phys_mem(kml, &u1->section, true);
|
|
|
|
g_free(u1);
|
|
}
|
|
|
|
if (need_inhibit) {
|
|
accel_ioctl_inhibit_end();
|
|
}
|
|
kvm_slots_unlock();
|
|
}
|
|
|
|
static void kvm_log_sync(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
|
|
|
|
kvm_slots_lock();
|
|
kvm_physical_sync_dirty_bitmap(kml, section);
|
|
kvm_slots_unlock();
|
|
}
|
|
|
|
static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
|
|
{
|
|
KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
|
|
KVMState *s = kvm_state;
|
|
KVMSlot *mem;
|
|
int i;
|
|
|
|
/* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
|
|
kvm_dirty_ring_flush();
|
|
|
|
/*
|
|
* TODO: make this faster when nr_slots is big while there are
|
|
* only a few used slots (small VMs).
|
|
*/
|
|
kvm_slots_lock();
|
|
for (i = 0; i < s->nr_slots; i++) {
|
|
mem = &kml->slots[i];
|
|
if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
kvm_slot_sync_dirty_pages(mem);
|
|
|
|
if (s->kvm_dirty_ring_with_bitmap && last_stage &&
|
|
kvm_slot_get_dirty_log(s, mem)) {
|
|
kvm_slot_sync_dirty_pages(mem);
|
|
}
|
|
|
|
/*
|
|
* This is not needed by KVM_GET_DIRTY_LOG because the
|
|
* ioctl will unconditionally overwrite the whole region.
|
|
* However kvm dirty ring has no such side effect.
|
|
*/
|
|
kvm_slot_reset_dirty_pages(mem);
|
|
}
|
|
}
|
|
kvm_slots_unlock();
|
|
}
|
|
|
|
static void kvm_log_clear(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
|
|
int r;
|
|
|
|
r = kvm_physical_log_clear(kml, section);
|
|
if (r < 0) {
|
|
error_report_once("%s: kvm log clear failed: mr=%s "
|
|
"offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
|
|
section->mr->name, section->offset_within_region,
|
|
int128_get64(section->size));
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data,
|
|
EventNotifier *e)
|
|
{
|
|
int fd = event_notifier_get_fd(e);
|
|
int r;
|
|
|
|
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
|
|
data, true, int128_get64(section->size),
|
|
match_data);
|
|
if (r < 0) {
|
|
fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
|
|
__func__, strerror(-r), -r);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data,
|
|
EventNotifier *e)
|
|
{
|
|
int fd = event_notifier_get_fd(e);
|
|
int r;
|
|
|
|
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
|
|
data, false, int128_get64(section->size),
|
|
match_data);
|
|
if (r < 0) {
|
|
fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
|
|
__func__, strerror(-r), -r);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_io_ioeventfd_add(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data,
|
|
EventNotifier *e)
|
|
{
|
|
int fd = event_notifier_get_fd(e);
|
|
int r;
|
|
|
|
r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
|
|
data, true, int128_get64(section->size),
|
|
match_data);
|
|
if (r < 0) {
|
|
fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
|
|
__func__, strerror(-r), -r);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_io_ioeventfd_del(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data,
|
|
EventNotifier *e)
|
|
|
|
{
|
|
int fd = event_notifier_get_fd(e);
|
|
int r;
|
|
|
|
r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
|
|
data, false, int128_get64(section->size),
|
|
match_data);
|
|
if (r < 0) {
|
|
fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
|
|
__func__, strerror(-r), -r);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
|
|
AddressSpace *as, int as_id, const char *name)
|
|
{
|
|
int i;
|
|
|
|
kml->slots = g_new0(KVMSlot, s->nr_slots);
|
|
kml->as_id = as_id;
|
|
|
|
for (i = 0; i < s->nr_slots; i++) {
|
|
kml->slots[i].slot = i;
|
|
}
|
|
|
|
QSIMPLEQ_INIT(&kml->transaction_add);
|
|
QSIMPLEQ_INIT(&kml->transaction_del);
|
|
|
|
kml->listener.region_add = kvm_region_add;
|
|
kml->listener.region_del = kvm_region_del;
|
|
kml->listener.commit = kvm_region_commit;
|
|
kml->listener.log_start = kvm_log_start;
|
|
kml->listener.log_stop = kvm_log_stop;
|
|
kml->listener.priority = 10;
|
|
kml->listener.name = name;
|
|
|
|
if (s->kvm_dirty_ring_size) {
|
|
kml->listener.log_sync_global = kvm_log_sync_global;
|
|
} else {
|
|
kml->listener.log_sync = kvm_log_sync;
|
|
kml->listener.log_clear = kvm_log_clear;
|
|
}
|
|
|
|
memory_listener_register(&kml->listener, as);
|
|
|
|
for (i = 0; i < s->nr_as; ++i) {
|
|
if (!s->as[i].as) {
|
|
s->as[i].as = as;
|
|
s->as[i].ml = kml;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static MemoryListener kvm_io_listener = {
|
|
.name = "kvm-io",
|
|
.eventfd_add = kvm_io_ioeventfd_add,
|
|
.eventfd_del = kvm_io_ioeventfd_del,
|
|
.priority = 10,
|
|
};
|
|
|
|
int kvm_set_irq(KVMState *s, int irq, int level)
|
|
{
|
|
struct kvm_irq_level event;
|
|
int ret;
|
|
|
|
assert(kvm_async_interrupts_enabled());
|
|
|
|
event.level = level;
|
|
event.irq = irq;
|
|
ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
|
|
if (ret < 0) {
|
|
perror("kvm_set_irq");
|
|
abort();
|
|
}
|
|
|
|
return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
|
|
}
|
|
|
|
#ifdef KVM_CAP_IRQ_ROUTING
|
|
typedef struct KVMMSIRoute {
|
|
struct kvm_irq_routing_entry kroute;
|
|
QTAILQ_ENTRY(KVMMSIRoute) entry;
|
|
} KVMMSIRoute;
|
|
|
|
static void set_gsi(KVMState *s, unsigned int gsi)
|
|
{
|
|
set_bit(gsi, s->used_gsi_bitmap);
|
|
}
|
|
|
|
static void clear_gsi(KVMState *s, unsigned int gsi)
|
|
{
|
|
clear_bit(gsi, s->used_gsi_bitmap);
|
|
}
|
|
|
|
void kvm_init_irq_routing(KVMState *s)
|
|
{
|
|
int gsi_count, i;
|
|
|
|
gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
|
|
if (gsi_count > 0) {
|
|
/* Round up so we can search ints using ffs */
|
|
s->used_gsi_bitmap = bitmap_new(gsi_count);
|
|
s->gsi_count = gsi_count;
|
|
}
|
|
|
|
s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
|
|
s->nr_allocated_irq_routes = 0;
|
|
|
|
if (!kvm_direct_msi_allowed) {
|
|
for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
|
|
QTAILQ_INIT(&s->msi_hashtab[i]);
|
|
}
|
|
}
|
|
|
|
kvm_arch_init_irq_routing(s);
|
|
}
|
|
|
|
void kvm_irqchip_commit_routes(KVMState *s)
|
|
{
|
|
int ret;
|
|
|
|
if (kvm_gsi_direct_mapping()) {
|
|
return;
|
|
}
|
|
|
|
if (!kvm_gsi_routing_enabled()) {
|
|
return;
|
|
}
|
|
|
|
s->irq_routes->flags = 0;
|
|
trace_kvm_irqchip_commit_routes();
|
|
ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
static void kvm_add_routing_entry(KVMState *s,
|
|
struct kvm_irq_routing_entry *entry)
|
|
{
|
|
struct kvm_irq_routing_entry *new;
|
|
int n, size;
|
|
|
|
if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
|
|
n = s->nr_allocated_irq_routes * 2;
|
|
if (n < 64) {
|
|
n = 64;
|
|
}
|
|
size = sizeof(struct kvm_irq_routing);
|
|
size += n * sizeof(*new);
|
|
s->irq_routes = g_realloc(s->irq_routes, size);
|
|
s->nr_allocated_irq_routes = n;
|
|
}
|
|
n = s->irq_routes->nr++;
|
|
new = &s->irq_routes->entries[n];
|
|
|
|
*new = *entry;
|
|
|
|
set_gsi(s, entry->gsi);
|
|
}
|
|
|
|
static int kvm_update_routing_entry(KVMState *s,
|
|
struct kvm_irq_routing_entry *new_entry)
|
|
{
|
|
struct kvm_irq_routing_entry *entry;
|
|
int n;
|
|
|
|
for (n = 0; n < s->irq_routes->nr; n++) {
|
|
entry = &s->irq_routes->entries[n];
|
|
if (entry->gsi != new_entry->gsi) {
|
|
continue;
|
|
}
|
|
|
|
if(!memcmp(entry, new_entry, sizeof *entry)) {
|
|
return 0;
|
|
}
|
|
|
|
*entry = *new_entry;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -ESRCH;
|
|
}
|
|
|
|
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
|
|
{
|
|
struct kvm_irq_routing_entry e = {};
|
|
|
|
assert(pin < s->gsi_count);
|
|
|
|
e.gsi = irq;
|
|
e.type = KVM_IRQ_ROUTING_IRQCHIP;
|
|
e.flags = 0;
|
|
e.u.irqchip.irqchip = irqchip;
|
|
e.u.irqchip.pin = pin;
|
|
kvm_add_routing_entry(s, &e);
|
|
}
|
|
|
|
void kvm_irqchip_release_virq(KVMState *s, int virq)
|
|
{
|
|
struct kvm_irq_routing_entry *e;
|
|
int i;
|
|
|
|
if (kvm_gsi_direct_mapping()) {
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < s->irq_routes->nr; i++) {
|
|
e = &s->irq_routes->entries[i];
|
|
if (e->gsi == virq) {
|
|
s->irq_routes->nr--;
|
|
*e = s->irq_routes->entries[s->irq_routes->nr];
|
|
}
|
|
}
|
|
clear_gsi(s, virq);
|
|
kvm_arch_release_virq_post(virq);
|
|
trace_kvm_irqchip_release_virq(virq);
|
|
}
|
|
|
|
void kvm_irqchip_add_change_notifier(Notifier *n)
|
|
{
|
|
notifier_list_add(&kvm_irqchip_change_notifiers, n);
|
|
}
|
|
|
|
void kvm_irqchip_remove_change_notifier(Notifier *n)
|
|
{
|
|
notifier_remove(n);
|
|
}
|
|
|
|
void kvm_irqchip_change_notify(void)
|
|
{
|
|
notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
|
|
}
|
|
|
|
static unsigned int kvm_hash_msi(uint32_t data)
|
|
{
|
|
/* This is optimized for IA32 MSI layout. However, no other arch shall
|
|
* repeat the mistake of not providing a direct MSI injection API. */
|
|
return data & 0xff;
|
|
}
|
|
|
|
static void kvm_flush_dynamic_msi_routes(KVMState *s)
|
|
{
|
|
KVMMSIRoute *route, *next;
|
|
unsigned int hash;
|
|
|
|
for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
|
|
QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
|
|
kvm_irqchip_release_virq(s, route->kroute.gsi);
|
|
QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
|
|
g_free(route);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int kvm_irqchip_get_virq(KVMState *s)
|
|
{
|
|
int next_virq;
|
|
|
|
/*
|
|
* PIC and IOAPIC share the first 16 GSI numbers, thus the available
|
|
* GSI numbers are more than the number of IRQ route. Allocating a GSI
|
|
* number can succeed even though a new route entry cannot be added.
