qemu/target/hexagon/hex_common.py
Taylor Simpson 7ee328804c Hexagon (target/hexagon) Remove dead functions from hex_common.py
These functions are no longer used after making the generators
object oriented.

Signed-off-by: Taylor Simpson <ltaylorsimpson@gmail.com>
Reviewed-by: Brian Cain <bcain@quicinc.com>
Message-Id: <20231210220712.491494-10-ltaylorsimpson@gmail.com>
Signed-off-by: Brian Cain <bcain@quicinc.com>
2024-01-21 22:02:30 -08:00

1133 lines
38 KiB
Python
Executable file

#!/usr/bin/env python3
##
## Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import textwrap
behdict = {} # tag ->behavior
semdict = {} # tag -> semantics
attribdict = {} # tag -> attributes
macros = {} # macro -> macro information...
attribinfo = {} # Register information and misc
registers = {} # register -> register functions
new_registers = {}
tags = [] # list of all tags
overrides = {} # tags with helper overrides
idef_parser_enabled = {} # tags enabled for idef-parser
# We should do this as a hash for performance,
# but to keep order let's keep it as a list.
def uniquify(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if x not in seen and not seen_add(x)]
regre = re.compile(r"((?<!DUP)[MNORCPQXSGVZA])([stuvwxyzdefg]+)([.]?[LlHh]?)(\d+S?)")
immre = re.compile(r"[#]([rRsSuUm])(\d+)(?:[:](\d+))?")
reg_or_immre = re.compile(
r"(((?<!DUP)[MNRCOPQXSGVZA])([stuvwxyzdefg]+)"
r"([.]?[LlHh]?)(\d+S?))|([#]([rRsSuUm])(\d+)[:]?(\d+)?)"
)
relimmre = re.compile(r"[#]([rR])(\d+)(?:[:](\d+))?")
absimmre = re.compile(r"[#]([sSuUm])(\d+)(?:[:](\d+))?")
finished_macros = set()
def expand_macro_attribs(macro, allmac_re):
if macro.key not in finished_macros:
# Get a list of all things that might be macros
l = allmac_re.findall(macro.beh)
for submacro in l:
if not submacro:
continue
if not macros[submacro]:
raise Exception(f"Couldn't find macro: <{l}>")
macro.attribs |= expand_macro_attribs(macros[submacro], allmac_re)
finished_macros.add(macro.key)
return macro.attribs
# When qemu needs an attribute that isn't in the imported files,
# we'll add it here.
def add_qemu_macro_attrib(name, attrib):
macros[name].attribs.add(attrib)
immextre = re.compile(r"f(MUST_)?IMMEXT[(]([UuSsRr])")
def is_cond_jump(tag):
if tag == "J2_rte":
return False
if "A_HWLOOP0_END" in attribdict[tag] or "A_HWLOOP1_END" in attribdict[tag]:
return False
return re.compile(r"(if.*fBRANCH)|(if.*fJUMPR)").search(semdict[tag]) != None
def is_cond_call(tag):
return re.compile(r"(if.*fCALL)").search(semdict[tag]) != None
def calculate_attribs():
add_qemu_macro_attrib("fREAD_PC", "A_IMPLICIT_READS_PC")
add_qemu_macro_attrib("fTRAP", "A_IMPLICIT_READS_PC")
add_qemu_macro_attrib("fSET_OVERFLOW", "A_IMPLICIT_WRITES_USR")
add_qemu_macro_attrib("fSET_LPCFG", "A_IMPLICIT_WRITES_USR")
add_qemu_macro_attrib("fLOAD", "A_SCALAR_LOAD")
add_qemu_macro_attrib("fSTORE", "A_SCALAR_STORE")
add_qemu_macro_attrib('fLSBNEW0', 'A_IMPLICIT_READS_P0')
add_qemu_macro_attrib('fLSBNEW0NOT', 'A_IMPLICIT_READS_P0')
add_qemu_macro_attrib('fREAD_P0', 'A_IMPLICIT_READS_P0')
add_qemu_macro_attrib('fLSBNEW1', 'A_IMPLICIT_READS_P1')
add_qemu_macro_attrib('fLSBNEW1NOT', 'A_IMPLICIT_READS_P1')
add_qemu_macro_attrib('fREAD_P3', 'A_IMPLICIT_READS_P3')
# Recurse down macros, find attributes from sub-macros
macroValues = list(macros.values())
allmacros_restr = "|".join(set([m.re.pattern for m in macroValues]))
allmacros_re = re.compile(allmacros_restr)
for macro in macroValues:
expand_macro_attribs(macro, allmacros_re)
# Append attributes to all instructions
for tag in tags:
for macname in allmacros_re.findall(semdict[tag]):
if not macname:
continue
macro = macros[macname]
attribdict[tag] |= set(macro.attribs)
