mirror of
https://gitlab.com/qemu-project/qemu
synced 2024-11-05 20:35:44 +00:00
722460652b
Motorola treats denormals with explicit integer bit set as having unbiased exponent 0, unlike Intel which treats it as having unbiased exponent 1 (more like all other IEEE formats that have no explicit integer bit). Add a flag on FloatFmt to differentiate the behaviour. Reported-by: Keith Packard <keithp@keithp.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
1626 lines
46 KiB
C++
1626 lines
46 KiB
C++
/*
|
|
* QEMU float support
|
|
*
|
|
* The code in this source file is derived from release 2a of the SoftFloat
|
|
* IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
|
|
* some later contributions) are provided under that license, as detailed below.
|
|
* It has subsequently been modified by contributors to the QEMU Project,
|
|
* so some portions are provided under:
|
|
* the SoftFloat-2a license
|
|
* the BSD license
|
|
* GPL-v2-or-later
|
|
*
|
|
* Any future contributions to this file after December 1st 2014 will be
|
|
* taken to be licensed under the Softfloat-2a license unless specifically
|
|
* indicated otherwise.
|
|
*/
|
|
|
|
static void partsN(return_nan)(FloatPartsN *a, float_status *s)
|
|
{
|
|
switch (a->cls) {
|
|
case float_class_snan:
|
|
float_raise(float_flag_invalid | float_flag_invalid_snan, s);
|
|
if (s->default_nan_mode) {
|
|
parts_default_nan(a, s);
|
|
} else {
|
|
parts_silence_nan(a, s);
|
|
}
|
|
break;
|
|
case float_class_qnan:
|
|
if (s->default_nan_mode) {
|
|
parts_default_nan(a, s);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static FloatPartsN *partsN(pick_nan)(FloatPartsN *a, FloatPartsN *b,
|
|
float_status *s)
|
|
{
|
|
if (is_snan(a->cls) || is_snan(b->cls)) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_snan, s);
|
|
}
|
|
|
|
if (s->default_nan_mode) {
|
|
parts_default_nan(a, s);
|
|
} else {
|
|
int cmp = frac_cmp(a, b);
|
|
if (cmp == 0) {
|
|
cmp = a->sign < b->sign;
|
|
}
|
|
|
|
if (pickNaN(a->cls, b->cls, cmp > 0, s)) {
|
|
a = b;
|
|
}
|
|
if (is_snan(a->cls)) {
|
|
parts_silence_nan(a, s);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
static FloatPartsN *partsN(pick_nan_muladd)(FloatPartsN *a, FloatPartsN *b,
|
|
FloatPartsN *c, float_status *s,
|
|
int ab_mask, int abc_mask)
|
|
{
|
|
int which;
|
|
|
|
if (unlikely(abc_mask & float_cmask_snan)) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_snan, s);
|
|
}
|
|
|
|
which = pickNaNMulAdd(a->cls, b->cls, c->cls,
|
|
ab_mask == float_cmask_infzero, s);
|
|
|
|
if (s->default_nan_mode || which == 3) {
|
|
/*
|
|
* Note that this check is after pickNaNMulAdd so that function
|
|
* has an opportunity to set the Invalid flag for infzero.
|
|
*/
|
|
parts_default_nan(a, s);
|
|
return a;
|
|
}
|
|
|
|
switch (which) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
a = b;
|
|
break;
|
|
case 2:
|
|
a = c;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
if (is_snan(a->cls)) {
|
|
parts_silence_nan(a, s);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Canonicalize the FloatParts structure. Determine the class,
|
|
* unbias the exponent, and normalize the fraction.
|
|
*/
|
|
static void partsN(canonicalize)(FloatPartsN *p, float_status *status,
|
|
const FloatFmt *fmt)
|
|
{
|
|
if (unlikely(p->exp == 0)) {
|
|
if (likely(frac_eqz(p))) {
|
|
p->cls = float_class_zero;
|
|
} else if (status->flush_inputs_to_zero) {
|
|
float_raise(float_flag_input_denormal, status);
|
|
p->cls = float_class_zero;
|
|
frac_clear(p);
|
|
} else {
|
|
int shift = frac_normalize(p);
|
|
p->cls = float_class_normal;
|
|
p->exp = fmt->frac_shift - fmt->exp_bias
|
|
- shift + !fmt->m68k_denormal;
|
|
}
|
|
} else if (likely(p->exp < fmt->exp_max) || fmt->arm_althp) {
|
|
p->cls = float_class_normal;
|
|
p->exp -= fmt->exp_bias;
|
|
frac_shl(p, fmt->frac_shift);
|
|
p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
|
|
} else if (likely(frac_eqz(p))) {
|
|
p->cls = float_class_inf;
|
|
} else {
|
|
frac_shl(p, fmt->frac_shift);
|
|
p->cls = (parts_is_snan_frac(p->frac_hi, status)
|
|
? float_class_snan : float_class_qnan);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Round and uncanonicalize a floating-point number by parts. There
|
|
* are FRAC_SHIFT bits that may require rounding at the bottom of the
|
|
* fraction; these bits will be removed. The exponent will be biased
|
|
* by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
|
|
*/
|
|
static void partsN(uncanon_normal)(FloatPartsN *p, float_status *s,
|
|
const FloatFmt *fmt)
|
|
{
|
|
const int exp_max = fmt->exp_max;
|
|
const int frac_shift = fmt->frac_shift;
|
|
const uint64_t round_mask = fmt->round_mask;
|
|
const uint64_t frac_lsb = round_mask + 1;
|
|
const uint64_t frac_lsbm1 = round_mask ^ (round_mask >> 1);
|
|
const uint64_t roundeven_mask = round_mask | frac_lsb;
|
|
uint64_t inc;
|
|
bool overflow_norm = false;
|
|
int exp, flags = 0;
|
|
|
|
switch (s->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
if (N > 64 && frac_lsb == 0) {
|
|
inc = ((p->frac_hi & 1) || (p->frac_lo & round_mask) != frac_lsbm1
|
|
? frac_lsbm1 : 0);
|
|
} else {
|
|
inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1
|
|
? frac_lsbm1 : 0);
|
|
}
|
|
break;
|
|
case float_round_ties_away:
|
|
inc = frac_lsbm1;
|
|
break;
|
|
case float_round_to_zero:
|
|
overflow_norm = true;
|
|
inc = 0;
|
|
break;
|
|
case float_round_up:
|
|
inc = p->sign ? 0 : round_mask;
|
|
overflow_norm = p->sign;
|
|
break;
|
|
case float_round_down:
|
|
inc = p->sign ? round_mask : 0;
|
|
overflow_norm = !p->sign;
|
|
break;
|
|
case float_round_to_odd:
|
|
overflow_norm = true;
|
|
/* fall through */
|
|
case float_round_to_odd_inf:
|
|