|
|
* When this happens, flush dynamic MSI entries to free IRQ route entries.
|
|
*/
|
|
if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
|
|
kvm_flush_dynamic_msi_routes(s);
|
|
}
|
|
|
|
/* Return the lowest unused GSI in the bitmap */
|
|
next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
|
|
if (next_virq >= s->gsi_count) {
|
|
return -ENOSPC;
|
|
} else {
|
|
return next_virq;
|
|
}
|
|
}
|
|
|
|
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
|
|
{
|
|
unsigned int hash = kvm_hash_msi(msg.data);
|
|
KVMMSIRoute *route;
|
|
|
|
QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
|
|
if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
|
|
route->kroute.u.msi.address_hi == (msg.address >> 32) &&
|
|
route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
|
|
return route;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
|
|
{
|
|
struct kvm_msi msi;
|
|
KVMMSIRoute *route;
|
|
|
|
if (kvm_direct_msi_allowed) {
|
|
msi.address_lo = (uint32_t)msg.address;
|
|
msi.address_hi = msg.address >> 32;
|
|
msi.data = le32_to_cpu(msg.data);
|
|
msi.flags = 0;
|
|
memset(msi.pad, 0, sizeof(msi.pad));
|
|
|
|
return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
|
|
}
|
|
|
|
route = kvm_lookup_msi_route(s, msg);
|
|
if (!route) {
|
|
int virq;
|
|
|
|
virq = kvm_irqchip_get_virq(s);
|
|
if (virq < 0) {
|
|
return virq;
|
|
}
|
|
|
|
route = g_new0(KVMMSIRoute, 1);
|
|
route->kroute.gsi = virq;
|
|
route->kroute.type = KVM_IRQ_ROUTING_MSI;
|
|
route->kroute.flags = 0;
|
|
route->kroute.u.msi.address_lo = (uint32_t)msg.address;
|
|
route->kroute.u.msi.address_hi = msg.address >> 32;
|
|
route->kroute.u.msi.data = le32_to_cpu(msg.data);
|
|
|
|
kvm_add_routing_entry(s, &route->kroute);
|
|
kvm_irqchip_commit_routes(s);
|
|
|
|
QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
|
|
entry);
|
|
}
|
|
|
|
assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
|
|
|
|
return kvm_set_irq(s, route->kroute.gsi, 1);
|
|
}
|
|
|
|
int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
|
|
{
|
|
struct kvm_irq_routing_entry kroute = {};
|
|
int virq;
|
|
KVMState *s = c->s;
|
|
MSIMessage msg = {0, 0};
|
|
|
|
if (pci_available && dev) {
|
|
msg = pci_get_msi_message(dev, vector);
|
|
}
|
|
|
|
if (kvm_gsi_direct_mapping()) {
|
|
return kvm_arch_msi_data_to_gsi(msg.data);
|
|
}
|
|
|
|
if (!kvm_gsi_routing_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
virq = kvm_irqchip_get_virq(s);
|
|
if (virq < 0) {
|
|
return virq;
|
|
}
|
|
|
|
kroute.gsi = virq;
|
|
kroute.type = KVM_IRQ_ROUTING_MSI;
|
|
kroute.flags = 0;
|
|
kroute.u.msi.address_lo = (uint32_t)msg.address;
|
|
kroute.u.msi.address_hi = msg.address >> 32;
|
|
kroute.u.msi.data = le32_to_cpu(msg.data);
|
|
if (pci_available && kvm_msi_devid_required()) {
|
|
kroute.flags = KVM_MSI_VALID_DEVID;
|
|
kroute.u.msi.devid = pci_requester_id(dev);
|
|
}
|
|
if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
|
|
kvm_irqchip_release_virq(s, virq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
|
|
vector, virq);
|
|
|
|
kvm_add_routing_entry(s, &kroute);
|
|
kvm_arch_add_msi_route_post(&kroute, vector, dev);
|
|
c->changes++;
|
|
|
|
return virq;
|
|
}
|
|
|
|
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
|
|
PCIDevice *dev)
|
|
{
|
|
struct kvm_irq_routing_entry kroute = {};
|
|
|
|
if (kvm_gsi_direct_mapping()) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
kroute.gsi = virq;
|
|
kroute.type = KVM_IRQ_ROUTING_MSI;
|
|
kroute.flags = 0;
|
|
kroute.u.msi.address_lo = (uint32_t)msg.address;
|
|
kroute.u.msi.address_hi = msg.address >> 32;
|
|
kroute.u.msi.data = le32_to_cpu(msg.data);
|
|
if (pci_available && kvm_msi_devid_required()) {
|
|
kroute.flags = KVM_MSI_VALID_DEVID;
|
|
kroute.u.msi.devid = pci_requester_id(dev);
|
|
}
|
|
if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
trace_kvm_irqchip_update_msi_route(virq);
|
|
|
|
return kvm_update_routing_entry(s, &kroute);
|
|
}
|
|
|
|
static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
|
|
EventNotifier *resample, int virq,
|
|
bool assign)
|
|
{
|
|
int fd = event_notifier_get_fd(event);
|
|
int rfd = resample ? event_notifier_get_fd(resample) : -1;
|
|
|
|
struct kvm_irqfd irqfd = {
|
|
.fd = fd,
|
|
.gsi = virq,
|
|
.flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
|
|
};
|
|
|
|
if (rfd != -1) {
|
|
assert(assign);
|
|
if (kvm_irqchip_is_split()) {
|
|
/*
|
|
* When the slow irqchip (e.g. IOAPIC) is in the
|
|
* userspace, KVM kernel resamplefd will not work because
|
|
* the EOI of the interrupt will be delivered to userspace
|
|
* instead, so the KVM kernel resamplefd kick will be
|
|
* skipped. The userspace here mimics what the kernel
|
|
* provides with resamplefd, remember the resamplefd and
|
|
* kick it when we receive EOI of this IRQ.
|
|
*
|
|
* This is hackery because IOAPIC is mostly bypassed
|
|
* (except EOI broadcasts) when irqfd is used. However
|
|
* this can bring much performance back for split irqchip
|
|
* with INTx IRQs (for VFIO, this gives 93% perf of the
|
|
* full fast path, which is 46% perf boost comparing to
|
|
* the INTx slow path).