# Mark conditional jumps and calls
# Not all instructions are properly marked with A_CONDEXEC
for tag in tags:
if is_cond_jump(tag) or is_cond_call(tag):
attribdict[tag].add("A_CONDEXEC")
def SEMANTICS(tag, beh, sem):
# print tag,beh,sem
behdict[tag] = beh
semdict[tag] = sem
attribdict[tag] = set()
tags.append(tag) # dicts have no order, this is for order
def ATTRIBUTES(tag, attribstring):
attribstring = attribstring.replace("ATTRIBS", "").replace("(", "").replace(")", "")
if not attribstring:
return
attribs = attribstring.split(",")
for attrib in attribs:
attribdict[tag].add(attrib.strip())
class Macro(object):
__slots__ = ["key", "name", "beh", "attribs", "re"]
def __init__(self, name, beh, attribs):
self.key = name
self.name = name
self.beh = beh
self.attribs = set(attribs)
self.re = re.compile("\\b" + name + "\\b")
def MACROATTRIB(macname, beh, attribstring):
attribstring = attribstring.replace("(", "").replace(")", "")
if attribstring:
attribs = attribstring.split(",")
else:
attribs = []
macros[macname] = Macro(macname, beh, attribs)
def compute_tag_regs(tag, full):
tagregs = regre.findall(behdict[tag])
if not full:
tagregs = map(lambda reg: reg[:2], tagregs)
return uniquify(tagregs)
def compute_tag_immediates(tag):
return uniquify(immre.findall(behdict[tag]))
##
## tagregs is the main data structure we'll use
## tagregs[tag] will contain the registers used by an instruction
## Within each entry, we'll use the regtype and regid fields
## regtype can be one of the following
## C control register
## N new register value
## P predicate register
## R GPR register
## M modifier register
## Q HVX predicate vector
## V HVX vector register
## O HVX new vector register
## regid can be one of the following
## d, e destination register
## dd destination register pair
## s, t, u, v, w source register
## ss, tt, uu, vv source register pair
## x, y read-write register
## xx, yy read-write register pair
##
def get_tagregs(full=False):
compute_func = lambda tag: compute_tag_regs(tag, full)
return dict(zip(tags, list(map(compute_func, tags))))
def get_tagimms():
return dict(zip(tags, list(map(compute_tag_immediates, tags))))
def need_slot(tag):
if (
"A_CVI_SCATTER" not in attribdict[tag]
and "A_CVI_GATHER" not in attribdict[tag]
and ("A_STORE" in attribdict[tag]
or "A_LOAD" in attribdict[tag])
):
return 1
else:
return 0
def need_part1(tag):
return re.compile(r"fPART1").search(semdict[tag])
def need_ea(tag):
return re.compile(r"\bEA\b").search(semdict[tag])
def need_PC(tag):
return "A_IMPLICIT_READS_PC" in attribdict[tag]
def need_next_PC(tag):
return "A_CALL" in attribdict[tag]
def need_pkt_has_multi_cof(tag):
return "A_COF" in attribdict[tag]
def need_pkt_need_commit(tag):
return 'A_IMPLICIT_WRITES_USR' in attribdict[tag]
def skip_qemu_helper(tag):
return tag in overrides.keys()
def is_idef_parser_enabled(tag):
return tag in idef_parser_enabled
def imm_name(immlett):
return f"{immlett}iV"
def read_semantics_file(name):
eval_line = ""
for line in open(name, "rt").readlines():
if not line.startswith("#"):
eval_line += line
if line.endswith("\\\n"):
eval_line.rstrip("\\\n")
else:
eval(eval_line.strip())
eval_line = ""
def read_attribs_file(name):
attribre = re.compile(
r"DEF_ATTRIB\(([A-Za-z0-9_]+), ([^,]*), "
+ r'"([A-Za-z0-9_\.]*)", "([A-Za-z0-9_\.]*)"\)'
)
for line in open(name, "rt").readlines():
if not attribre.match(line):
continue
(attrib_base, descr, rreg, wreg) = attribre.findall(line)[0]
attrib_base = "A_" + attrib_base
attribinfo[attrib_base] = {"rreg": rreg, "wreg": wreg, "descr": descr}
def read_overrides_file(name):
overridere = re.compile(r"#define fGEN_TCG_([A-Za-z0-9_]+)\(.*")
for line in open(name, "rt").readlines():
if not overridere.match(line):
continue