if (N > 64 && frac_lsb == 0) {
|
|
inc = p->frac_hi & 1 ? 0 : round_mask;
|
|
} else {
|
|
inc = p->frac_lo & frac_lsb ? 0 : round_mask;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
exp = p->exp + fmt->exp_bias;
|
|
if (likely(exp > 0)) {
|
|
if (p->frac_lo & round_mask) {
|
|
flags |= float_flag_inexact;
|
|
if (frac_addi(p, p, inc)) {
|
|
frac_shr(p, 1);
|
|
p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
|
|
exp++;
|
|
}
|
|
p->frac_lo &= ~round_mask;
|
|
}
|
|
|
|
if (fmt->arm_althp) {
|
|
/* ARM Alt HP eschews Inf and NaN for a wider exponent. */
|
|
if (unlikely(exp > exp_max)) {
|
|
/* Overflow. Return the maximum normal. */
|
|
flags = float_flag_invalid;
|
|
exp = exp_max;
|
|
frac_allones(p);
|
|
p->frac_lo &= ~round_mask;
|
|
}
|
|
} else if (unlikely(exp >= exp_max)) {
|
|
flags |= float_flag_overflow;
|
|
if (s->rebias_overflow) {
|
|
exp -= fmt->exp_re_bias;
|
|
} else if (overflow_norm) {
|
|
flags |= float_flag_inexact;
|
|
exp = exp_max - 1;
|
|
frac_allones(p);
|
|
p->frac_lo &= ~round_mask;
|
|
} else {
|
|
flags |= float_flag_inexact;
|
|
p->cls = float_class_inf;
|
|
exp = exp_max;
|
|
frac_clear(p);
|
|
}
|
|
}
|
|
frac_shr(p, frac_shift);
|
|
} else if (unlikely(s->rebias_underflow)) {
|
|
flags |= float_flag_underflow;
|
|
exp += fmt->exp_re_bias;
|
|
if (p->frac_lo & round_mask) {
|
|
flags |= float_flag_inexact;
|
|
if (frac_addi(p, p, inc)) {
|
|
frac_shr(p, 1);
|
|
p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
|
|
exp++;
|
|
}
|
|
p->frac_lo &= ~round_mask;
|
|
}
|
|
frac_shr(p, frac_shift);
|
|
} else if (s->flush_to_zero) {
|
|
flags |= float_flag_output_denormal;
|
|
p->cls = float_class_zero;
|
|
exp = 0;
|
|
frac_clear(p);
|
|
} else {
|
|
bool is_tiny = s->tininess_before_rounding || exp < 0;
|
|
|
|
if (!is_tiny) {
|
|
FloatPartsN discard;
|
|
is_tiny = !frac_addi(&discard, p, inc);
|
|
}
|
|
|
|
frac_shrjam(p, !fmt->m68k_denormal - exp);
|
|
|
|
if (p->frac_lo & round_mask) {
|
|
/* Need to recompute round-to-even/round-to-odd. */
|
|
switch (s->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
if (N > 64 && frac_lsb == 0) {
|
|
inc = ((p->frac_hi & 1) ||
|
|
(p->frac_lo & round_mask) != frac_lsbm1
|
|
? frac_lsbm1 : 0);
|
|
} else {
|
|
inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1
|
|
? frac_lsbm1 : 0);
|
|
}
|
|
break;
|
|
case float_round_to_odd:
|
|
case float_round_to_odd_inf:
|
|
if (N > 64 && frac_lsb == 0) {
|
|
inc = p->frac_hi & 1 ? 0 : round_mask;
|
|
} else {
|
|
inc = p->frac_lo & frac_lsb ? 0 : round_mask;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
flags |= float_flag_inexact;
|
|
frac_addi(p, p, inc);
|
|
p->frac_lo &= ~round_mask;
|
|
}
|
|
|
|
exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) && !fmt->m68k_denormal;
|
|
frac_shr(p, frac_shift);
|
|
|
|
if (is_tiny && (flags & float_flag_inexact)) {
|
|
flags |= float_flag_underflow;
|
|
}
|
|
if (exp == 0 && frac_eqz(p)) {
|
|
p->cls = float_class_zero;
|
|
}
|
|
}
|
|
p->exp = exp;
|
|
float_raise(flags, s);
|
|
}
|
|
|
|
static void partsN(uncanon)(FloatPartsN *p, float_status *s,
|
|
const FloatFmt *fmt)
|
|
{
|
|
if (likely(p->cls == float_class_normal)) {
|
|
parts_uncanon_normal(p, s, fmt);
|
|
} else {
|
|
switch (p->cls) {
|
|
case float_class_zero:
|
|
p->exp = 0;
|
|
frac_clear(p);
|
|
return;
|
|
case float_class_inf:
|
|
g_assert(!fmt->arm_althp);
|
|
p->exp = fmt->exp_max;
|
|
frac_clear(p);
|
|
return;
|
|
case float_class_qnan:
|
|
case float_class_snan:
|
|
g_assert(!fmt->arm_althp);
|
|
p->exp = fmt->exp_max;
|
|
frac_shr(p, fmt->frac_shift);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the result of adding or subtracting the values of the
|
|
* floating-point values `a' and `b'. The operation is performed
|
|
* according to the IEC/IEEE Standard for Binary Floating-Point
|
|
* Arithmetic.
|
|
*/
|
|
static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b,
|
|
float_status *s, bool subtract)
|
|
{
|
|
bool b_sign = b->sign ^ subtract;
|
|
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
|
|
|
|
if (a->sign != b_sign) {
|
|
/* Subtraction */
|
|
if (likely(ab_mask == float_cmask_normal)) {
|
|
if (parts_sub_normal(a, b)) {
|
|
return a;
|
|
}
|
|
/* Subtract was exact, fall through to set sign. */
|
|
ab_mask = float_cmask_zero;
|
|
}
|
|
|
|
if (ab_mask == float_cmask_zero) {
|
|
a->sign = s->float_rounding_mode == float_round_down;
|
|
return a;
|
|
}
|
|
|
|
if (unlikely(ab_mask & float_cmask_anynan)) {
|
|
goto p_nan;
|
|
}
|
|
|
|
if (ab_mask & float_cmask_inf) {
|
|
if (a->cls != float_class_inf) {
|
|
/* N - Inf */
|
|
goto return_b;
|
|
}
|
|
if (b->cls != float_class_inf) {
|
|
/* Inf - N */
|
|
return a;
|
|
}
|
|
/* Inf - Inf */
|
|
float_raise(float_flag_invalid | float_flag_invalid_isi, s);
|
|
parts_default_nan(a, s);
|
|
return a;
|
|
}
|
|
} else {
|
|
/* Addition */
|
|
if (likely(ab_mask == float_cmask_normal)) {
|
|
parts_add_normal(a, b);
|
|
return a;
|
|
}
|
|
|
|
if (ab_mask == float_cmask_zero) {
|
|
return a;
|
|
}
|
|
|
|
if (unlikely(ab_mask & float_cmask_anynan)) {
|
|
goto p_nan;
|
|
}
|
|
|
|
if (ab_mask & float_cmask_inf) {
|
|
a->cls = float_class_inf;
|
|
return a;
|
|
}
|
|
}
|
|
|
|
if (b->cls == float_class_zero) {
|
|
g_assert(a->cls == float_class_normal);
|
|
return a;
|
|
}
|
|
|
|
g_assert(a->cls == float_class_zero);
|
|
g_assert(b->cls == float_class_normal);
|
|
return_b:
|
|
b->sign = b_sign;
|
|
return b;
|
|
|
|
p_nan:
|
|
return parts_pick_nan(a, b, s);
|
|
}
|
|
|
|
/*
|
|
* Returns the result of multiplying the floating-point values `a' and
|
|
* `b'. The operation is performed according to the IEC/IEEE Standard
|
|
* for Binary Floating-Point Arithmetic.