|
|
*/
|
|
kvm_resample_fd_insert(virq, resample);
|
|
} else {
|
|
irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
|
|
irqfd.resamplefd = rfd;
|
|
}
|
|
} else if (!assign) {
|
|
if (kvm_irqchip_is_split()) {
|
|
kvm_resample_fd_remove(virq);
|
|
}
|
|
}
|
|
|
|
if (!kvm_irqfds_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
|
|
}
|
|
|
|
int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
|
|
{
|
|
struct kvm_irq_routing_entry kroute = {};
|
|
int virq;
|
|
|
|
if (!kvm_gsi_routing_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
virq = kvm_irqchip_get_virq(s);
|
|
if (virq < 0) {
|
|
return virq;
|
|
}
|
|
|
|
kroute.gsi = virq;
|
|
kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
|
|
kroute.flags = 0;
|
|
kroute.u.adapter.summary_addr = adapter->summary_addr;
|
|
kroute.u.adapter.ind_addr = adapter->ind_addr;
|
|
kroute.u.adapter.summary_offset = adapter->summary_offset;
|
|
kroute.u.adapter.ind_offset = adapter->ind_offset;
|
|
kroute.u.adapter.adapter_id = adapter->adapter_id;
|
|
|
|
kvm_add_routing_entry(s, &kroute);
|
|
|
|
return virq;
|
|
}
|
|
|
|
int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
|
|
{
|
|
struct kvm_irq_routing_entry kroute = {};
|
|
int virq;
|
|
|
|
if (!kvm_gsi_routing_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
|
|
return -ENOSYS;
|
|
}
|
|
virq = kvm_irqchip_get_virq(s);
|
|
if (virq < 0) {
|
|
return virq;
|
|
}
|
|
|
|
kroute.gsi = virq;
|
|
kroute.type = KVM_IRQ_ROUTING_HV_SINT;
|
|
kroute.flags = 0;
|
|
kroute.u.hv_sint.vcpu = vcpu;
|
|
kroute.u.hv_sint.sint = sint;
|
|
|
|
kvm_add_routing_entry(s, &kroute);
|
|
kvm_irqchip_commit_routes(s);
|
|
|
|
return virq;
|
|
}
|
|
|
|
#else /* !KVM_CAP_IRQ_ROUTING */
|
|
|
|
void kvm_init_irq_routing(KVMState *s)
|
|
{
|
|
}
|
|
|
|
void kvm_irqchip_release_virq(KVMState *s, int virq)
|
|
{
|
|
}
|
|
|
|
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
|
|
EventNotifier *resample, int virq,
|
|
bool assign)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif /* !KVM_CAP_IRQ_ROUTING */
|
|
|
|
int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
|
|
EventNotifier *rn, int virq)
|
|
{
|
|
return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
|
|
}
|
|
|
|
int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
|
|
int virq)
|
|
{
|
|
return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
|
|
}
|
|
|
|
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
|
|
EventNotifier *rn, qemu_irq irq)
|
|
{
|
|
gpointer key, gsi;
|
|
gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
|
|
|
|
if (!found) {
|
|
return -ENXIO;
|
|
}
|
|
return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
|
|
}
|
|
|
|
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
|
|
qemu_irq irq)
|
|
{
|
|
gpointer key, gsi;
|
|
gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
|
|
|
|
if (!found) {
|
|
return -ENXIO;
|
|
}
|
|
return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
|
|
}
|
|
|
|
void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
|
|
{
|
|
g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
|
|
}
|
|
|
|
static void kvm_irqchip_create(KVMState *s)
|
|
{
|
|
int ret;
|
|
|
|
assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
|
|
if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
|
|
;
|
|
} else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
|
|
ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
|
|
exit(1);
|
|
}
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
/* First probe and see if there's a arch-specific hook to create the
|
|
* in-kernel irqchip for us */
|
|
ret = kvm_arch_irqchip_create(s);
|
|
if (ret == 0) {
|
|
if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
|
|
error_report("Split IRQ chip mode not supported.");
|
|
exit(1);
|
|
} else {
|
|
ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
|
|
}
|
|
}
|
|
if (ret < 0) {
|
|
fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
|
|
exit(1);
|
|
}
|
|
|
|
kvm_kernel_irqchip = true;
|
|
/* If we have an in-kernel IRQ chip then we must have asynchronous
|
|
* interrupt delivery (though the reverse is not necessarily true)
|
|
*/
|
|
kvm_async_interrupts_allowed = true;
|
|
kvm_halt_in_kernel_allowed = true;
|
|
|
|
kvm_init_irq_routing(s);
|
|
|
|
s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
|
|
}
|
|
|
|
/* Find number of supported CPUs using the recommended
|
|
* procedure from the kernel API documentation to cope with
|
|
* older kernels that may be missing capabilities.
|
|
*/
|
|
static int kvm_recommended_vcpus(KVMState *s)
|
|
{
|
|
int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
|
|
return (ret) ? ret : 4;
|
|
}
|
|
|
|
static int kvm_max_vcpus(KVMState *s)
|
|
{
|
|
int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
|
|
return (ret) ? ret : kvm_recommended_vcpus(s);
|
|
}
|
|
|
|
static int kvm_max_vcpu_id(KVMState *s)
|
|
{
|
|
int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
|
|
return (ret) ? ret : kvm_max_vcpus(s);
|
|
}
|
|
|
|
bool kvm_vcpu_id_is_valid(int vcpu_id)
|
|
{
|
|
KVMState *s = KVM_STATE(current_accel());
|
|
return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
|
|
}
|
|
|
|
bool kvm_dirty_ring_enabled(void)
|
|
{
|
|
return kvm_state->kvm_dirty_ring_size ? true : false;
|
|
}
|
|
|
|
static void query_stats_cb(StatsResultList **result, StatsTarget target,
|
|
strList *names, strList *targets, Error **errp);
|
|
static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
|
|
|
|
uint32_t kvm_dirty_ring_size(void)
|
|
{
|
|
return kvm_state->kvm_dirty_ring_size;
|
|
}
|
|
|
|
static int kvm_init(MachineState *ms)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
static const char upgrade_note[] =
|
|
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
|
|
"(see http://sourceforge.net/projects/kvm).\n";
|
|
const struct {
|
|
const char *name;
|
|
int num;
|
|
} num_cpus[] = {
|
|
{ "SMP", ms->smp.cpus },
|
|
{ "hotpluggable", ms->smp.max_cpus },
|
|
{ /* end of list */ }
|
|
}, *nc = num_cpus;
|
|
int soft_vcpus_limit, hard_vcpus_limit;
|
|
KVMState *s;
|
|
const KVMCapabilityInfo *missing_cap;
|
|
int ret;
|
|
int type = 0;
|
|
uint64_t dirty_log_manual_caps;
|
|
|
|
qemu_mutex_init(&kml_slots_lock);
|
|
|
|
s = KVM_STATE(ms->accelerator);
|
|
|
|
/*
|
|
* On systems where the kernel can support different base page
|
|
* sizes, host page size may be different from TARGET_PAGE_SIZE,
|
|
* even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
|
|
* page size for the system though.
|
|
*/
|
|
assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
|
|
|
|
s->sigmask_len = 8;
|
|
accel_blocker_init();
|
|
|
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
|
QTAILQ_INIT(&s->kvm_sw_breakpoints);
|
|
#endif
|
|
QLIST_INIT(&s->kvm_parked_vcpus);
|
|
s->fd = qemu_open_old("/dev/kvm", O_RDWR);
|
|
if (s->fd == -1) {
|
|
fprintf(stderr, "Could not access KVM kernel module: %m\n");
|
|
ret = -errno;
|
|
goto err;
|
|
}
|
|
|
|
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
|
|
if (ret < KVM_API_VERSION) {
|
|
if (ret >= 0) {
|
|
ret = -EINVAL;
|
|
}
|
|
fprintf(stderr, "kvm version too old\n");
|
|
goto err;
|
|
}
|
|
|
|
if (ret > KVM_API_VERSION) {
|
|
ret = -EINVAL;
|
|
fprintf(stderr, "kvm version not supported\n");
|
|
goto err;
|
|
}
|
|
|
|
kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
|
|
s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
|
|
|
|
/* If unspecified, use the default value */
|
|
if (!s->nr_slots) {
|
|
s->nr_slots = 32;
|
|
}
|
|
|
|
s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
|
|
if (s->nr_as <= 1) {
|
|
s->nr_as = 1;
|
|
}
|
|
s->as = g_new0(struct KVMAs, s->nr_as);
|
|
|
|
if (object_property_find(OBJECT(current_machine), "kvm-type")) {
|
|
g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
|
|
"kvm-type",
|
|
&error_abort);
|
|
type = mc->kvm_type(ms, kvm_type);
|
|
} else if (mc->kvm_type) {
|
|
type = mc->kvm_type(ms, NULL);
|
|
}
|
|
|
|
do {
|
|
ret = kvm_ioctl(s, KVM_CREATE_VM, type);
|
|
} while (ret == -EINTR);
|
|
|
|
if (ret < 0) {
|
|
fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
|
|
strerror(-ret));
|
|
|
|
#ifdef TARGET_S390X
|
|
if (ret == -EINVAL) {
|
|
fprintf(stderr,
|
|
"Host kernel setup problem detected. Please verify:\n");
|
|
fprintf(stderr, "- for kernels supporting the switch_amode or"
|
|
" user_mode parameters, whether\n");
|
|
fprintf(stderr,
|
|
" user space is running in primary address space\n");
|
|
fprintf(stderr,
|
|
"- for kernels supporting the vm.allocate_pgste sysctl, "
|
|
"whether it is enabled\n");
|
|
}
|
|
#elif defined(TARGET_PPC)
|
|
if (ret == -EINVAL) {
|
|
fprintf(stderr,
|
|
"PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
|
|
(type == 2) ? "pr" : "hv");
|
|
}
|
|
#endif
|
|
goto err;
|
|
}
|
|
|
|
s->vmfd = ret;
|
|
|
|
/* check the vcpu limits */
|
|
soft_vcpus_limit = kvm_recommended_vcpus(s);
|
|
hard_vcpus_limit = kvm_max_vcpus(s);
|
|
|
|
while (nc->name) {
|
|
if (nc->num > soft_vcpus_limit) {
|
|
warn_report("Number of %s cpus requested (%d) exceeds "
|
|
"the recommended cpus supported by KVM (%d)",
|
|
nc->name, nc->num, soft_vcpus_limit);
|
|
|
|
if (nc->num > hard_vcpus_limit) {
|
|
fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
|
|
"the maximum cpus supported by KVM (%d)\n",
|
|
nc->name, nc->num, hard_vcpus_limit);
|
|
exit(1);
|
|
}
|
|
}
|
|
nc++;
|
|
}
|
|
|
|
missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
|
|
if (!missing_cap) {
|
|
missing_cap =
|
|
kvm_check_extension_list(s, kvm_arch_required_capabilities);
|
|
}
|
|
if (missing_cap) {
|
|
ret = -EINVAL;
|
|
fprintf(stderr, "kvm does not support %s\n%s",
|
|
missing_cap->name, upgrade_note);
|
|
goto err;
|
|
}
|
|
|
|
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
|
|
s->coalesced_pio = s->coalesced_mmio &&
|
|
kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
|
|
|
|
/*
|
|
* Enable KVM dirty ring if supported, otherwise fall back to
|
|
* dirty logging mode
|
|
*/
|
|
ret = kvm_dirty_ring_init(s);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
|
|
* enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
|
|
* page is wr-protected initially, which is against how kvm dirty ring is
|
|
* usage - kvm dirty ring requires all pages are wr-protected at the very
|
|
* beginning. Enabling this feature for dirty ring causes data corruption.