tag = overridere.findall(line)[0]
overrides[tag] = True
def read_idef_parser_enabled_file(name):
global idef_parser_enabled
with open(name, "r") as idef_parser_enabled_file:
lines = idef_parser_enabled_file.read().strip().split("\n")
idef_parser_enabled = set(lines)
def is_predicated(tag):
return "A_CONDEXEC" in attribdict[tag]
def code_fmt(txt):
return textwrap.indent(textwrap.dedent(txt), " ")
def hvx_newv(tag):
if "A_CVI_NEW" in attribdict[tag]:
return "EXT_NEW"
elif "A_CVI_TMP" in attribdict[tag] or "A_CVI_TMP_DST" in attribdict[tag]:
return "EXT_TMP"
else:
return "EXT_DFL"
def vreg_offset_func(tag):
if "A_CVI_TMP" in attribdict[tag] or "A_CVI_TMP_DST" in attribdict[tag]:
return "ctx_tmp_vreg_off"
else:
return "ctx_future_vreg_off"
class HelperArg:
def __init__(self, proto_arg, call_arg, func_arg):
self.proto_arg = proto_arg
self.call_arg = call_arg
self.func_arg = func_arg
class Register:
def __init__(self, regtype, regid):
self.regtype = regtype
self.regid = regid
self.reg_num = f"{regtype}{regid}N"
def decl_reg_num(self, f, regno):
f.write(code_fmt(f"""\
const int {self.reg_num} = insn->regno[{regno}];
"""))
def idef_arg(self, declared):
declared.append(self.reg_tcg())
def helper_arg(self):
return HelperArg(
self.helper_proto_type(),
self.reg_tcg(),
f"{self.helper_arg_type()} {self.helper_arg_name()}"
)
#
# Every register is either Single or Pair or Hvx
#
class Scalar:
def is_scalar_reg(self):
return True
def is_hvx_reg(self):
return False
def helper_arg_name(self):
return self.reg_tcg()
class Single(Scalar):
def helper_proto_type(self):
return "s32"
def helper_arg_type(self):
return "int32_t"
class Pair(Scalar):
def helper_proto_type(self):
return "s64"
def helper_arg_type(self):
return "int64_t"
class Hvx:
def is_scalar_reg(self):
return False
def is_hvx_reg(self):
return True
def hvx_off(self):
return f"{self.reg_tcg()}_off"
def helper_proto_type(self):
return "ptr"
def helper_arg_type(self):
return "void *"
def helper_arg_name(self):
return f"{self.reg_tcg()}_void"
#
# Every register is either Dest or OldSource or NewSource or ReadWrite
#
class Dest:
def reg_tcg(self):
return f"{self.regtype}{self.regid}V"
def is_written(self):
return True
def is_writeonly(self):
return True
def is_read(self):
return False
def is_readwrite(self):
return False
class Source:
def is_written(self):
return False
def is_writeonly(self):
return False
def is_read(self):
return True
def is_readwrite(self):
return False
class OldSource(Source):
def reg_tcg(self):
return f"{self.regtype}{self.regid}V"
class NewSource(Source):
def reg_tcg(self):
return f"{self.regtype}{self.regid}N"
class ReadWrite:
def reg_tcg(self):
return f"{self.regtype}{self.regid}V"
def is_written(self):
return True
def is_writeonly(self):
return False
def is_read(self):
return True
def is_readwrite(self):
return True
class GprDest(Register, Single, Dest):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = get_result_gpr(ctx, {self.reg_num});
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_log_reg_write(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_reg_write(ctx, {self.reg_num}, {predicated});
"""))
class GprSource(Register, Single, OldSource):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = hex_gpr[{self.reg_num}];
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_reg_read(ctx, {self.reg_num});
"""))
class GprNewSource(Register, Single, NewSource):
def decl_tcg(self, f, tag, regno):
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = get_result_gpr(ctx, insn->regno[{regno}]);
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_reg_read(ctx, {self.reg_num});
"""))
class GprReadWrite(Register, Single, ReadWrite):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = get_result_gpr(ctx, {self.reg_num});