|
|
*/
|
|
static FloatPartsN *partsN(mul)(FloatPartsN *a, FloatPartsN *b,
|
|
float_status *s)
|
|
{
|
|
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
|
|
bool sign = a->sign ^ b->sign;
|
|
|
|
if (likely(ab_mask == float_cmask_normal)) {
|
|
FloatPartsW tmp;
|
|
|
|
frac_mulw(&tmp, a, b);
|
|
frac_truncjam(a, &tmp);
|
|
|
|
a->exp += b->exp + 1;
|
|
if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
|
|
frac_add(a, a, a);
|
|
a->exp -= 1;
|
|
}
|
|
|
|
a->sign = sign;
|
|
return a;
|
|
}
|
|
|
|
/* Inf * Zero == NaN */
|
|
if (unlikely(ab_mask == float_cmask_infzero)) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, s);
|
|
parts_default_nan(a, s);
|
|
return a;
|
|
}
|
|
|
|
if (unlikely(ab_mask & float_cmask_anynan)) {
|
|
return parts_pick_nan(a, b, s);
|
|
}
|
|
|
|
/* Multiply by 0 or Inf */
|
|
if (ab_mask & float_cmask_inf) {
|
|
a->cls = float_class_inf;
|
|
a->sign = sign;
|
|
return a;
|
|
}
|
|
|
|
g_assert(ab_mask & float_cmask_zero);
|
|
a->cls = float_class_zero;
|
|
a->sign = sign;
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Returns the result of multiplying the floating-point values `a' and
|
|
* `b' then adding 'c', with no intermediate rounding step after the
|
|
* multiplication. The operation is performed according to the
|
|
* IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
|
|
* The flags argument allows the caller to select negation of the
|
|
* addend, the intermediate product, or the final result. (The
|
|
* difference between this and having the caller do a separate
|
|
* negation is that negating externally will flip the sign bit on NaNs.)
|
|
*
|
|
* Requires A and C extracted into a double-sized structure to provide the
|
|
* extra space for the widening multiply.
|
|
*/
|
|
static FloatPartsN *partsN(muladd)(FloatPartsN *a, FloatPartsN *b,
|
|
FloatPartsN *c, int flags, float_status *s)
|
|
{
|
|
int ab_mask, abc_mask;
|
|
FloatPartsW p_widen, c_widen;
|
|
|
|
ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
|
|
abc_mask = float_cmask(c->cls) | ab_mask;
|
|
|
|
/*
|
|
* It is implementation-defined whether the cases of (0,inf,qnan)
|
|
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
|
|
* they return if they do), so we have to hand this information
|
|
* off to the target-specific pick-a-NaN routine.
|
|
*/
|
|
if (unlikely(abc_mask & float_cmask_anynan)) {
|
|
return parts_pick_nan_muladd(a, b, c, s, ab_mask, abc_mask);
|
|
}
|
|
|
|
if (flags & float_muladd_negate_c) {
|
|
c->sign ^= 1;
|
|
}
|
|
|
|
/* Compute the sign of the product into A. */
|
|
a->sign ^= b->sign;
|
|
if (flags & float_muladd_negate_product) {
|
|
a->sign ^= 1;
|
|
}
|
|
|
|
if (unlikely(ab_mask != float_cmask_normal)) {
|
|
if (unlikely(ab_mask == float_cmask_infzero)) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_imz, s);
|
|
goto d_nan;
|
|
}
|
|
|
|
if (ab_mask & float_cmask_inf) {
|
|
if (c->cls == float_class_inf && a->sign != c->sign) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_isi, s);
|
|
goto d_nan;
|
|
}
|
|
goto return_inf;
|
|
}
|
|
|
|
g_assert(ab_mask & float_cmask_zero);
|
|
if (c->cls == float_class_normal) {
|
|
*a = *c;
|
|
goto return_normal;
|
|
}
|
|
if (c->cls == float_class_zero) {
|
|
if (a->sign != c->sign) {
|
|
goto return_sub_zero;
|
|
}
|
|
goto return_zero;
|
|
}
|
|
g_assert(c->cls == float_class_inf);
|
|
}
|
|
|
|
if (unlikely(c->cls == float_class_inf)) {
|
|
a->sign = c->sign;
|
|
goto return_inf;
|
|
}
|
|
|
|
/* Perform the multiplication step. */
|
|
p_widen.sign = a->sign;
|
|
p_widen.exp = a->exp + b->exp + 1;
|
|
frac_mulw(&p_widen, a, b);
|
|
if (!(p_widen.frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
|
|
frac_add(&p_widen, &p_widen, &p_widen);
|
|
p_widen.exp -= 1;
|
|
}
|
|
|
|
/* Perform the addition step. */
|
|
if (c->cls != float_class_zero) {
|
|
/* Zero-extend C to less significant bits. */
|
|
frac_widen(&c_widen, c);
|
|
c_widen.exp = c->exp;
|
|
|
|
if (a->sign == c->sign) {
|
|
parts_add_normal(&p_widen, &c_widen);
|
|
} else if (!parts_sub_normal(&p_widen, &c_widen)) {
|
|
goto return_sub_zero;
|
|
}
|
|
}
|
|
|
|
/* Narrow with sticky bit, for proper rounding later. */
|
|
frac_truncjam(a, &p_widen);
|
|
a->sign = p_widen.sign;
|
|
a->exp = p_widen.exp;
|
|
|
|
return_normal:
|
|
if (flags & float_muladd_halve_result) {
|
|
a->exp -= 1;
|
|
}
|
|
finish_sign:
|
|
if (flags & float_muladd_negate_result) {
|
|
a->sign ^= 1;
|
|
}
|
|
return a;
|
|
|
|
return_sub_zero:
|
|
a->sign = s->float_rounding_mode == float_round_down;
|
|
return_zero:
|
|
a->cls = float_class_zero;
|
|
goto finish_sign;
|
|
|
|
return_inf:
|
|
a->cls = float_class_inf;
|
|
goto finish_sign;
|
|
|
|
d_nan:
|
|
parts_default_nan(a, s);
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Returns the result of dividing the floating-point value `a' by the
|
|
* corresponding value `b'. The operation is performed according to
|
|
* the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*/
|
|
static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b,
|
|
float_status *s)
|
|
{
|
|
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
|
|
bool sign = a->sign ^ b->sign;
|
|
|
|
if (likely(ab_mask == float_cmask_normal)) {
|
|
a->sign = sign;
|
|
a->exp -= b->exp + frac_div(a, b);
|
|
return a;
|
|
}
|
|
|
|
/* 0/0 or Inf/Inf => NaN */
|
|
if (unlikely(ab_mask == float_cmask_zero)) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_zdz, s);
|
|
goto d_nan;
|
|
}
|
|
if (unlikely(ab_mask == float_cmask_inf)) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_idi, s);
|
|
goto d_nan;
|
|
}
|
|
|
|
/* All the NaN cases */
|
|
if (unlikely(ab_mask & float_cmask_anynan)) {
|
|
return parts_pick_nan(a, b, s);
|
|
}
|
|
|
|
a->sign = sign;
|
|
|
|
/* Inf / X */
|
|
if (a->cls == float_class_inf) {
|
|
return a;
|
|
}
|
|
|
|
/* 0 / X */
|
|
if (a->cls == float_class_zero) {
|
|
return a;
|
|
}
|
|
|
|
/* X / Inf */
|
|
if (b->cls == float_class_inf) {
|
|
a->cls = float_class_zero;
|
|
return a;
|
|
}
|
|
|
|
/* X / 0 => Inf */
|
|
g_assert(b->cls == float_class_zero);
|
|
float_raise(float_flag_divbyzero, s);
|
|
a->cls = float_class_inf;
|
|
return a;
|
|
|
|
d_nan:
|
|
parts_default_nan(a, s);
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Floating point remainder, per IEC/IEEE, or modulus.