|
|
*
|
|
* TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
|
|
* we may expect a higher stall time when starting the migration. In the
|
|
* future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
|
|
* instead of clearing dirty bit, it can be a way to explicitly wr-protect
|
|
* guest pages.
|
|
*/
|
|
if (!s->kvm_dirty_ring_size) {
|
|
dirty_log_manual_caps =
|
|
kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
|
|
dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
|
|
KVM_DIRTY_LOG_INITIALLY_SET);
|
|
s->manual_dirty_log_protect = dirty_log_manual_caps;
|
|
if (dirty_log_manual_caps) {
|
|
ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
|
|
dirty_log_manual_caps);
|
|
if (ret) {
|
|
warn_report("Trying to enable capability %"PRIu64" of "
|
|
"KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
|
|
"Falling back to the legacy mode. ",
|
|
dirty_log_manual_caps);
|
|
s->manual_dirty_log_protect = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef KVM_CAP_VCPU_EVENTS
|
|
s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
|
|
#endif
|
|
|
|
s->robust_singlestep =
|
|
kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
|
|
|
|
#ifdef KVM_CAP_DEBUGREGS
|
|
s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
|
|
#endif
|
|
|
|
s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
|
|
|
|
#ifdef KVM_CAP_IRQ_ROUTING
|
|
kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
|
|
#endif
|
|
|
|
s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
|
|
|
|
s->irq_set_ioctl = KVM_IRQ_LINE;
|
|
if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
|
|
s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
|
|
}
|
|
|
|
kvm_readonly_mem_allowed =
|
|
(kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
|
|
|
|
kvm_eventfds_allowed =
|
|
(kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
|
|
|
|
kvm_irqfds_allowed =
|
|
(kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
|
|
|
|
kvm_resamplefds_allowed =
|
|
(kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
|
|
|
|
kvm_vm_attributes_allowed =
|
|
(kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
|
|
|
|
kvm_ioeventfd_any_length_allowed =
|
|
(kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
|
|
|
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
|
kvm_has_guest_debug =
|
|
(kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
|
|
#endif
|
|
|
|
kvm_sstep_flags = 0;
|
|
if (kvm_has_guest_debug) {
|
|
kvm_sstep_flags = SSTEP_ENABLE;
|
|
|
|
#if defined KVM_CAP_SET_GUEST_DEBUG2
|
|
int guest_debug_flags =
|
|
kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
|
|
|
|
if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
|
|
kvm_sstep_flags |= SSTEP_NOIRQ;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
kvm_state = s;
|
|
|
|
ret = kvm_arch_init(ms, s);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
|
|
if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
|
|
s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
|
|
}
|
|
|
|
qemu_register_reset(kvm_unpoison_all, NULL);
|
|
|
|
if (s->kernel_irqchip_allowed) {
|
|
kvm_irqchip_create(s);
|
|
}
|
|
|
|
if (kvm_eventfds_allowed) {
|
|
s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
|
|
s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
|
|
}
|
|
s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
|
|
s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
|
|
|
|
kvm_memory_listener_register(s, &s->memory_listener,
|
|
&address_space_memory, 0, "kvm-memory");
|
|
if (kvm_eventfds_allowed) {
|
|
memory_listener_register(&kvm_io_listener,
|
|
&address_space_io);
|
|
}
|
|
memory_listener_register(&kvm_coalesced_pio_listener,
|
|
&address_space_io);
|
|
|
|
s->many_ioeventfds = kvm_check_many_ioeventfds();
|
|
|
|
s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
|
|
if (!s->sync_mmu) {
|
|
ret = ram_block_discard_disable(true);
|
|
assert(!ret);
|
|
}
|
|
|
|
if (s->kvm_dirty_ring_size) {
|
|
ret = kvm_dirty_ring_reaper_init(s);
|
|
if (ret) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
|
|
add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
|
|
query_stats_schemas_cb);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
assert(ret < 0);
|
|
if (s->vmfd >= 0) {
|
|
close(s->vmfd);
|
|
}
|
|
if (s->fd != -1) {
|
|
close(s->fd);
|
|
}
|
|
g_free(s->memory_listener.slots);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
|
|
{
|
|
s->sigmask_len = sigmask_len;
|
|
}
|
|
|
|
static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
|
|
int size, uint32_t count)
|
|
{
|
|
int i;
|
|
uint8_t *ptr = data;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
address_space_rw(&address_space_io, port, attrs,
|
|
ptr, size,
|
|
direction == KVM_EXIT_IO_OUT);
|
|
ptr += size;
|
|
}
|
|
}
|
|
|
|
static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
|
|
{
|
|
fprintf(stderr, "KVM internal error. Suberror: %d\n",
|
|
run->internal.suberror);
|
|
|
|
if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
|
|
int i;
|
|
|
|
for (i = 0; i < run->internal.ndata; ++i) {
|
|
fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
|
|
i, (uint64_t)run->internal.data[i]);
|
|
}
|
|
}
|
|
if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
|
|
fprintf(stderr, "emulation failure\n");
|
|
if (!kvm_arch_stop_on_emulation_error(cpu)) {
|
|
cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
|
|
return EXCP_INTERRUPT;
|
|
}
|
|
}
|
|
/* FIXME: Should trigger a qmp message to let management know
|
|
* something went wrong.
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
void kvm_flush_coalesced_mmio_buffer(void)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
|
|
if (s->coalesced_flush_in_progress) {
|
|
return;
|
|
}
|
|
|
|
s->coalesced_flush_in_progress = true;
|
|
|
|
if (s->coalesced_mmio_ring) {
|
|
struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
|
|
while (ring->first != ring->last) {
|
|
struct kvm_coalesced_mmio *ent;
|
|
|
|
ent = &ring->coalesced_mmio[ring->first];
|
|
|
|
if (ent->pio == 1) {
|
|
address_space_write(&address_space_io, ent->phys_addr,
|
|
MEMTXATTRS_UNSPECIFIED, ent->data,
|
|
ent->len);
|
|
} else {
|
|
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
|
|
}
|
|
smp_wmb();
|
|
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
|
|
}
|
|
}
|
|
|
|
s->coalesced_flush_in_progress = false;
|
|
}
|
|
|
|
bool kvm_cpu_check_are_resettable(void)
|
|
{
|
|
return kvm_arch_cpu_check_are_resettable();
|
|
}
|
|
|
|
static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
if (!cpu->vcpu_dirty) {
|
|
kvm_arch_get_registers(cpu);
|
|
cpu->vcpu_dirty = true;
|
|
}
|
|
}
|
|
|
|
void kvm_cpu_synchronize_state(CPUState *cpu)
|
|
{
|
|
if (!cpu->vcpu_dirty) {
|
|
run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
|
|
cpu->vcpu_dirty = false;
|
|
}
|
|
|
|
void kvm_cpu_synchronize_post_reset(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
|
|
cpu->vcpu_dirty = false;
|
|
}
|
|
|
|
void kvm_cpu_synchronize_post_init(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
cpu->vcpu_dirty = true;
|
|
}
|
|
|
|
void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
#ifdef KVM_HAVE_MCE_INJECTION
|
|
static __thread void *pending_sigbus_addr;
|
|
static __thread int pending_sigbus_code;
|
|
static __thread bool have_sigbus_pending;
|
|
#endif
|
|
|
|
static void kvm_cpu_kick(CPUState *cpu)
|
|
{
|
|
qatomic_set(&cpu->kvm_run->immediate_exit, 1);
|
|
}
|
|
|
|
static void kvm_cpu_kick_self(void)
|
|
{
|
|
if (kvm_immediate_exit) {
|
|
kvm_cpu_kick(current_cpu);
|
|
} else {
|
|
qemu_cpu_kick_self();
|
|
}
|
|
}
|
|
|
|
static void kvm_eat_signals(CPUState *cpu)
|
|
{
|
|
struct timespec ts = { 0, 0 };
|
|
siginfo_t siginfo;
|
|
sigset_t waitset;
|
|
sigset_t chkset;
|
|
int r;
|
|
|
|
if (kvm_immediate_exit) {
|
|
qatomic_set(&cpu->kvm_run->immediate_exit, 0);
|
|
/* Write kvm_run->immediate_exit before the cpu->exit_request
|
|
* write in kvm_cpu_exec.
|
|
*/
|
|
smp_wmb();
|
|
return;
|
|
}
|
|
|
|
sigemptyset(&waitset);
|
|
sigaddset(&waitset, SIG_IPI);
|
|
|
|
do {
|
|
r = sigtimedwait(&waitset, &siginfo, &ts);
|
|
if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
|
|
perror("sigtimedwait");
|
|
exit(1);
|
|
}
|
|
|
|
r = sigpending(&chkset);
|
|
if (r == -1) {
|
|
perror("sigpending");
|
|
exit(1);
|
|
}
|
|
} while (sigismember(&chkset, SIG_IPI));
|
|
}
|
|
|
|
int kvm_cpu_exec(CPUState *cpu)
|
|
{
|
|
struct kvm_run *run = cpu->kvm_run;
|
|
int ret, run_ret;
|
|
|
|
DPRINTF("kvm_cpu_exec()\n");
|
|
|
|
if (kvm_arch_process_async_events(cpu)) {
|
|
qatomic_set(&cpu->exit_request, 0);
|
|
return EXCP_HLT;
|
|
}
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
cpu_exec_start(cpu);
|
|
|
|
do {
|
|
MemTxAttrs attrs;
|
|
|
|
if (cpu->vcpu_dirty) {
|
|
kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
|
|
cpu->vcpu_dirty = false;
|
|
}
|
|
|
|
kvm_arch_pre_run(cpu, run);
|
|
if (qatomic_read(&cpu->exit_request)) {
|
|
DPRINTF("interrupt exit requested\n");
|
|
/*
|
|
* KVM requires us to reenter the kernel after IO exits to complete
|
|
* instruction emulation. This self-signal will ensure that we
|
|
* leave ASAP again.
