qemu/plugins/core.c
Pierrick Bouvier b709da5d29 plugins: save value during memory accesses
Different code paths handle memory accesses:
- tcg generated code
- load/store helpers
- atomic helpers

This value is saved in cpu->neg.plugin_mem_value_{high,low}. Values are
written only for accessed word size (upper bits are not set).

Atomic operations are doing read/write at the same time, so we generate
two memory callbacks instead of one, to allow plugins to access distinct
values.

For now, we can have access only up to 128 bits, thus split this in two
64 bits words. When QEMU will support wider operations, we'll be able to
reconsider this.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Message-Id: <20240724194708.1843704-2-pierrick.bouvier@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20240916085400.1046925-5-alex.bennee@linaro.org>
2024-09-19 15:58:01 +01:00

771 lines
23 KiB
C

/*
* QEMU Plugin Core code
*
* This is the core code that deals with injecting instrumentation into the code
*
* Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
* Copyright (C) 2019, Linaro
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/config-file.h"
#include "qapi/error.h"
#include "qemu/lockable.h"
#include "qemu/option.h"
#include "qemu/plugin.h"
#include "qemu/queue.h"
#include "qemu/rcu_queue.h"
#include "qemu/xxhash.h"
#include "qemu/rcu.h"
#include "hw/core/cpu.h"
#include "exec/exec-all.h"
#include "exec/tb-flush.h"
#include "tcg/tcg.h"
#include "tcg/tcg-op.h"
#include "plugin.h"
struct qemu_plugin_cb {
struct qemu_plugin_ctx *ctx;
union qemu_plugin_cb_sig f;
void *udata;
QLIST_ENTRY(qemu_plugin_cb) entry;
};
struct qemu_plugin_state plugin;
struct qemu_plugin_ctx *plugin_id_to_ctx_locked(qemu_plugin_id_t id)
{
struct qemu_plugin_ctx *ctx;
qemu_plugin_id_t *id_p;
id_p = g_hash_table_lookup(plugin.id_ht, &id);
ctx = container_of(id_p, struct qemu_plugin_ctx, id);
if (ctx == NULL) {
error_report("plugin: invalid plugin id %" PRIu64, id);
abort();
}
return ctx;
}
static void plugin_cpu_update__async(CPUState *cpu, run_on_cpu_data data)
{
bitmap_copy(cpu->plugin_state->event_mask,
&data.host_ulong, QEMU_PLUGIN_EV_MAX);
tcg_flush_jmp_cache(cpu);
}
static void plugin_cpu_update__locked(gpointer k, gpointer v, gpointer udata)
{
CPUState *cpu = container_of(k, CPUState, cpu_index);
run_on_cpu_data mask = RUN_ON_CPU_HOST_ULONG(*plugin.mask);
async_run_on_cpu(cpu, plugin_cpu_update__async, mask);
}
void plugin_unregister_cb__locked(struct qemu_plugin_ctx *ctx,
enum qemu_plugin_event ev)
{
struct qemu_plugin_cb *cb = ctx->callbacks[ev];
if (cb == NULL) {
return;
}
QLIST_REMOVE_RCU(cb, entry);
g_free(cb);
ctx->callbacks[ev] = NULL;
if (QLIST_EMPTY_RCU(&plugin.cb_lists[ev])) {
clear_bit(ev, plugin.mask);
g_hash_table_foreach(plugin.cpu_ht, plugin_cpu_update__locked, NULL);
}
}
/*
* Disable CFI checks.
* The callback function has been loaded from an external library so we do not
* have type information
*/
QEMU_DISABLE_CFI
static void plugin_vcpu_cb__simple(CPUState *cpu, enum qemu_plugin_event ev)
{
struct qemu_plugin_cb *cb, *next;
switch (ev) {
case QEMU_PLUGIN_EV_VCPU_INIT:
case QEMU_PLUGIN_EV_VCPU_EXIT:
case QEMU_PLUGIN_EV_VCPU_IDLE:
case QEMU_PLUGIN_EV_VCPU_RESUME:
/* iterate safely; plugins might uninstall themselves at any time */
QLIST_FOREACH_SAFE_RCU(cb, &plugin.cb_lists[ev], entry, next) {
qemu_plugin_vcpu_simple_cb_t func = cb->f.vcpu_simple;