|
|
*/
|
|
static FloatPartsN *partsN(modrem)(FloatPartsN *a, FloatPartsN *b,
|
|
uint64_t *mod_quot, float_status *s)
|
|
{
|
|
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
|
|
|
|
if (likely(ab_mask == float_cmask_normal)) {
|
|
frac_modrem(a, b, mod_quot);
|
|
return a;
|
|
}
|
|
|
|
if (mod_quot) {
|
|
*mod_quot = 0;
|
|
}
|
|
|
|
/* All the NaN cases */
|
|
if (unlikely(ab_mask & float_cmask_anynan)) {
|
|
return parts_pick_nan(a, b, s);
|
|
}
|
|
|
|
/* Inf % N; N % 0 */
|
|
if (a->cls == float_class_inf || b->cls == float_class_zero) {
|
|
float_raise(float_flag_invalid, s);
|
|
parts_default_nan(a, s);
|
|
return a;
|
|
}
|
|
|
|
/* N % Inf; 0 % N */
|
|
g_assert(b->cls == float_class_inf || a->cls == float_class_zero);
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Square Root
|
|
*
|
|
* The base algorithm is lifted from
|
|
* https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c
|
|
* https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c
|
|
* https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c
|
|
* and is thus MIT licenced.
|
|
*/
|
|
static void partsN(sqrt)(FloatPartsN *a, float_status *status,
|
|
const FloatFmt *fmt)
|
|
{
|
|
const uint32_t three32 = 3u << 30;
|
|
const uint64_t three64 = 3ull << 62;
|
|
uint32_t d32, m32, r32, s32, u32; /* 32-bit computation */
|
|
uint64_t d64, m64, r64, s64, u64; /* 64-bit computation */
|
|
uint64_t dh, dl, rh, rl, sh, sl, uh, ul; /* 128-bit computation */
|
|
uint64_t d0h, d0l, d1h, d1l, d2h, d2l;
|
|
uint64_t discard;
|
|
bool exp_odd;
|
|
size_t index;
|
|
|
|
if (unlikely(a->cls != float_class_normal)) {
|
|
switch (a->cls) {
|
|
case float_class_snan:
|
|
case float_class_qnan:
|
|
parts_return_nan(a, status);
|
|
return;
|
|
case float_class_zero:
|
|
return;
|
|
case float_class_inf:
|
|
if (unlikely(a->sign)) {
|
|
goto d_nan;
|
|
}
|
|
return;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
if (unlikely(a->sign)) {
|
|
goto d_nan;
|
|
}
|
|
|
|
/*
|
|
* Argument reduction.
|
|
* x = 4^e frac; with integer e, and frac in [1, 4)
|
|
* m = frac fixed point at bit 62, since we're in base 4.
|
|
* If base-2 exponent is odd, exchange that for multiply by 2,
|
|
* which results in no shift.
|
|
*/
|
|
exp_odd = a->exp & 1;
|
|
index = extract64(a->frac_hi, 57, 6) | (!exp_odd << 6);
|
|
if (!exp_odd) {
|
|
frac_shr(a, 1);
|
|
}
|
|
|
|
/*
|
|
* Approximate r ~= 1/sqrt(m) and s ~= sqrt(m) when m in [1, 4).
|
|
*
|
|
* Initial estimate:
|
|
* 7-bit lookup table (1-bit exponent and 6-bit significand).
|
|
*
|
|
* The relative error (e = r0*sqrt(m)-1) of a linear estimate
|
|
* (r0 = a*m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best;
|
|
* a table lookup is faster and needs one less iteration.
|
|
* The 7-bit table gives |e| < 0x1.fdp-9.