|
|
*/
|
|
kvm_cpu_kick_self();
|
|
}
|
|
|
|
/* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
|
|
* Matching barrier in kvm_eat_signals.
|
|
*/
|
|
smp_rmb();
|
|
|
|
run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
|
|
|
|
attrs = kvm_arch_post_run(cpu, run);
|
|
|
|
#ifdef KVM_HAVE_MCE_INJECTION
|
|
if (unlikely(have_sigbus_pending)) {
|
|
qemu_mutex_lock_iothread();
|
|
kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
|
|
pending_sigbus_addr);
|
|
have_sigbus_pending = false;
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
#endif
|
|
|
|
if (run_ret < 0) {
|
|
if (run_ret == -EINTR || run_ret == -EAGAIN) {
|
|
DPRINTF("io window exit\n");
|
|
kvm_eat_signals(cpu);
|
|
ret = EXCP_INTERRUPT;
|
|
break;
|
|
}
|
|
fprintf(stderr, "error: kvm run failed %s\n",
|
|
strerror(-run_ret));
|
|
#ifdef TARGET_PPC
|
|
if (run_ret == -EBUSY) {
|
|
fprintf(stderr,
|
|
"This is probably because your SMT is enabled.\n"
|
|
"VCPU can only run on primary threads with all "
|
|
"secondary threads offline.\n");
|
|
}
|
|
#endif
|
|
ret = -1;
|
|
break;
|
|
}
|
|
|
|
trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
|
|
switch (run->exit_reason) {
|
|
case KVM_EXIT_IO:
|
|
DPRINTF("handle_io\n");
|
|
/* Called outside BQL */
|
|
kvm_handle_io(run->io.port, attrs,
|
|
(uint8_t *)run + run->io.data_offset,
|
|
run->io.direction,
|
|
run->io.size,
|
|
run->io.count);
|
|
ret = 0;
|
|
break;
|
|
case KVM_EXIT_MMIO:
|
|
DPRINTF("handle_mmio\n");
|
|
/* Called outside BQL */
|
|
address_space_rw(&address_space_memory,
|
|
run->mmio.phys_addr, attrs,
|
|
run->mmio.data,
|
|
run->mmio.len,
|
|
run->mmio.is_write);
|
|
ret = 0;
|
|
break;
|
|
case KVM_EXIT_IRQ_WINDOW_OPEN:
|
|
DPRINTF("irq_window_open\n");
|
|
ret = EXCP_INTERRUPT;
|
|
break;
|
|
case KVM_EXIT_SHUTDOWN:
|
|
DPRINTF("shutdown\n");
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
ret = EXCP_INTERRUPT;
|
|
break;
|
|
case KVM_EXIT_UNKNOWN:
|
|
fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
|
|
(uint64_t)run->hw.hardware_exit_reason);
|
|
ret = -1;
|
|
break;
|
|
case KVM_EXIT_INTERNAL_ERROR:
|
|
ret = kvm_handle_internal_error(cpu, run);
|
|
break;
|
|
case KVM_EXIT_DIRTY_RING_FULL:
|
|
/*
|
|
* We shouldn't continue if the dirty ring of this vcpu is
|
|
* still full. Got kicked by KVM_RESET_DIRTY_RINGS.
|
|
*/
|
|
trace_kvm_dirty_ring_full(cpu->cpu_index);
|
|
qemu_mutex_lock_iothread();
|
|
/*
|
|
* We throttle vCPU by making it sleep once it exit from kernel
|
|
* due to dirty ring full. In the dirtylimit scenario, reaping
|
|
* all vCPUs after a single vCPU dirty ring get full result in
|
|
* the miss of sleep, so just reap the ring-fulled vCPU.
|
|
*/
|
|
if (dirtylimit_in_service()) {
|
|
kvm_dirty_ring_reap(kvm_state, cpu);
|
|
} else {
|
|
kvm_dirty_ring_reap(kvm_state, NULL);
|
|
}
|
|
qemu_mutex_unlock_iothread();
|
|
dirtylimit_vcpu_execute(cpu);
|
|
ret = 0;
|
|
break;
|
|
case KVM_EXIT_SYSTEM_EVENT:
|
|
switch (run->system_event.type) {
|
|
case KVM_SYSTEM_EVENT_SHUTDOWN:
|
|
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
|
|
ret = EXCP_INTERRUPT;
|
|
break;
|
|
case KVM_SYSTEM_EVENT_RESET:
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
ret = EXCP_INTERRUPT;
|
|
break;
|
|
case KVM_SYSTEM_EVENT_CRASH:
|
|
kvm_cpu_synchronize_state(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
qemu_system_guest_panicked(cpu_get_crash_info(cpu));
|
|
qemu_mutex_unlock_iothread();
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
DPRINTF("kvm_arch_handle_exit\n");
|
|
ret = kvm_arch_handle_exit(cpu, run);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
DPRINTF("kvm_arch_handle_exit\n");
|
|
ret = kvm_arch_handle_exit(cpu, run);
|
|
break;
|
|
}
|
|
} while (ret == 0);
|
|
|
|
cpu_exec_end(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
|
|
if (ret < 0) {
|
|
cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
|
|
vm_stop(RUN_STATE_INTERNAL_ERROR);
|
|
}
|
|
|
|
qatomic_set(&cpu->exit_request, 0);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_ioctl(KVMState *s, int type, ...)
|
|
{
|
|
int ret;
|
|
void *arg;
|
|
va_list ap;
|
|
|
|
va_start(ap, type);
|
|
arg = va_arg(ap, void *);
|
|
va_end(ap);
|
|
|
|
trace_kvm_ioctl(type, arg);
|
|
ret = ioctl(s->fd, type, arg);
|
|
if (ret == -1) {
|
|
ret = -errno;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vm_ioctl(KVMState *s, int type, ...)
|
|
{
|
|
int ret;
|
|
void *arg;
|
|
va_list ap;
|
|
|
|
va_start(ap, type);
|
|
arg = va_arg(ap, void *);
|
|
va_end(ap);
|
|
|
|
trace_kvm_vm_ioctl(type, arg);
|
|
accel_ioctl_begin();
|
|
ret = ioctl(s->vmfd, type, arg);
|
|
accel_ioctl_end();
|
|
if (ret == -1) {
|
|
ret = -errno;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
|
|
{
|
|
int ret;
|
|
void *arg;
|
|
va_list ap;
|
|
|
|
va_start(ap, type);
|
|
arg = va_arg(ap, void *);
|
|
va_end(ap);
|
|
|
|
trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
|
|
accel_cpu_ioctl_begin(cpu);
|
|
ret = ioctl(cpu->kvm_fd, type, arg);
|
|
accel_cpu_ioctl_end(cpu);
|
|
if (ret == -1) {
|
|
ret = -errno;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int kvm_device_ioctl(int fd, int type, ...)
