mirror of
https://gitlab.com/qemu-project/qemu
synced 2024-11-02 22:41:07 +00:00
No description
177f9b1ee4
Having large virtio-mem devices that only expose little memory to a VM is currently a problem: we map the whole sparse memory region into the guest using a single memslot, resulting in one gigantic memslot in KVM. KVM allocates metadata for the whole memslot, which can result in quite some memory waste. Assuming we have a 1 TiB virtio-mem device and only expose little (e.g., 1 GiB) memory, we would create a single 1 TiB memslot and KVM has to allocate metadata for that 1 TiB memslot: on x86, this implies allocating a significant amount of memory for metadata: (1) RMAP: 8 bytes per 4 KiB, 8 bytes per 2 MiB, 8 bytes per 1 GiB -> For 1 TiB: 2147483648 + 4194304 + 8192 = ~ 2 GiB (0.2 %) With the TDP MMU (cat /sys/module/kvm/parameters/tdp_mmu) this gets allocated lazily when required for nested VMs (2) gfn_track: 2 bytes per 4 KiB -> For 1 TiB: 536870912 = ~512 MiB (0.05 %) (3) lpage_info: 4 bytes per 2 MiB, 4 bytes per 1 GiB -> For 1 TiB: 2097152 + 4096 = ~2 MiB (0.0002 %) (4) 2x dirty bitmaps for tracking: 2x 1 bit per 4 KiB page -> For 1 TiB: 536870912 = 64 MiB (0.006 %) So we primarily care about (1) and (2). The bad thing is, that the memory consumption *doubles* once SMM is enabled, because we create the memslot once for !SMM and once for SMM. Having a 1 TiB memslot without the TDP MMU consumes around: * With SMM: 5 GiB * Without SMM: 2.5 GiB Having a 1 TiB memslot with the TDP MMU consumes around: * With SMM: 1 GiB * Without SMM: 512 MiB ... and that's really something we want to optimize, to be able to just start a VM with small boot memory (e.g., 4 GiB) and a virtio-mem device that can grow very large (e.g., 1 TiB). Consequently, using multiple memslots and only mapping the memslots we really need can significantly reduce memory waste and speed up memslot-related operations. Let's expose the sparse RAM memory region using multiple memslots, mapping only the memslots we currently need into our device memory region container. The feature can be enabled using "dynamic-memslots=on" and requires "unplugged-inaccessible=on", which is nowadays the default. Once enabled, we'll auto-detect the number of memslots to use based on the memslot limit provided by the core. We'll use at most 1 memslot per gigabyte. Note that our global limit of memslots accross all memory devices is currently set to 256: even with multiple large virtio-mem devices, we'd still have a sane limit on the number of memslots used. The default is to not dynamically map memslot for now ("dynamic-memslots=off"). The optimization must be enabled manually, because some vhost setups (e.g., hotplug of vhost-user devices) might be problematic until we support more memslots especially in vhost-user backends. Note that "dynamic-memslots=on" is just a hint that multiple memslots *may* be used for internal optimizations, not that multiple memslots *must* be used. The actual number of memslots that are used is an internal detail: for example, once memslot metadata is no longer an issue, we could simply stop optimizing for that. Migration source and destination can differ on the setting of "dynamic-memslots". Message-ID: <20230926185738.277351-17-david@redhat.com> Reviewed-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> |
||
---|---|---|
.github/workflows | ||
.gitlab/issue_templates | ||
.gitlab-ci.d | ||
accel | ||
audio | ||
authz | ||
backends | ||
block | ||
bsd-user | ||
chardev | ||
common-user | ||
configs | ||
contrib | ||
crypto | ||
disas | ||
docs | ||
dump | ||
ebpf | ||
fpu | ||
fsdev | ||
gdb-xml | ||
gdbstub | ||
host/include | ||
hw | ||
include | ||
io | ||
libdecnumber | ||
linux-headers | ||
linux-user | ||
migration | ||
monitor | ||
nbd | ||
net | ||
pc-bios | ||
plugins | ||
po | ||
python | ||
qapi | ||
qga | ||
qobject | ||
qom | ||
replay | ||
roms | ||
scripts | ||
scsi | ||
semihosting | ||
stats | ||
storage-daemon | ||
stubs | ||
subprojects | ||
system | ||
target | ||
tcg | ||
tests | ||
tools | ||
trace | ||
ui | ||
util | ||
.dir-locals.el | ||
.editorconfig | ||
.exrc | ||
.gdbinit | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
.gitlab-ci.yml | ||
.gitmodules | ||
.gitpublish | ||
.mailmap | ||
.patchew.yml | ||
.readthedocs.yml | ||
.travis.yml | ||
block.c | ||
blockdev-nbd.c | ||
blockdev.c | ||
blockjob.c | ||
configure | ||
COPYING | ||
COPYING.LIB | ||