|
|
*
|
|
* A Newton-Raphson iteration for r is
|
|
* s = m*r
|
|
* d = s*r
|
|
* u = 3 - d
|
|
* r = r*u/2
|
|
*
|
|
* Fixed point representations:
|
|
* m, s, d, u, three are all 2.30; r is 0.32
|
|
*/
|
|
m64 = a->frac_hi;
|
|
m32 = m64 >> 32;
|
|
|
|
r32 = rsqrt_tab[index] << 16;
|
|
/* |r*sqrt(m) - 1| < 0x1.FDp-9 */
|
|
|
|
s32 = ((uint64_t)m32 * r32) >> 32;
|
|
d32 = ((uint64_t)s32 * r32) >> 32;
|
|
u32 = three32 - d32;
|
|
|
|
if (N == 64) {
|
|
/* float64 or smaller */
|
|
|
|
r32 = ((uint64_t)r32 * u32) >> 31;
|
|
/* |r*sqrt(m) - 1| < 0x1.7Bp-16 */
|
|
|
|
s32 = ((uint64_t)m32 * r32) >> 32;
|
|
d32 = ((uint64_t)s32 * r32) >> 32;
|
|
u32 = three32 - d32;
|
|
|
|
if (fmt->frac_size <= 23) {
|
|
/* float32 or smaller */
|
|
|
|
s32 = ((uint64_t)s32 * u32) >> 32; /* 3.29 */
|
|
s32 = (s32 - 1) >> 6; /* 9.23 */
|
|
/* s < sqrt(m) < s + 0x1.08p-23 */
|
|
|
|
/* compute nearest rounded result to 2.23 bits */
|
|
uint32_t d0 = (m32 << 16) - s32 * s32;
|
|
uint32_t d1 = s32 - d0;
|
|
uint32_t d2 = d1 + s32 + 1;
|
|
s32 += d1 >> 31;
|
|
a->frac_hi = (uint64_t)s32 << (64 - 25);
|
|
|
|
/* increment or decrement for inexact */
|
|
if (d2 != 0) {
|
|
a->frac_hi += ((int32_t)(d1 ^ d2) < 0 ? -1 : 1);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/* float64 */
|
|
|
|
r64 = (uint64_t)r32 * u32 * 2;
|
|
/* |r*sqrt(m) - 1| < 0x1.37-p29; convert to 64-bit arithmetic */
|
|
mul64To128(m64, r64, &s64, &discard);
|
|
mul64To128(s64, r64, &d64, &discard);
|
|
u64 = three64 - d64;
|
|
|
|
mul64To128(s64, u64, &s64, &discard); /* 3.61 */
|
|
s64 = (s64 - 2) >> 9; /* 12.52 */
|
|
|
|
/* Compute nearest rounded result */
|
|
uint64_t d0 = (m64 << 42) - s64 * s64;
|
|
uint64_t d1 = s64 - d0;
|
|
uint64_t d2 = d1 + s64 + 1;
|
|
s64 += d1 >> 63;
|
|
a->frac_hi = s64 << (64 - 54);
|
|
|
|
/* increment or decrement for inexact */
|
|
if (d2 != 0) {
|
|
a->frac_hi += ((int64_t)(d1 ^ d2) < 0 ? -1 : 1);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
r64 = (uint64_t)r32 * u32 * 2;
|
|
/* |r*sqrt(m) - 1| < 0x1.7Bp-16; convert to 64-bit arithmetic */
|
|
|
|
mul64To128(m64, r64, &s64, &discard);
|
|
mul64To128(s64, r64, &d64, &discard);
|
|
u64 = three64 - d64;
|
|
mul64To128(u64, r64, &r64, &discard);
|
|
r64 <<= 1;
|
|
/* |r*sqrt(m) - 1| < 0x1.a5p-31 */
|
|
|
|
mul64To128(m64, r64, &s64, &discard);
|
|
mul64To128(s64, r64, &d64, &discard);
|
|
u64 = three64 - d64;
|
|
mul64To128(u64, r64, &rh, &rl);
|
|
add128(rh, rl, rh, rl, &rh, &rl);
|
|
/* |r*sqrt(m) - 1| < 0x1.c001p-59; change to 128-bit arithmetic */
|
|
|
|
mul128To256(a->frac_hi, a->frac_lo, rh, rl, &sh, &sl, &discard, &discard);
|
|
mul128To256(sh, sl, rh, rl, &dh, &dl, &discard, &discard);
|
|
sub128(three64, 0, dh, dl, &uh, &ul);
|
|
mul128To256(uh, ul, sh, sl, &sh, &sl, &discard, &discard); /* 3.125 */
|
|
/* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */
|
|
|
|
sub128(sh, sl, 0, 4, &sh, &sl);
|
|
shift128Right(sh, sl, 13, &sh, &sl); /* 16.112 */
|
|
/* s < sqrt(m) < s + 1ulp */
|
|
|
|
/* Compute nearest rounded result */
|
|
mul64To128(sl, sl, &d0h, &d0l);
|
|
d0h += 2 * sh * sl;
|
|
sub128(a->frac_lo << 34, 0, d0h, d0l, &d0h, &d0l);
|
|
sub128(sh, sl, d0h, d0l, &d1h, &d1l);
|
|
add128(sh, sl, 0, 1, &d2h, &d2l);
|
|
add128(d2h, d2l, d1h, d1l, &d2h, &d2l);
|
|
add128(sh, sl, 0, d1h >> 63, &sh, &sl);
|
|
shift128Left(sh, sl, 128 - 114, &sh, &sl);
|
|
|
|
/* increment or decrement for inexact */
|
|
if (d2h | d2l) {
|
|
if ((int64_t)(d1h ^ d2h) < 0) {
|
|
sub128(sh, sl, 0, 1, &sh, &sl);
|
|
} else {
|
|
add128(sh, sl, 0, 1, &sh, &sl);
|
|
}
|
|
}
|
|
a->frac_lo = sl;
|
|
a->frac_hi = sh;
|
|
|
|
done:
|
|
/* Convert back from base 4 to base 2. */
|
|
a->exp >>= 1;
|
|
if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
|
|
frac_add(a, a, a);
|
|
} else {
|
|
a->exp += 1;
|
|
}
|
|
return;
|
|
|
|
d_nan:
|
|
float_raise(float_flag_invalid | float_flag_invalid_sqrt, status);
|
|
parts_default_nan(a, status);
|
|
}
|
|
|
|
/*
|
|
* Rounds the floating-point value `a' to an integer, and returns the
|
|
* result as a floating-point value. The operation is performed
|
|
* according to the IEC/IEEE Standard for Binary Floating-Point
|
|
* Arithmetic.
|
|
*
|
|
* parts_round_to_int_normal is an internal helper function for
|
|
* normal numbers only, returning true for inexact but not directly
|
|
* raising float_flag_inexact.
|
|
*/
|
|
static bool partsN(round_to_int_normal)(FloatPartsN *a, FloatRoundMode rmode,
|
|
int scale, int frac_size)
|
|
{
|
|
uint64_t frac_lsb, frac_lsbm1, rnd_even_mask, rnd_mask, inc;
|
|
int shift_adj;
|
|
|
|
scale = MIN(MAX(scale, -0x10000), 0x10000);
|
|
a->exp += scale;
|
|
|
|
if (a->exp < 0) {
|
|
bool one;
|
|
|
|
/* All fractional */
|
|
switch (rmode) {
|
|
case float_round_nearest_even:
|
|
one = false;
|
|
if (a->exp == -1) {
|
|
FloatPartsN tmp;
|
|
/* Shift left one, discarding DECOMPOSED_IMPLICIT_BIT */
|
|
frac_add(&tmp, a, a);
|
|
/* Anything remaining means frac > 0.5. */
|
|
one = !frac_eqz(&tmp);
|
|
}
|
|
break;
|
|
case float_round_ties_away:
|
|
one = a->exp == -1;
|
|
break;
|
|
case float_round_to_zero:
|
|
one = false;
|
|
break;
|
|
case float_round_up:
|
|
one = !a->sign;
|
|
break;
|
|
case float_round_down:
|
|
one = a->sign;
|
|
break;
|
|
case float_round_to_odd:
|
|
one = true;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
frac_clear(a);
|
|
a->exp = 0;
|
|
if (one) {
|
|
a->frac_hi = DECOMPOSED_IMPLICIT_BIT;
|
|
} else {
|
|
a->cls = float_class_zero;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (a->exp >= frac_size) {
|
|
/* All integral */
|
|
return false;
|
|
}
|
|
|
|
if (N > 64 && a->exp < N - 64) {
|
|
/*
|
|
* Rounding is not in the low word -- shift lsb to bit 2,
|
|
* which leaves room for sticky and rounding bit.