|
|
{
|
|
int ret;
|
|
void *arg;
|
|
va_list ap;
|
|
|
|
va_start(ap, type);
|
|
arg = va_arg(ap, void *);
|
|
va_end(ap);
|
|
|
|
trace_kvm_device_ioctl(fd, type, arg);
|
|
accel_ioctl_begin();
|
|
ret = ioctl(fd, type, arg);
|
|
accel_ioctl_end();
|
|
if (ret == -1) {
|
|
ret = -errno;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
|
|
{
|
|
int ret;
|
|
struct kvm_device_attr attribute = {
|
|
.group = group,
|
|
.attr = attr,
|
|
};
|
|
|
|
if (!kvm_vm_attributes_allowed) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
|
|
/* kvm returns 0 on success for HAS_DEVICE_ATTR */
|
|
return ret ? 0 : 1;
|
|
}
|
|
|
|
int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
|
|
{
|
|
struct kvm_device_attr attribute = {
|
|
.group = group,
|
|
.attr = attr,
|
|
.flags = 0,
|
|
};
|
|
|
|
return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
|
|
}
|
|
|
|
int kvm_device_access(int fd, int group, uint64_t attr,
|
|
void *val, bool write, Error **errp)
|
|
{
|
|
struct kvm_device_attr kvmattr;
|
|
int err;
|
|
|
|
kvmattr.flags = 0;
|
|
kvmattr.group = group;
|
|
kvmattr.attr = attr;
|
|
kvmattr.addr = (uintptr_t)val;
|
|
|
|
err = kvm_device_ioctl(fd,
|
|
write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
|
|
&kvmattr);
|
|
if (err < 0) {
|
|
error_setg_errno(errp, -err,
|
|
"KVM_%s_DEVICE_ATTR failed: Group %d "
|
|
"attr 0x%016" PRIx64,
|
|
write ? "SET" : "GET", group, attr);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
bool kvm_has_sync_mmu(void)
|
|
{
|
|
return kvm_state->sync_mmu;
|
|
}
|
|
|
|
int kvm_has_vcpu_events(void)
|
|
{
|
|
return kvm_state->vcpu_events;
|
|
}
|
|
|
|
int kvm_has_robust_singlestep(void)
|
|
{
|
|
return kvm_state->robust_singlestep;
|
|
}
|
|
|
|
int kvm_has_debugregs(void)
|
|
{
|
|
return kvm_state->debugregs;
|
|
}
|
|
|
|
int kvm_max_nested_state_length(void)
|
|
{
|
|
return kvm_state->max_nested_state_len;
|
|
}
|
|
|
|
int kvm_has_many_ioeventfds(void)
|
|
{
|
|
if (!kvm_enabled()) {
|
|
return 0;
|
|
}
|
|
return kvm_state->many_ioeventfds;
|
|
}
|
|
|
|
int kvm_has_gsi_routing(void)
|
|
{
|
|
#ifdef KVM_CAP_IRQ_ROUTING
|
|
return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
int kvm_has_intx_set_mask(void)
|
|
{
|
|
return kvm_state->intx_set_mask;
|
|
}
|
|
|
|
bool kvm_arm_supports_user_irq(void)
|
|
{
|
|
return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
|
|
}
|
|
|
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
|
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
|
|
target_ulong pc)
|
|
{
|
|
struct kvm_sw_breakpoint *bp;
|
|
|
|
QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
|
|
if (bp->pc == pc) {
|
|
return bp;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int kvm_sw_breakpoints_active(CPUState *cpu)
|
|
{
|
|
return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
|
|
}
|
|
|
|
struct kvm_set_guest_debug_data {
|
|
struct kvm_guest_debug dbg;
|
|
int err;
|
|
};
|
|
|
|
static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
|
|
{
|
|
struct kvm_set_guest_debug_data *dbg_data =
|
|
(struct kvm_set_guest_debug_data *) data.host_ptr;
|
|
|
|
dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
|
|
&dbg_data->dbg);
|
|
}
|
|
|
|
int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
|
|
{
|
|
struct kvm_set_guest_debug_data data;
|
|
|
|
data.dbg.control = reinject_trap;
|
|
|
|
if (cpu->singlestep_enabled) {
|
|
data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
|
|
|
|
if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
|
|
data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
|
|
}
|
|
}
|
|
kvm_arch_update_guest_debug(cpu, &data.dbg);
|
|
|
|
run_on_cpu(cpu, kvm_invoke_set_guest_debug,
|
|
RUN_ON_CPU_HOST_PTR(&data));
|
|
return data.err;
|
|
}
|
|
|
|
bool kvm_supports_guest_debug(void)
|
|
{
|
|
/* probed during kvm_init() */
|
|
return kvm_has_guest_debug;
|
|
}
|
|
|
|
int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
|
|
{
|
|
struct kvm_sw_breakpoint *bp;
|
|
int err;
|
|
|
|
if (type == GDB_BREAKPOINT_SW) {
|
|
bp = kvm_find_sw_breakpoint(cpu, addr);
|
|
if (bp) {
|
|
bp->use_count++;
|
|
return 0;
|
|
}
|
|
|
|
bp = g_new(struct kvm_sw_breakpoint, 1);
|
|
bp->pc = addr;
|
|
bp->use_count = 1;
|
|
err = kvm_arch_insert_sw_breakpoint(cpu, bp);
|
|
if (err) {
|
|
g_free(bp);
|
|
return err;
|
|
}
|
|
|
|
QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
|
|
} else {
|
|
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
err = kvm_update_guest_debug(cpu, 0);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
|
|
{
|
|
struct kvm_sw_breakpoint *bp;
|
|
int err;
|
|
|
|
if (type == GDB_BREAKPOINT_SW) {
|
|
bp = kvm_find_sw_breakpoint(cpu, addr);
|
|
if (!bp) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (bp->use_count > 1) {
|
|
bp->use_count--;
|
|
return 0;
|
|
}
|
|
|
|
err = kvm_arch_remove_sw_breakpoint(cpu, bp);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
|
|
g_free(bp);
|
|
} else {
|
|
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
err = kvm_update_guest_debug(cpu, 0);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void kvm_remove_all_breakpoints(CPUState *cpu)
|
|
{
|
|
struct kvm_sw_breakpoint *bp, *next;
|
|
KVMState *s = cpu->kvm_state;
|
|
CPUState *tmpcpu;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
|
|
if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
|
|
/* Try harder to find a CPU that currently sees the breakpoint. */
|
|
CPU_FOREACH(tmpcpu) {
|
|
if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
|
|
g_free(bp);
|
|
}
|
|
kvm_arch_remove_all_hw_breakpoints();
|
|
|
|
CPU_FOREACH(cpu) {
|
|
kvm_update_guest_debug(cpu, 0);
|
|
}
|
|
}
|
|
|
|
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
|
|
|
|
static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
struct kvm_signal_mask *sigmask;
|
|
int r;
|
|
|
|
sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
|
|
|
|
sigmask->len = s->sigmask_len;
|
|
memcpy(sigmask->sigset, sigset, sizeof(*sigset));
|
|
r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
|
|
g_free(sigmask);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void kvm_ipi_signal(int sig)
|
|
{
|
|
if (current_cpu) {
|
|
assert(kvm_immediate_exit);
|
|
kvm_cpu_kick(current_cpu);
|
|
}
|
|
}
|
|
|
|
void kvm_init_cpu_signals(CPUState *cpu)
|
|
{
|
|
int r;
|
|
sigset_t set;
|
|
struct sigaction sigact;
|
|
|
|
memset(&sigact, 0, sizeof(sigact));
|
|
sigact.sa_handler = kvm_ipi_signal;
|
|
sigaction(SIG_IPI, &sigact, NULL);
|
|
|
|
pthread_sigmask(SIG_BLOCK, NULL, &set);
|
|
#if defined KVM_HAVE_MCE_INJECTION
|
|
sigdelset(&set, SIGBUS);
|
|
pthread_sigmask(SIG_SETMASK, &set, NULL);
|
|
#endif
|
|
sigdelset(&set, SIG_IPI);
|
|
if (kvm_immediate_exit) {
|
|
r = pthread_sigmask(SIG_SETMASK, &set, NULL);
|
|
} else {
|
|
r = kvm_set_signal_mask(cpu, &set);
|
|
}
|
|
if (r) {
|
|
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Called asynchronously in VCPU thread. */
|
|
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
|
|
{
|
|
#ifdef KVM_HAVE_MCE_INJECTION
|
|
if (have_sigbus_pending) {
|
|
return 1;
|
|
}
|
|
have_sigbus_pending = true;
|
|
pending_sigbus_addr = addr;
|
|
pending_sigbus_code = code;
|
|
qatomic_set(&cpu->exit_request, 1);
|
|
return 0;
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
/* Called synchronously (via signalfd) in main thread. */
|
|
int kvm_on_sigbus(int code, void *addr)
|
|
{
|
|
#ifdef KVM_HAVE_MCE_INJECTION
|
|
/* Action required MCE kills the process if SIGBUS is blocked. Because
|
|
* that's what happens in the I/O thread, where we handle MCE via signalfd,
|
|
* we can only get action optional here.
|
|
*/
|
|
assert(code != BUS_MCEERR_AR);
|
|
kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
|
|
return 0;
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
int kvm_create_device(KVMState *s, uint64_t type, bool test)
|
|
{
|
|
int ret;
|
|
struct kvm_create_device create_dev;
|
|
|
|
create_dev.type = type;
|
|
create_dev.fd = -1;
|
|
create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
|
|
|
|
if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
return test ? 0 : create_dev.fd;
|
|
}
|
|
|
|
bool kvm_device_supported(int vmfd, uint64_t type)
|
|
{
|
|
struct kvm_create_device create_dev = {
|
|
.type = type,
|
|
.fd = -1,
|
|
.flags = KVM_CREATE_DEVICE_TEST,
|
|
};
|
|
|
|
if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
|
|
return false;
|
|
}
|
|
|
|
return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
|
|
}
|
|
|
|
int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
|
|
{
|
|
struct kvm_one_reg reg;
|
|
int r;
|
|
|
|
reg.id = id;
|
|
reg.addr = (uintptr_t) source;
|
|
r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (r) {
|
|
trace_kvm_failed_reg_set(id, strerror(-r));
|
|
}
|
|
return r;
|
|
}
|
|
|
|
int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
|
|
{
|
|
struct kvm_one_reg reg;
|
|
int r;
|
|
|
|
reg.id = id;
|
|
reg.addr = (uintptr_t) target;
|
|
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (r) {
|
|
trace_kvm_failed_reg_get(id, strerror(-r));
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
|
|
hwaddr start_addr, hwaddr size)
|
|
{
|
|
KVMState *kvm = KVM_STATE(ms->accelerator);
|
|
int i;
|
|
|
|
for (i = 0; i < kvm->nr_as; ++i) {
|
|
if (kvm->as[i].as == as && kvm->as[i].ml) {
|
|
size = MIN(kvm_max_slot_size, size);
|
|
return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
|
|
start_addr, size);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
|
|
const char *name, void *opaque,
|
|
Error **errp)
|
|
{
|
|
KVMState *s = KVM_STATE(obj);
|
|
int64_t value = s->kvm_shadow_mem;
|
|
|
|
visit_type_int(v, name, &value, errp);
|
|
}
|
|
|
|
static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
|
|
const char *name, void *opaque,
|
|
Error **errp)
|
|
{
|
|
KVMState *s = KVM_STATE(obj);
|
|
int64_t value;
|
|
|
|
if (s->fd != -1) {
|
|
error_setg(errp, "Cannot set properties after the accelerator has been initialized");
|
|
return;
|
|
}
|
|
|
|
if (!visit_type_int(v, name, &value, errp)) {
|
|
return;
|
|
}
|
|
|
|
s->kvm_shadow_mem = value;
|
|
}
|
|
|
|
static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
|
|
const char *name, void *opaque,
|
|
Error **errp)
|
|
{
|
|
KVMState *s = KVM_STATE(obj);
|
|
OnOffSplit mode;
|
|
|
|
if (s->fd != -1) {
|
|
error_setg(errp, "Cannot set properties after the accelerator has been initialized");
|
|
return;
|
|
}
|
|
|
|
if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
|
|
return;
|
|
}
|
|
switch (mode) {
|
|
case ON_OFF_SPLIT_ON:
|
|
s->kernel_irqchip_allowed = true;
|
|
s->kernel_irqchip_required = true;
|
|
s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
|
|
break;
|
|
case ON_OFF_SPLIT_OFF:
|
|
s->kernel_irqchip_allowed = false;
|
|
s->kernel_irqchip_required = false;
|
|
s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
|
|
break;
|
|
case ON_OFF_SPLIT_SPLIT:
|
|
s->kernel_irqchip_allowed = true;
|
|
s->kernel_irqchip_required = true;
|
|
s->kernel_irqchip_split = ON_OFF_AUTO_ON;
|
|
break;
|
|
default:
|
|
/* The value was checked in visit_type_OnOffSplit() above. If
|
|
* we get here, then something is wrong in QEMU.