"""))
## For read/write registers, we need to get the original value into
## the result TCGv. For predicated instructions, this is done in
## gen_start_packet. For un-predicated instructions, we do it here.
if not is_predicated(tag):
f.write(code_fmt(f"""\
tcg_gen_mov_tl({self.reg_tcg()}, hex_gpr[{self.reg_num}]);
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_log_reg_write(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_reg_write(ctx, {self.reg_num}, {predicated});
"""))
class ControlDest(Register, Single, Dest):
def decl_reg_num(self, f, regno):
f.write(code_fmt(f"""\
const int {self.reg_num} = insn->regno[{regno}] + HEX_REG_SA0;
"""))
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = get_result_gpr(ctx, {self.reg_num});
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_write_ctrl_reg(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_reg_write(ctx, {self.reg_num}, {predicated});
"""))
class ControlSource(Register, Single, OldSource):
def decl_reg_num(self, f, regno):
f.write(code_fmt(f"""\
const int {self.reg_num} = insn->regno[{regno}] + HEX_REG_SA0;
"""))
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno);
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = tcg_temp_new();
gen_read_ctrl_reg(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_reg_read(ctx, {self.reg_num});
"""))
class ModifierSource(Register, Single, OldSource):
def decl_reg_num(self, f, regno):
f.write(code_fmt(f"""\
const int {self.reg_num} = insn->regno[{regno}] + HEX_REG_M0;
"""))
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = hex_gpr[{self.reg_num}];
TCGv CS G_GNUC_UNUSED =
hex_gpr[{self.reg_num} - HEX_REG_M0 + HEX_REG_CS0];
"""))
def idef_arg(self, declared):
declared.append(self.reg_tcg())
declared.append("CS")
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_reg_read(ctx, {self.reg_num});
"""))
class PredDest(Register, Single, Dest):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = tcg_temp_new();
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_log_pred_write(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_pred_write(ctx, {self.reg_num});
"""))
class PredSource(Register, Single, OldSource):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = hex_pred[{self.reg_num}];
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_pred_read(ctx, {self.reg_num});
"""))
class PredNewSource(Register, Single, NewSource):
def decl_tcg(self, f, tag, regno):
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = get_result_pred(ctx, insn->regno[{regno}]);
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_pred_read(ctx, {self.reg_num});
"""))
class PredReadWrite(Register, Single, ReadWrite):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv {self.reg_tcg()} = tcg_temp_new();
tcg_gen_mov_tl({self.reg_tcg()}, hex_pred[{self.reg_num}]);
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_log_pred_write(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_pred_write(ctx, {self.reg_num});
"""))
class PairDest(Register, Pair, Dest):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv_i64 {self.reg_tcg()} =
get_result_gpr_pair(ctx, {self.reg_num});
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_log_reg_write_pair(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_reg_write_pair(ctx, {self.reg_num}, {predicated});
"""))
class PairSource(Register, Pair, OldSource):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv_i64 {self.reg_tcg()} = tcg_temp_new_i64();
tcg_gen_concat_i32_i64({self.reg_tcg()},
hex_gpr[{self.reg_num}],
hex_gpr[{self.reg_num} + 1]);
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_reg_read_pair(ctx, {self.reg_num});
"""))