|
|
*/
|
|
shift_adj = (N - 1) - (a->exp + 2);
|
|
frac_shrjam(a, shift_adj);
|
|
frac_lsb = 1 << 2;
|
|
} else {
|
|
shift_adj = 0;
|
|
frac_lsb = DECOMPOSED_IMPLICIT_BIT >> (a->exp & 63);
|
|
}
|
|
|
|
frac_lsbm1 = frac_lsb >> 1;
|
|
rnd_mask = frac_lsb - 1;
|
|
rnd_even_mask = rnd_mask | frac_lsb;
|
|
|
|
if (!(a->frac_lo & rnd_mask)) {
|
|
/* Fractional bits already clear, undo the shift above. */
|
|
frac_shl(a, shift_adj);
|
|
return false;
|
|
}
|
|
|
|
switch (rmode) {
|
|
case float_round_nearest_even:
|
|
inc = ((a->frac_lo & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
|
|
break;
|
|
case float_round_ties_away:
|
|
inc = frac_lsbm1;
|
|
break;
|
|
case float_round_to_zero:
|
|
inc = 0;
|
|
break;
|
|
case float_round_up:
|
|
inc = a->sign ? 0 : rnd_mask;
|
|
break;
|
|
case float_round_down:
|
|
inc = a->sign ? rnd_mask : 0;
|
|
break;
|
|
case float_round_to_odd:
|
|
inc = a->frac_lo & frac_lsb ? 0 : rnd_mask;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (shift_adj == 0) {
|
|
if (frac_addi(a, a, inc)) {
|
|
frac_shr(a, 1);
|
|
a->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
|
|
a->exp++;
|
|
}
|
|
a->frac_lo &= ~rnd_mask;
|
|
} else {
|
|
frac_addi(a, a, inc);
|
|
a->frac_lo &= ~rnd_mask;
|
|
/* Be careful shifting back, not to overflow */
|
|
frac_shl(a, shift_adj - 1);
|
|
if (a->frac_hi & DECOMPOSED_IMPLICIT_BIT) {
|
|
a->exp++;
|
|
} else {
|
|
frac_add(a, a, a);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode,
|
|
int scale, float_status *s,
|
|
const FloatFmt *fmt)
|
|
{
|
|
switch (a->cls) {
|
|
case float_class_qnan:
|
|
case float_class_snan:
|
|
parts_return_nan(a, s);
|
|
break;
|
|
case float_class_zero:
|
|
case float_class_inf:
|
|
break;
|
|
case float_class_normal:
|
|
if (parts_round_to_int_normal(a, rmode, scale, fmt->frac_size)) {
|
|
float_raise(float_flag_inexact, s);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the result of converting the floating-point value `a' to
|
|
* the two's complement integer format. The conversion is performed
|
|
* according to the IEC/IEEE Standard for Binary Floating-Point
|
|
* Arithmetic---which means in particular that the conversion is
|
|
* rounded according to the current rounding mode. If `a' is a NaN,
|
|
* the largest positive integer is returned. Otherwise, if the
|
|
* conversion overflows, the largest integer with the same sign as `a'
|
|
* is returned.
|
|
*/
|
|
static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode,
|
|
int scale, int64_t min, int64_t max,
|
|
float_status *s)
|
|
{
|
|
int flags = 0;
|
|
uint64_t r;
|
|
|
|
switch (p->cls) {
|
|
case float_class_snan:
|
|
flags |= float_flag_invalid_snan;
|
|
/* fall through */
|
|
case float_class_qnan:
|
|
flags |= float_flag_invalid;
|
|
r = max;
|
|
break;
|
|
|
|
case float_class_inf:
|
|
flags = float_flag_invalid | float_flag_invalid_cvti;
|
|
r = p->sign ? min : max;
|
|
break;
|
|
|
|
case float_class_zero:
|
|
return 0;
|
|
|
|
case float_class_normal:
|
|
/* TODO: N - 2 is frac_size for rounding; could use input fmt. */
|
|
if (parts_round_to_int_normal(p, rmode, scale, N - 2)) {
|
|
flags = float_flag_inexact;
|
|
}
|
|
|
|
if (p->exp <= DECOMPOSED_BINARY_POINT) {
|
|
r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
|
|
} else {
|
|
r = UINT64_MAX;
|
|
}
|
|
if (p->sign) {
|
|
if (r <= -(uint64_t)min) {
|
|
r = -r;
|
|
} else {
|
|
flags = float_flag_invalid | float_flag_invalid_cvti;
|
|
r = min;
|
|
}
|
|
} else if (r > max) {
|
|
flags = float_flag_invalid | float_flag_invalid_cvti;
|
|
r = max;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
float_raise(flags, s);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Returns the result of converting the floating-point value `a' to
|
|
* the unsigned integer format. The conversion is performed according
|
|
* to the IEC/IEEE Standard for Binary Floating-Point
|
|
* Arithmetic---which means in particular that the conversion is
|
|
* rounded according to the current rounding mode. If `a' is a NaN,
|
|
* the largest unsigned integer is returned. Otherwise, if the
|
|
* conversion overflows, the largest unsigned integer is returned. If
|
|
* the 'a' is negative, the result is rounded and zero is returned;
|
|
* values that do not round to zero will raise the inexact exception
|
|
* flag.
|
|
*/
|
|
static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode,
|
|
int scale, uint64_t max, float_status *s)
|
|
{
|
|
int flags = 0;
|
|
uint64_t r;
|
|
|
|
switch (p->cls) {
|
|
case float_class_snan:
|
|
flags |= float_flag_invalid_snan;
|
|
/* fall through */
|
|
case float_class_qnan:
|
|
flags |= float_flag_invalid;
|
|
r = max;
|
|
break;
|
|
|
|
case float_class_inf:
|
|
flags = float_flag_invalid | float_flag_invalid_cvti;
|
|
r = p->sign ? 0 : max;
|
|
break;
|
|
|
|
case float_class_zero:
|
|
return 0;
|
|
|
|
case float_class_normal:
|
|
/* TODO: N - 2 is frac_size for rounding; could use input fmt. */
|
|
if (parts_round_to_int_normal(p, rmode, scale, N - 2)) {
|
|
flags = float_flag_inexact;
|
|
if (p->cls == float_class_zero) {
|
|
r = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (p->sign) {
|
|
flags = float_flag_invalid | float_flag_invalid_cvti;
|
|
r = 0;
|
|
} else if (p->exp > DECOMPOSED_BINARY_POINT) {
|
|
flags = float_flag_invalid | float_flag_invalid_cvti;
|
|
r = max;
|
|
} else {
|
|
r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
|
|
if (r > max) {
|
|
flags = float_flag_invalid | float_flag_invalid_cvti;
|
|
r = max;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
float_raise(flags, s);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Like partsN(float_to_sint), except do not saturate the result.
|
|
* Instead, return the rounded unbounded precision two's compliment result,
|
|
* modulo 2**(bitsm1 + 1).