cpu-common.c | ||
cpu-target.c | ||
event-loop-base.c | ||
gitdm.config | ||
hmp-commands-info.hx | ||
hmp-commands.hx | ||
iothread.c | ||
job-qmp.c | ||
job.c | ||
Kconfig | ||
Kconfig.host | ||
LICENSE | ||
MAINTAINERS | ||
Makefile | ||
memory_ldst.c.inc | ||
meson.build | ||
meson_options.txt | ||
module-common.c | ||
os-posix.c | ||
os-win32.c | ||
page-vary-common.c | ||
page-vary-target.c | ||
pythondeps.toml | ||
qemu-bridge-helper.c | ||
qemu-edid.c | ||
qemu-img-cmds.hx | ||
qemu-img.c | ||
qemu-io-cmds.c | ||
qemu-io.c | ||
qemu-keymap.c | ||
qemu-nbd.c | ||
qemu-options.hx | ||
qemu.nsi | ||
qemu.sasl | ||
README.rst | ||
replication.c | ||
trace-events | ||
VERSION | ||
version.rc |
=========== QEMU README =========== QEMU is a generic and open source machine & userspace emulator and virtualizer. QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board). QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation. QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager. QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file. Documentation ============= Documentation can be found hosted online at `<https://www.qemu.org/documentation/>`_. The documentation for the current development version that is available at `<https://www.qemu.org/docs/master/>`_ is generated from the ``docs/`` folder in the source tree, and is built by `Sphinx <https://www.sphinx-doc.org/en/master/>`_. Building ======== QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are: .. code-block:: shell mkdir build cd build ../configure make Additional information can also be found online via the QEMU website: * `<https://wiki.qemu.org/Hosts/Linux>`_ * `<https://wiki.qemu.org/Hosts/Mac>`_ * `<https://wiki.qemu.org/Hosts/W32>`_ Submitting patches ================== The QEMU source code is maintained under the GIT version control system. .. code-block:: shell git clone https://gitlab.com/qemu-project/qemu.git When submitting patches, one common approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the `style section <https://www.qemu.org/docs/master/devel/style.html>`_ of the Developers Guide. Additional information on submitting patches can be found online via the QEMU website * `<https://wiki.qemu.org/Contribute/SubmitAPatch>`_ * `<https://wiki.qemu.org/Contribute/TrivialPatches>`_ The QEMU website is also maintained under source control. .. code-block:: shell git clone https://gitlab.com/qemu-project/qemu-web.git * `<https://www.qemu.org/2017/02/04/the-new-qemu-website-is-up/>`_ A 'git-publish' utility was created to make above process less cumbersome, and is highly recommended for making regular contributions, or even just for sending consecutive patch series revisions. It also requires a working 'git send-email' setup, and by default doesn't automate everything, so you may want to go through the above steps manually for once. For installation instructions, please go to * `<https://github.com/stefanha/git-publish>`_ The workflow with 'git-publish' is: .. code-block:: shell $ git checkout master -b my-feature $ # work on new commits, add your 'Signed-off-by' lines to each $ git publish Your patch series will be sent and tagged as my-feature-v1 if you need to refer back to it in the future. Sending v2: .. code-block:: shell $ git checkout my-feature # same topic branch $ # making changes to the commits (using 'git rebase', for example) $ git publish Your patch series will be sent with 'v2' tag in the subject and the git tip will be tagged as my-feature-v2. Bug reporting ============= The QEMU project uses GitLab issues to track bugs. Bugs found when running code built from QEMU git or upstream released sources should be reported via: * `<https://gitlab.com/qemu-project/qemu/-/issues>`_ If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via GitLab. For additional information on bug reporting consult: * `<https://wiki.qemu.org/Contribute/ReportABug>`_ ChangeLog ========= For version history and release notes, please visit `<https://wiki.qemu.org/ChangeLog/>`_ or look at the git history for more detailed information. Contact ======= The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC * `<mailto:qemu-devel@nongnu.org>`_ * `<https://lists.nongnu.org/mailman/listinfo/qemu-devel>`_ * #qemu on irc.oftc.net Information on additional methods of contacting the community can be found online via the QEMU website: * `<https://wiki.qemu.org/Contribute/StartHere>`_