class PairReadWrite(Register, Pair, ReadWrite):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv_i64 {self.reg_tcg()} =
get_result_gpr_pair(ctx, {self.reg_num});
tcg_gen_concat_i32_i64({self.reg_tcg()},
hex_gpr[{self.reg_num}],
hex_gpr[{self.reg_num} + 1]);
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_log_reg_write_pair(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_reg_write_pair(ctx, {self.reg_num}, {predicated});
"""))
class ControlPairDest(Register, Pair, Dest):
def decl_reg_num(self, f, regno):
f.write(code_fmt(f"""\
const int {self.reg_num} = insn->regno[{regno}] + HEX_REG_SA0;
"""))
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv_i64 {self.reg_tcg()} =
get_result_gpr_pair(ctx, {self.reg_num});
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_write_ctrl_reg_pair(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_reg_write_pair(ctx, {self.reg_num}, {predicated});
"""))
class ControlPairSource(Register, Pair, OldSource):
def decl_reg_num(self, f, regno):
f.write(code_fmt(f"""\
const int {self.reg_num} = insn->regno[{regno}] + HEX_REG_SA0;
"""))
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
TCGv_i64 {self.reg_tcg()} = tcg_temp_new_i64();
gen_read_ctrl_reg_pair(ctx, {self.reg_num}, {self.reg_tcg()});
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_reg_read_pair(ctx, {self.reg_num});
"""))
class VRegDest(Register, Hvx, Dest):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
{vreg_offset_func(tag)}(ctx, {self.reg_num}, 1, true);
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def log_write(self, f, tag):
pass
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMVector *)({self.helper_arg_name()}) */
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
newv = hvx_newv(tag)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_vreg_write(ctx, {self.reg_num}, {newv}, {predicated});
"""))
class VRegSource(Register, Hvx, OldSource):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} = vreg_src_off(ctx, {self.reg_num});
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMVector *)({self.helper_arg_name()}) */
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_vreg_read(ctx, {self.reg_num});
"""))
class VRegNewSource(Register, Hvx, NewSource):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
if skip_qemu_helper(tag):
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
ctx_future_vreg_off(ctx, {self.reg_num}, 1, true);
"""))
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMVector *)({self.helper_arg_name()}) */
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_vreg_read(ctx, {self.reg_num});
"""))
class VRegReadWrite(Register, Hvx, ReadWrite):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
{vreg_offset_func(tag)}(ctx, {self.reg_num}, 1, true);
tcg_gen_gvec_mov(MO_64, {self.hvx_off()},
vreg_src_off(ctx, {self.reg_num}),
sizeof(MMVector), sizeof(MMVector));
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def log_write(self, f, tag):
pass
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMVector *)({self.helper_arg_name()}) */
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
newv = hvx_newv(tag)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_vreg_write(ctx, {self.reg_num}, {newv}, {predicated});
"""))
class VRegTmp(Register, Hvx, ReadWrite):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} = offsetof(CPUHexagonState, vtmp);
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
tcg_gen_gvec_mov(MO_64, {self.hvx_off()},
vreg_src_off(ctx, {self.reg_num}),
sizeof(MMVector), sizeof(MMVector));
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_log_vreg_write(ctx, {self.hvx_off()}, {self.reg_num},
{hvx_newv(tag)});
"""))