|
|
*/
|
|
abort();
|
|
}
|
|
}
|
|
|
|
bool kvm_kernel_irqchip_allowed(void)
|
|
{
|
|
return kvm_state->kernel_irqchip_allowed;
|
|
}
|
|
|
|
bool kvm_kernel_irqchip_required(void)
|
|
{
|
|
return kvm_state->kernel_irqchip_required;
|
|
}
|
|
|
|
bool kvm_kernel_irqchip_split(void)
|
|
{
|
|
return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
|
|
}
|
|
|
|
static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
|
|
const char *name, void *opaque,
|
|
Error **errp)
|
|
{
|
|
KVMState *s = KVM_STATE(obj);
|
|
uint32_t value = s->kvm_dirty_ring_size;
|
|
|
|
visit_type_uint32(v, name, &value, errp);
|
|
}
|
|
|
|
static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
|
|
const char *name, void *opaque,
|
|
Error **errp)
|
|
{
|
|
KVMState *s = KVM_STATE(obj);
|
|
uint32_t value;
|
|
|
|
if (s->fd != -1) {
|
|
error_setg(errp, "Cannot set properties after the accelerator has been initialized");
|
|
return;
|
|
}
|
|
|
|
if (!visit_type_uint32(v, name, &value, errp)) {
|
|
return;
|
|
}
|
|
if (value & (value - 1)) {
|
|
error_setg(errp, "dirty-ring-size must be a power of two.");
|
|
return;
|
|
}
|
|
|
|
s->kvm_dirty_ring_size = value;
|
|
}
|
|
|
|
static void kvm_accel_instance_init(Object *obj)
|
|
{
|
|
KVMState *s = KVM_STATE(obj);
|
|
|
|
s->fd = -1;
|
|
s->vmfd = -1;
|
|
s->kvm_shadow_mem = -1;
|
|
s->kernel_irqchip_allowed = true;
|
|
s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
|
|
/* KVM dirty ring is by default off */
|
|
s->kvm_dirty_ring_size = 0;
|
|
s->kvm_dirty_ring_with_bitmap = false;
|
|
s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
|
|
s->notify_window = 0;
|
|
s->xen_version = 0;
|
|
s->xen_gnttab_max_frames = 64;
|
|
s->xen_evtchn_max_pirq = 256;
|
|
}
|
|
|
|
/**
|
|
* kvm_gdbstub_sstep_flags():
|
|
*
|
|
* Returns: SSTEP_* flags that KVM supports for guest debug. The
|
|
* support is probed during kvm_init()
|
|
*/
|
|
static int kvm_gdbstub_sstep_flags(void)
|
|
{
|
|
return kvm_sstep_flags;
|
|
}
|
|
|
|
static void kvm_accel_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
AccelClass *ac = ACCEL_CLASS(oc);
|
|
ac->name = "KVM";
|
|
ac->init_machine = kvm_init;
|
|
ac->has_memory = kvm_accel_has_memory;
|
|
ac->allowed = &kvm_allowed;
|
|
ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
|
|
|
|
object_class_property_add(oc, "kernel-irqchip", "on|off|split",
|
|
NULL, kvm_set_kernel_irqchip,
|
|
NULL, NULL);
|
|
object_class_property_set_description(oc, "kernel-irqchip",
|
|
"Configure KVM in-kernel irqchip");
|
|
|
|
object_class_property_add(oc, "kvm-shadow-mem", "int",
|
|
kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
|
|
NULL, NULL);
|
|
object_class_property_set_description(oc, "kvm-shadow-mem",
|
|
"KVM shadow MMU size");
|
|
|
|
object_class_property_add(oc, "dirty-ring-size", "uint32",
|
|
kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
|
|
NULL, NULL);
|
|
object_class_property_set_description(oc, "dirty-ring-size",
|
|
"Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
|
|
|
|
kvm_arch_accel_class_init(oc);
|
|
}
|
|
|
|
static const TypeInfo kvm_accel_type = {
|
|
.name = TYPE_KVM_ACCEL,
|
|
.parent = TYPE_ACCEL,
|
|
.instance_init = kvm_accel_instance_init,
|
|
.class_init = kvm_accel_class_init,
|
|
.instance_size = sizeof(KVMState),
|
|
};
|
|
|
|
static void kvm_type_init(void)
|
|
{
|
|
type_register_static(&kvm_accel_type);
|
|
}
|
|
|
|
type_init(kvm_type_init);
|
|
|
|
typedef struct StatsArgs {
|
|
union StatsResultsType {
|
|
StatsResultList **stats;
|
|
StatsSchemaList **schema;
|
|
} result;
|
|
strList *names;
|
|
Error **errp;
|
|
} StatsArgs;
|
|
|
|
static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
|
|
uint64_t *stats_data,
|
|
StatsList *stats_list,
|
|
Error **errp)
|
|
{
|
|
|
|
Stats *stats;
|
|
uint64List *val_list = NULL;
|
|
|
|
/* Only add stats that we understand. */
|
|
switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
|
|
case KVM_STATS_TYPE_CUMULATIVE:
|
|
case KVM_STATS_TYPE_INSTANT:
|
|
case KVM_STATS_TYPE_PEAK:
|
|
case KVM_STATS_TYPE_LINEAR_HIST:
|
|
case KVM_STATS_TYPE_LOG_HIST:
|
|
break;
|
|
default:
|
|
return stats_list;
|
|
}
|
|
|
|
switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
|
|
case KVM_STATS_UNIT_NONE:
|
|
case KVM_STATS_UNIT_BYTES:
|
|
case KVM_STATS_UNIT_CYCLES:
|
|
case KVM_STATS_UNIT_SECONDS:
|
|
case KVM_STATS_UNIT_BOOLEAN:
|
|
break;
|
|
default:
|
|
return stats_list;
|
|
}
|
|
|
|
switch (pdesc->flags & KVM_STATS_BASE_MASK) {
|
|
case KVM_STATS_BASE_POW10:
|
|
case KVM_STATS_BASE_POW2:
|
|
break;
|
|
default:
|
|
return stats_list;
|
|
}
|
|
|
|
/* Alloc and populate data list */
|
|
stats = g_new0(Stats, 1);
|
|
stats->name = g_strdup(pdesc->name);
|
|
stats->value = g_new0(StatsValue, 1);;
|
|
|
|
if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
|
|
stats->value->u.boolean = *stats_data;
|
|
stats->value->type = QTYPE_QBOOL;
|
|
} else if (pdesc->size == 1) {
|
|
stats->value->u.scalar = *stats_data;
|
|
stats->value->type = QTYPE_QNUM;
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < pdesc->size; i++) {
|
|
QAPI_LIST_PREPEND(val_list, stats_data[i]);
|
|
}
|
|
stats->value->u.list = val_list;
|
|
stats->value->type = QTYPE_QLIST;
|
|
}
|
|
|
|
QAPI_LIST_PREPEND(stats_list, stats);
|
|
return stats_list;
|
|
}
|
|
|
|
static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
|
|
StatsSchemaValueList *list,
|
|
Error **errp)
|
|
{
|
|
StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
|
|
schema_entry->value = g_new0(StatsSchemaValue, 1);
|
|
|
|
switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
|
|
case KVM_STATS_TYPE_CUMULATIVE:
|
|
schema_entry->value->type = STATS_TYPE_CUMULATIVE;
|
|
break;
|
|
case KVM_STATS_TYPE_INSTANT:
|
|
schema_entry->value->type = STATS_TYPE_INSTANT;
|
|
break;
|
|
case KVM_STATS_TYPE_PEAK:
|
|
schema_entry->value->type = STATS_TYPE_PEAK;
|
|
break;
|
|
case KVM_STATS_TYPE_LINEAR_HIST:
|
|
schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
|
|
schema_entry->value->bucket_size = pdesc->bucket_size;
|
|
schema_entry->value->has_bucket_size = true;
|
|
break;
|
|
case KVM_STATS_TYPE_LOG_HIST:
|
|
schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
|
|
break;
|
|
default:
|
|
goto exit;
|
|
}
|
|
|
|
switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
|
|
case KVM_STATS_UNIT_NONE:
|
|
break;
|
|
case KVM_STATS_UNIT_BOOLEAN:
|
|
schema_entry->value->has_unit = true;
|
|
schema_entry->value->unit = STATS_UNIT_BOOLEAN;
|
|
break;
|
|
case KVM_STATS_UNIT_BYTES:
|
|
schema_entry->value->has_unit = true;
|
|
schema_entry->value->unit = STATS_UNIT_BYTES;
|
|
break;
|
|
case KVM_STATS_UNIT_CYCLES:
|
|
schema_entry->value->has_unit = true;
|
|
schema_entry->value->unit = STATS_UNIT_CYCLES;
|
|
break;
|
|
case KVM_STATS_UNIT_SECONDS:
|
|
schema_entry->value->has_unit = true;
|
|
schema_entry->value->unit = STATS_UNIT_SECONDS;
|
|
break;
|
|
default:
|
|
goto exit;
|
|
}
|
|
|
|
schema_entry->value->exponent = pdesc->exponent;
|
|
if (pdesc->exponent) {
|
|
switch (pdesc->flags & KVM_STATS_BASE_MASK) {
|
|
case KVM_STATS_BASE_POW10:
|
|
schema_entry->value->has_base = true;
|
|
schema_entry->value->base = 10;
|
|
break;
|
|
case KVM_STATS_BASE_POW2:
|
|
schema_entry->value->has_base = true;
|
|
schema_entry->value->base = 2;
|
|
break;
|
|
default:
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
schema_entry->value->name = g_strdup(pdesc->name);
|
|
schema_entry->next = list;
|
|
return schema_entry;
|
|
exit:
|
|
g_free(schema_entry->value);
|
|
g_free(schema_entry);
|
|
return list;
|
|
}
|
|
|
|
/* Cached stats descriptors */
|
|
typedef struct StatsDescriptors {
|
|
const char *ident; /* cache key, currently the StatsTarget */
|
|
struct kvm_stats_desc *kvm_stats_desc;
|
|
struct kvm_stats_header kvm_stats_header;
|
|
QTAILQ_ENTRY(StatsDescriptors) next;
|
|
} StatsDescriptors;
|
|
|
|
static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
|
|
QTAILQ_HEAD_INITIALIZER(stats_descriptors);
|
|
|
|
/*
|
|
* Return the descriptors for 'target', that either have already been read
|
|
* or are retrieved from 'stats_fd'.