|
|
*/
|
|
static int64_t partsN(float_to_sint_modulo)(FloatPartsN *p,
|
|
FloatRoundMode rmode,
|
|
int bitsm1, float_status *s)
|
|
{
|
|
int flags = 0;
|
|
uint64_t r;
|
|
bool overflow = false;
|
|
|
|
switch (p->cls) {
|
|
case float_class_snan:
|
|
flags |= float_flag_invalid_snan;
|
|
/* fall through */
|
|
case float_class_qnan:
|
|
flags |= float_flag_invalid;
|
|
r = 0;
|
|
break;
|
|
|
|
case float_class_inf:
|
|
overflow = true;
|
|
r = 0;
|
|
break;
|
|
|
|
case float_class_zero:
|
|
return 0;
|
|
|
|
case float_class_normal:
|
|
/* TODO: N - 2 is frac_size for rounding; could use input fmt. */
|
|
if (parts_round_to_int_normal(p, rmode, 0, N - 2)) {
|
|
flags = float_flag_inexact;
|
|
}
|
|
|
|
if (p->exp <= DECOMPOSED_BINARY_POINT) {
|
|
/*
|
|
* Because we rounded to integral, and exp < 64,
|
|
* we know frac_low is zero.
|
|
*/
|
|
r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
|
|
if (p->exp < bitsm1) {
|
|
/* Result in range. */
|
|
} else if (p->exp == bitsm1) {
|
|
/* The only in-range value is INT_MIN. */
|
|
overflow = !p->sign || p->frac_hi != DECOMPOSED_IMPLICIT_BIT;
|
|
} else {
|
|
overflow = true;
|
|
}
|
|
} else {
|
|
/* Overflow, but there might still be bits to return. */
|
|
int shl = p->exp - DECOMPOSED_BINARY_POINT;
|
|
if (shl < N) {
|
|
frac_shl(p, shl);
|
|
r = p->frac_hi;
|
|
} else {
|
|
r = 0;
|
|
}
|
|
overflow = true;
|
|
}
|
|
|
|
if (p->sign) {
|
|
r = -r;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (overflow) {
|
|
flags = float_flag_invalid | float_flag_invalid_cvti;
|
|
}
|
|
float_raise(flags, s);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Integer to float conversions
|
|
*
|
|
* Returns the result of converting the two's complement integer `a'
|
|
* to the floating-point format. The conversion is performed according
|
|
* to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*/
|
|
static void partsN(sint_to_float)(FloatPartsN *p, int64_t a,
|
|
int scale, float_status *s)
|
|
{
|
|
uint64_t f = a;
|
|
int shift;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
if (a == 0) {
|
|
p->cls = float_class_zero;
|
|
return;
|
|
}
|
|
|
|
p->cls = float_class_normal;
|
|
if (a < 0) {
|
|
f = -f;
|
|
p->sign = true;
|
|
}
|
|
shift = clz64(f);
|
|
scale = MIN(MAX(scale, -0x10000), 0x10000);
|
|
|
|
p->exp = DECOMPOSED_BINARY_POINT - shift + scale;
|
|
p->frac_hi = f << shift;
|
|
}
|
|
|
|
/*
|
|
* Unsigned Integer to float conversions
|
|
*
|
|
* Returns the result of converting the unsigned integer `a' to the
|
|
* floating-point format. The conversion is performed according to the
|
|
* IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*/
|
|
static void partsN(uint_to_float)(FloatPartsN *p, uint64_t a,
|
|
int scale, float_status *status)
|
|
{
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
if (a == 0) {
|
|
p->cls = float_class_zero;
|
|
} else {
|
|
int shift = clz64(a);
|
|
scale = MIN(MAX(scale, -0x10000), 0x10000);
|
|
p->cls = float_class_normal;
|
|
p->exp = DECOMPOSED_BINARY_POINT - shift + scale;
|
|
p->frac_hi = a << shift;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Float min/max.
|
|
*/
|
|
static FloatPartsN *partsN(minmax)(FloatPartsN *a, FloatPartsN *b,
|
|
float_status *s, int flags)
|
|
{
|
|
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
|
|
int a_exp, b_exp, cmp;
|
|
|
|
if (unlikely(ab_mask & float_cmask_anynan)) {
|
|
/*
|
|
* For minNum/maxNum (IEEE 754-2008)
|
|
* or minimumNumber/maximumNumber (IEEE 754-2019),
|
|
* if one operand is a QNaN, and the other
|
|
* operand is numerical, then return numerical argument.
|
|
*/
|
|
if ((flags & (minmax_isnum | minmax_isnumber))
|
|
&& !(ab_mask & float_cmask_snan)
|
|
&& (ab_mask & ~float_cmask_qnan)) {
|
|
return is_nan(a->cls) ? b : a;
|
|
}
|
|
|
|
/*
|
|
* In IEEE 754-2019, minNum, maxNum, minNumMag and maxNumMag
|
|
* are removed and replaced with minimum, minimumNumber, maximum
|
|
* and maximumNumber.
|
|
* minimumNumber/maximumNumber behavior for SNaN is changed to:
|
|
* If both operands are NaNs, a QNaN is returned.
|
|
* If either operand is a SNaN,
|
|
* an invalid operation exception is signaled,
|
|
* but unless both operands are NaNs,
|
|
* the SNaN is otherwise ignored and not converted to a QNaN.
|
|
*/
|
|
if ((flags & minmax_isnumber)
|
|
&& (ab_mask & float_cmask_snan)
|
|
&& (ab_mask & ~float_cmask_anynan)) {
|
|
float_raise(float_flag_invalid, s);
|
|
return is_nan(a->cls) ? b : a;
|
|
}
|
|
|
|
return parts_pick_nan(a, b, s);
|
|
}
|
|
|
|
a_exp = a->exp;
|
|
b_exp = b->exp;
|
|
|
|
if (unlikely(ab_mask != float_cmask_normal)) {
|
|
switch (a->cls) {
|
|
case float_class_normal:
|
|
break;
|
|
case float_class_inf:
|
|
a_exp = INT16_MAX;
|
|
break;
|
|
case float_class_zero:
|
|
a_exp = INT16_MIN;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
break;
|
|
}
|
|
switch (b->cls) {
|
|
case float_class_normal:
|
|
break;
|
|
case float_class_inf:
|
|
b_exp = INT16_MAX;
|
|
break;
|
|
case float_class_zero:
|
|
b_exp = INT16_MIN;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Compare magnitudes. */
|
|
cmp = a_exp - b_exp;
|
|
if (cmp == 0) {
|
|
cmp = frac_cmp(a, b);
|
|
}
|
|
|
|
/*
|
|
* Take the sign into account.
|
|
* For ismag, only do this if the magnitudes are equal.