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMVector *)({self.helper_arg_name()}) */
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
newv = hvx_newv(tag)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_vreg_write(ctx, {self.reg_num}, {newv}, {predicated});
"""))
class VRegPairDest(Register, Hvx, Dest):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
{vreg_offset_func(tag)}(ctx, {self.reg_num}, 2, true);
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def log_write(self, f, tag):
pass
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMVectorPair *)({self.helper_arg_name()}) */
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
newv = hvx_newv(tag)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_vreg_write_pair(ctx, {self.reg_num}, {newv}, {predicated});
"""))
class VRegPairSource(Register, Hvx, OldSource):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
offsetof(CPUHexagonState, {self.reg_tcg()});
tcg_gen_gvec_mov(MO_64, {self.hvx_off()},
vreg_src_off(ctx, {self.reg_num}),
sizeof(MMVector), sizeof(MMVector));
tcg_gen_gvec_mov(MO_64, {self.hvx_off()} + sizeof(MMVector),
vreg_src_off(ctx, {self.reg_num} ^ 1),
sizeof(MMVector), sizeof(MMVector));
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMVectorPair *)({self.helper_arg_name()}) */
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_vreg_read_pair(ctx, {self.reg_num});
"""))
class VRegPairReadWrite(Register, Hvx, ReadWrite):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
offsetof(CPUHexagonState, {self.reg_tcg()});
tcg_gen_gvec_mov(MO_64, {self.hvx_off()},
vreg_src_off(ctx, {self.reg_num}),
sizeof(MMVector), sizeof(MMVector));
tcg_gen_gvec_mov(MO_64, {self.hvx_off()} + sizeof(MMVector),
vreg_src_off(ctx, {self.reg_num} ^ 1),
sizeof(MMVector), sizeof(MMVector));
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def log_write(self, f, tag):
f.write(code_fmt(f"""\
gen_log_vreg_write_pair(ctx, {self.hvx_off()}, {self.reg_num},
{hvx_newv(tag)});
"""))
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMVectorPair *)({self.helper_arg_name()}) */
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
newv = hvx_newv(tag)
predicated = "true" if is_predicated(tag) else "false"
f.write(code_fmt(f"""\
ctx_log_vreg_write_pair(ctx, {self.reg_num}, {newv}, {predicated});
"""))
class QRegDest(Register, Hvx, Dest):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
get_result_qreg(ctx, {self.reg_num});
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def log_write(self, f, tag):
pass
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMQReg *)({self.helper_arg_name()}) */
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_qreg_write(ctx, {self.reg_num});
"""))
class QRegSource(Register, Hvx, OldSource):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
offsetof(CPUHexagonState, QRegs[{self.reg_num}]);
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMQReg *)({self.helper_arg_name()}) */
"""))
def analyze_read(self, f, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_qreg_read(ctx, {self.reg_num});
"""))
class QRegReadWrite(Register, Hvx, ReadWrite):
def decl_tcg(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
const intptr_t {self.hvx_off()} =
get_result_qreg(ctx, {self.reg_num});
tcg_gen_gvec_mov(MO_64, {self.hvx_off()},
offsetof(CPUHexagonState, QRegs[{self.reg_num}]),
sizeof(MMQReg), sizeof(MMQReg));
"""))
if not skip_qemu_helper(tag):
f.write(code_fmt(f"""\
TCGv_ptr {self.reg_tcg()} = tcg_temp_new_ptr();
tcg_gen_addi_ptr({self.reg_tcg()}, tcg_env, {self.hvx_off()});
"""))
def log_write(self, f, tag):
pass
def helper_hvx_desc(self, f):
f.write(code_fmt(f"""\
/* {self.reg_tcg()} is *(MMQReg *)({self.helper_arg_name()}) */
"""))