|
|
*/
|
|
static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
|
|
Error **errp)
|
|
{
|
|
StatsDescriptors *descriptors;
|
|
const char *ident;
|
|
struct kvm_stats_desc *kvm_stats_desc;
|
|
struct kvm_stats_header *kvm_stats_header;
|
|
size_t size_desc;
|
|
ssize_t ret;
|
|
|
|
ident = StatsTarget_str(target);
|
|
QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
|
|
if (g_str_equal(descriptors->ident, ident)) {
|
|
return descriptors;
|
|
}
|
|
}
|
|
|
|
descriptors = g_new0(StatsDescriptors, 1);
|
|
|
|
/* Read stats header */
|
|
kvm_stats_header = &descriptors->kvm_stats_header;
|
|
ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
|
|
if (ret != sizeof(*kvm_stats_header)) {
|
|
error_setg(errp, "KVM stats: failed to read stats header: "
|
|
"expected %zu actual %zu",
|
|
sizeof(*kvm_stats_header), ret);
|
|
g_free(descriptors);
|
|
return NULL;
|
|
}
|
|
size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
|
|
|
|
/* Read stats descriptors */
|
|
kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
|
|
ret = pread(stats_fd, kvm_stats_desc,
|
|
size_desc * kvm_stats_header->num_desc,
|
|
kvm_stats_header->desc_offset);
|
|
|
|
if (ret != size_desc * kvm_stats_header->num_desc) {
|
|
error_setg(errp, "KVM stats: failed to read stats descriptors: "
|
|
"expected %zu actual %zu",
|
|
size_desc * kvm_stats_header->num_desc, ret);
|
|
g_free(descriptors);
|
|
g_free(kvm_stats_desc);
|
|
return NULL;
|
|
}
|
|
descriptors->kvm_stats_desc = kvm_stats_desc;
|
|
descriptors->ident = ident;
|
|
QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
|
|
return descriptors;
|
|
}
|
|
|
|
static void query_stats(StatsResultList **result, StatsTarget target,
|
|
strList *names, int stats_fd, Error **errp)
|
|
{
|
|
struct kvm_stats_desc *kvm_stats_desc;
|
|
struct kvm_stats_header *kvm_stats_header;
|
|
StatsDescriptors *descriptors;
|
|
g_autofree uint64_t *stats_data = NULL;
|
|
struct kvm_stats_desc *pdesc;
|
|
StatsList *stats_list = NULL;
|
|
size_t size_desc, size_data = 0;
|
|
ssize_t ret;
|
|
int i;
|
|
|
|
descriptors = find_stats_descriptors(target, stats_fd, errp);
|
|
if (!descriptors) {
|
|
return;
|
|
}
|
|
|
|
kvm_stats_header = &descriptors->kvm_stats_header;
|
|
kvm_stats_desc = descriptors->kvm_stats_desc;
|
|
size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
|
|
|
|
/* Tally the total data size; read schema data */
|
|
for (i = 0; i < kvm_stats_header->num_desc; ++i) {
|
|
pdesc = (void *)kvm_stats_desc + i * size_desc;
|
|
size_data += pdesc->size * sizeof(*stats_data);
|
|
}
|
|
|
|
stats_data = g_malloc0(size_data);
|
|
ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
|
|
|
|
if (ret != size_data) {
|
|
error_setg(errp, "KVM stats: failed to read data: "
|
|
"expected %zu actual %zu", size_data, ret);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < kvm_stats_header->num_desc; ++i) {
|
|
uint64_t *stats;
|
|
pdesc = (void *)kvm_stats_desc + i * size_desc;
|
|
|
|
/* Add entry to the list */
|
|
stats = (void *)stats_data + pdesc->offset;
|
|
if (!apply_str_list_filter(pdesc->name, names)) {
|
|
continue;
|
|
}
|
|
stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
|
|
}
|
|
|
|
if (!stats_list) {
|
|
return;
|
|
}
|
|
|
|
switch (target) {
|
|
case STATS_TARGET_VM:
|
|
add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
|
|
break;
|
|
case STATS_TARGET_VCPU:
|
|
add_stats_entry(result, STATS_PROVIDER_KVM,
|
|
current_cpu->parent_obj.canonical_path,
|
|
stats_list);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
|
|
int stats_fd, Error **errp)
|
|
{
|
|
struct kvm_stats_desc *kvm_stats_desc;
|
|
struct kvm_stats_header *kvm_stats_header;
|
|
StatsDescriptors *descriptors;
|
|
struct kvm_stats_desc *pdesc;
|
|
StatsSchemaValueList *stats_list = NULL;
|
|
size_t size_desc;
|
|
int i;
|
|
|
|
descriptors = find_stats_descriptors(target, stats_fd, errp);
|
|
if (!descriptors) {
|
|
return;
|
|
}
|
|
|
|
kvm_stats_header = &descriptors->kvm_stats_header;
|
|
kvm_stats_desc = descriptors->kvm_stats_desc;
|
|
size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
|
|
|
|
/* Tally the total data size; read schema data */
|
|
for (i = 0; i < kvm_stats_header->num_desc; ++i) {
|
|
pdesc = (void *)kvm_stats_desc + i * size_desc;
|
|
stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
|
|
}
|
|
|
|
add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
|
|
}
|
|
|
|
static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
|
|
{
|
|
StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
|
|
int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
|
|
Error *local_err = NULL;
|
|
|
|
if (stats_fd == -1) {
|
|
error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
|
|
error_propagate(kvm_stats_args->errp, local_err);
|
|
return;
|
|
}
|
|
query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
|
|
kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
|
|
close(stats_fd);
|
|
}
|
|
|
|
static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
|
|
{
|
|
StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
|
|
int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
|
|
Error *local_err = NULL;
|
|
|
|
if (stats_fd == -1) {
|
|
error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
|
|
error_propagate(kvm_stats_args->errp, local_err);
|
|
return;
|
|
}
|
|
query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
|
|
kvm_stats_args->errp);
|
|
close(stats_fd);
|
|
}
|
|
|
|
static void query_stats_cb(StatsResultList **result, StatsTarget target,
|
|
strList *names, strList *targets, Error **errp)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
CPUState *cpu;
|
|
int stats_fd;
|
|
|
|
switch (target) {
|
|
case STATS_TARGET_VM:
|
|
{
|
|
stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
|
|
if (stats_fd == -1) {
|
|
error_setg_errno(errp, errno, "KVM stats: ioctl failed");
|
|
return;
|
|
}
|
|
query_stats(result, target, names, stats_fd, errp);
|
|
close(stats_fd);
|
|
break;
|
|
}
|
|
case STATS_TARGET_VCPU:
|
|
{
|
|
StatsArgs stats_args;
|
|
stats_args.result.stats = result;
|
|
stats_args.names = names;
|
|
stats_args.errp = errp;
|
|
CPU_FOREACH(cpu) {
|
|
if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
|
|
continue;
|
|
}
|
|
run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
|
|
{
|
|
StatsArgs stats_args;
|
|
KVMState *s = kvm_state;
|
|
int stats_fd;
|
|
|
|
stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
|
|
if (stats_fd == -1) {
|
|
error_setg_errno(errp, errno, "KVM stats: ioctl failed");
|
|
return;
|
|
}
|
|
query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
|
|
close(stats_fd);
|
|
|
|
if (first_cpu) {
|
|
stats_args.result.schema = result;
|
|
stats_args.errp = errp;
|
|
run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
|
|
}
|
|
}
|