|
|
*/
|
|
if (!(flags & minmax_ismag) || cmp == 0) {
|
|
if (a->sign != b->sign) {
|
|
/* For differing signs, the negative operand is less. */
|
|
cmp = a->sign ? -1 : 1;
|
|
} else if (a->sign) {
|
|
/* For two negative operands, invert the magnitude comparison. */
|
|
cmp = -cmp;
|
|
}
|
|
}
|
|
|
|
if (flags & minmax_ismin) {
|
|
cmp = -cmp;
|
|
}
|
|
return cmp < 0 ? b : a;
|
|
}
|
|
|
|
/*
|
|
* Floating point compare
|
|
*/
|
|
static FloatRelation partsN(compare)(FloatPartsN *a, FloatPartsN *b,
|
|
float_status *s, bool is_quiet)
|
|
{
|
|
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
|
|
|
|
if (likely(ab_mask == float_cmask_normal)) {
|
|
FloatRelation cmp;
|
|
|
|
if (a->sign != b->sign) {
|
|
goto a_sign;
|
|
}
|
|
if (a->exp == b->exp) {
|
|
cmp = frac_cmp(a, b);
|
|
} else if (a->exp < b->exp) {
|
|
cmp = float_relation_less;
|
|
} else {
|
|
cmp = float_relation_greater;
|
|
}
|
|
if (a->sign) {
|
|
cmp = -cmp;
|
|
}
|
|
return cmp;
|
|
}
|
|
|
|
if (unlikely(ab_mask & float_cmask_anynan)) {
|
|
if (ab_mask & float_cmask_snan) {
|
|
float_raise(float_flag_invalid | float_flag_invalid_snan, s);
|
|
} else if (!is_quiet) {
|
|
float_raise(float_flag_invalid, s);
|
|
}
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (ab_mask & float_cmask_zero) {
|
|
if (ab_mask == float_cmask_zero) {
|
|
return float_relation_equal;
|
|
} else if (a->cls == float_class_zero) {
|
|
goto b_sign;
|
|
} else {
|
|
goto a_sign;
|
|
}
|
|
}
|
|
|
|
if (ab_mask == float_cmask_inf) {
|
|
if (a->sign == b->sign) {
|
|
return float_relation_equal;
|
|
}
|
|
} else if (b->cls == float_class_inf) {
|
|
goto b_sign;
|
|
} else {
|
|
g_assert(a->cls == float_class_inf);
|
|
}
|
|
|
|
a_sign:
|
|
return a->sign ? float_relation_less : float_relation_greater;
|
|
b_sign:
|
|
return b->sign ? float_relation_greater : float_relation_less;
|
|
}
|
|
|
|
/*
|
|
* Multiply A by 2 raised to the power N.
|
|
*/
|
|
static void partsN(scalbn)(FloatPartsN *a, int n, float_status *s)
|
|
{
|
|
switch (a->cls) {
|
|
case float_class_snan:
|
|
case float_class_qnan:
|
|
parts_return_nan(a, s);
|
|
break;
|
|
case float_class_zero:
|
|
case float_class_inf:
|
|
break;
|
|
case float_class_normal:
|
|
a->exp += MIN(MAX(n, -0x10000), 0x10000);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return log2(A)
|
|
*/
|
|
static void partsN(log2)(FloatPartsN *a, float_status *s, const FloatFmt *fmt)
|
|
{
|
|
uint64_t a0, a1, r, t, ign;
|
|
FloatPartsN f;
|
|
int i, n, a_exp, f_exp;
|
|
|
|
if (unlikely(a->cls != float_class_normal)) {
|
|
switch (a->cls) {
|
|
case float_class_snan:
|
|
case float_class_qnan:
|
|
parts_return_nan(a, s);
|
|
return;
|
|
case float_class_zero:
|
|
float_raise(float_flag_divbyzero, s);
|
|
/* log2(0) = -inf */
|
|
a->cls = float_class_inf;
|
|
a->sign = 1;
|
|
return;
|
|
case float_class_inf:
|
|
if (unlikely(a->sign)) {
|
|
goto d_nan;
|
|
}
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
if (unlikely(a->sign)) {
|
|
goto d_nan;
|
|
}
|
|
|
|
/* TODO: This algorithm looses bits too quickly for float128. */
|
|
g_assert(N == 64);
|
|
|
|
a_exp = a->exp;
|
|
f_exp = -1;
|
|
|
|
r = 0;
|
|
t = DECOMPOSED_IMPLICIT_BIT;
|
|
a0 = a->frac_hi;
|
|
a1 = 0;
|
|
|
|
n = fmt->frac_size + 2;
|
|
if (unlikely(a_exp == -1)) {
|
|
/*
|
|
* When a_exp == -1, we're computing the log2 of a value [0.5,1.0).
|
|
* When the value is very close to 1.0, there are lots of 1's in
|
|
* the msb parts of the fraction. At the end, when we subtract
|
|
* this value from -1.0, we can see a catastrophic loss of precision,
|
|
* as 0x800..000 - 0x7ff..ffx becomes 0x000..00y, leaving only the
|
|
* bits of y in the final result. To minimize this, compute as many
|
|
* digits as we can.
|
|
* ??? This case needs another algorithm to avoid this.
|
|
*/
|
|
n = fmt->frac_size * 2 + 2;
|
|
/* Don't compute a value overlapping the sticky bit */
|
|
n = MIN(n, 62);
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (a1) {
|
|
mul128To256(a0, a1, a0, a1, &a0, &a1, &ign, &ign);
|
|
} else if (a0 & 0xffffffffull) {
|
|
mul64To128(a0, a0, &a0, &a1);
|
|
} else if (a0 & ~DECOMPOSED_IMPLICIT_BIT) {
|
|
a0 >>= 32;
|
|
a0 *= a0;
|
|
} else {
|
|
goto exact;
|
|
}
|
|
|
|
if (a0 & DECOMPOSED_IMPLICIT_BIT) {
|
|
if (unlikely(a_exp == 0 && r == 0)) {
|
|
/*
|
|
* When a_exp == 0, we're computing the log2 of a value
|
|
* [1.0,2.0). When the value is very close to 1.0, there
|
|
* are lots of 0's in the msb parts of the fraction.
|
|
* We need to compute more digits to produce a correct
|
|
* result -- restart at the top of the fraction.
|
|
* ??? This is likely to lose precision quickly, as for
|
|
* float128; we may need another method.
|
|
*/
|
|
f_exp -= i;
|
|
t = r = DECOMPOSED_IMPLICIT_BIT;
|
|
i = 0;
|
|
} else {
|
|
r |= t;
|
|
}
|
|
} else {
|
|
add128(a0, a1, a0, a1, &a0, &a1);
|
|
}
|
|
t >>= 1;
|
|
}
|
|
|
|
/* Set sticky for inexact. */
|
|
r |= (a1 || a0 & ~DECOMPOSED_IMPLICIT_BIT);
|
|
|
|
exact:
|
|
parts_sint_to_float(a, a_exp, 0, s);
|
|
if (r == 0) {
|
|
return;
|
|
}
|
|
|
|
memset(&f, 0, sizeof(f));
|
|
f.cls = float_class_normal;
|
|
f.frac_hi = r;
|
|
f.exp = f_exp - frac_normalize(&f);
|
|
|
|
if (a_exp < 0) {
|
|
parts_sub_normal(a, &f);
|
|
} else if (a_exp > 0) {
|
|
parts_add_normal(a, &f);
|
|
} else {
|
|
*a = f;
|
|
}
|
|
return;
|
|
|
|
d_nan:
|
|
float_raise(float_flag_invalid, s);
|
|
parts_default_nan(a, s);
|
|
}
|