def analyze_write(self, f, tag, regno):
self.decl_reg_num(f, regno)
f.write(code_fmt(f"""\
ctx_log_qreg_write(ctx, {self.reg_num});
"""))
def init_registers():
regs = {
GprDest("R", "d"),
GprDest("R", "e"),
GprSource("R", "s"),
GprSource("R", "t"),
GprSource("R", "u"),
GprSource("R", "v"),
GprReadWrite("R", "x"),
GprReadWrite("R", "y"),
ControlDest("C", "d"),
ControlSource("C", "s"),
ModifierSource("M", "u"),
PredDest("P", "d"),
PredDest("P", "e"),
PredSource("P", "s"),
PredSource("P", "t"),
PredSource("P", "u"),
PredSource("P", "v"),
PredReadWrite("P", "x"),
PairDest("R", "dd"),
PairDest("R", "ee"),
PairSource("R", "ss"),
PairSource("R", "tt"),
PairReadWrite("R", "xx"),
PairReadWrite("R", "yy"),
ControlPairDest("C", "dd"),
ControlPairSource("C", "ss"),
VRegDest("V", "d"),
VRegSource("V", "s"),
VRegSource("V", "u"),
VRegSource("V", "v"),
VRegSource("V", "w"),
VRegReadWrite("V", "x"),
VRegTmp("V", "y"),
VRegPairDest("V", "dd"),
VRegPairSource("V", "uu"),
VRegPairSource("V", "vv"),
VRegPairReadWrite("V", "xx"),
QRegDest("Q", "d"),
QRegDest("Q", "e"),
QRegSource("Q", "s"),
QRegSource("Q", "t"),
QRegSource("Q", "u"),
QRegSource("Q", "v"),
QRegReadWrite("Q", "x"),
}
for reg in regs:
registers[f"{reg.regtype}{reg.regid}"] = reg
new_regs = {
GprNewSource("N", "s"),
GprNewSource("N", "t"),
PredNewSource("P", "t"),
PredNewSource("P", "u"),
PredNewSource("P", "v"),
VRegNewSource("O", "s"),
}
for reg in new_regs:
new_registers[f"{reg.regtype}{reg.regid}"] = reg
def get_register(tag, regtype, regid):
if f"{regtype}{regid}V" in semdict[tag]:
return registers[f"{regtype}{regid}"]
else:
return new_registers[f"{regtype}{regid}"]
def helper_ret_type(tag, regs):
## If there is a scalar result, it is the return type
return_type = HelperArg( "void", "void", "void")
numscalarresults = 0
for regtype, regid in regs:
reg = get_register(tag, regtype, regid)
if reg.is_written() and reg.is_scalar_reg():
return_type = HelperArg(
reg.helper_proto_type(),
reg.reg_tcg(),
reg.helper_arg_type()
)
if numscalarresults > 1:
raise Exception("numscalarresults > 1")
return return_type
def helper_args(tag, regs, imms):
args = []
## First argument is the CPU state
args.append(HelperArg(
"env",
"tcg_env",
"CPUHexagonState *env"
))
## For predicated instructions, we pass in the destination register
if is_predicated(tag):
for regtype, regid in regs:
reg = get_register(tag, regtype, regid)
if reg.is_writeonly() and not reg.is_hvx_reg():
args.append(reg.helper_arg())
## Pass the HVX destination registers
for regtype, regid in regs:
reg = get_register(tag, regtype, regid)
if reg.is_written() and reg.is_hvx_reg():
args.append(reg.helper_arg())
## Pass the source registers
for regtype, regid in regs:
reg = get_register(tag, regtype, regid)
if reg.is_read() and not (reg.is_hvx_reg() and reg.is_readwrite()):
args.append(reg.helper_arg())
## Pass the immediates
for immlett, bits, immshift in imms:
args.append(HelperArg(
"s32",
f"tcg_constant_tl({imm_name(immlett)})",
f"int32_t {imm_name(immlett)}"
))
## Other stuff the helper might need
if need_pkt_has_multi_cof(tag):
args.append(HelperArg(
"i32",
"tcg_constant_tl(ctx->pkt->pkt_has_multi_cof)",
"uint32_t pkt_has_multi_cof"
))
if need_pkt_need_commit(tag):
args.append(HelperArg(
"i32",
"tcg_constant_tl(ctx->need_commit)",
"uint32_t pkt_need_commit"
))
if need_PC(tag):
args.append(HelperArg(
"i32",
"tcg_constant_tl(ctx->pkt->pc)",
"target_ulong PC"
))
if need_next_PC(tag):
args.append(HelperArg(
"i32",
"tcg_constant_tl(ctx->next_PC)",
"target_ulong next_PC"
))
if need_slot(tag):
args.append(HelperArg(
"i32",
"gen_slotval(ctx)",
"uint32_t slotval"
))
if need_part1(tag):
args.append(HelperArg(
"i32",
"tcg_constant_tl(insn->part1)"
"uint32_t part1"
))
return args