func(cb->ctx->id, cpu->cpu_index);
}
break;
default:
g_assert_not_reached();
}
}
/*
* Disable CFI checks.
* The callback function has been loaded from an external library so we do not
* have type information
*/
QEMU_DISABLE_CFI
static void plugin_cb__simple(enum qemu_plugin_event ev)
{
struct qemu_plugin_cb *cb, *next;
switch (ev) {
case QEMU_PLUGIN_EV_FLUSH:
QLIST_FOREACH_SAFE_RCU(cb, &plugin.cb_lists[ev], entry, next) {
qemu_plugin_simple_cb_t func = cb->f.simple;
func(cb->ctx->id);
}
break;
default:
g_assert_not_reached();
}
}
/*
* Disable CFI checks.
* The callback function has been loaded from an external library so we do not
* have type information
*/
QEMU_DISABLE_CFI
static void plugin_cb__udata(enum qemu_plugin_event ev)
{
struct qemu_plugin_cb *cb, *next;
switch (ev) {
case QEMU_PLUGIN_EV_ATEXIT:
QLIST_FOREACH_SAFE_RCU(cb, &plugin.cb_lists[ev], entry, next) {
qemu_plugin_udata_cb_t func = cb->f.udata;
func(cb->ctx->id, cb->udata);
}
break;
default:
g_assert_not_reached();
}
}
static void
do_plugin_register_cb(qemu_plugin_id_t id, enum qemu_plugin_event ev,
void *func, void *udata)
{
struct qemu_plugin_ctx *ctx;
QEMU_LOCK_GUARD(&plugin.lock);
ctx = plugin_id_to_ctx_locked(id);
/* if the plugin is on its way out, ignore this request */
if (unlikely(ctx->uninstalling)) {
return;
}
if (func) {
struct qemu_plugin_cb *cb = ctx->callbacks[ev];
if (cb) {
cb->f.generic = func;
cb->udata = udata;
} else {
cb = g_new(struct qemu_plugin_cb, 1);
cb->ctx = ctx;
cb->f.generic = func;
cb->udata = udata;
ctx->callbacks[ev] = cb;
QLIST_INSERT_HEAD_RCU(&plugin.cb_lists[ev], cb, entry);
if (!test_bit(ev, plugin.mask)) {
set_bit(ev, plugin.mask);
g_hash_table_foreach(plugin.cpu_ht, plugin_cpu_update__locked,
NULL);
}
}
} else {
plugin_unregister_cb__locked(ctx, ev);
}
}
void plugin_register_cb(qemu_plugin_id_t id, enum qemu_plugin_event ev,
void *func)
{
do_plugin_register_cb(id, ev, func, NULL);
}
void
plugin_register_cb_udata(qemu_plugin_id_t id, enum qemu_plugin_event ev,
void *func, void *udata)
{
do_plugin_register_cb(id, ev, func, udata);
}
CPUPluginState *qemu_plugin_create_vcpu_state(void)
{
return g_new0(CPUPluginState, 1);
}
static void plugin_grow_scoreboards__locked(CPUState *cpu)
{
size_t scoreboard_size = plugin.scoreboard_alloc_size;
bool need_realloc = false;
if (cpu->cpu_index < scoreboard_size) {
return;
}
while (cpu->cpu_index >= scoreboard_size) {
scoreboard_size *= 2;
need_realloc = true;
}
if (!need_realloc) {
return;
}
if (QLIST_EMPTY(&plugin.scoreboards)) {
/* just update size for future scoreboards */
plugin.scoreboard_alloc_size = scoreboard_size;
return;
}
/*
* A scoreboard creation/deletion might be in progress. If a new vcpu is
* initialized at the same time, we are safe, as the new
* plugin.scoreboard_alloc_size was not yet written.
*/
qemu_rec_mutex_unlock(&plugin.lock);
/* cpus must be stopped, as tb might still use an existing scoreboard. */
start_exclusive();
/* re-acquire lock */
qemu_rec_mutex_lock(&plugin.lock);
/* in case another vcpu is created between unlock and exclusive section. */
if (scoreboard_size > plugin.scoreboard_alloc_size) {
struct qemu_plugin_scoreboard *score;
QLIST_FOREACH(score, &plugin.scoreboards, entry) {
g_array_set_size(score->data, scoreboard_size);
}
plugin.scoreboard_alloc_size = scoreboard_size;
/* force all tb to be flushed, as scoreboard pointers were changed. */
tb_flush(cpu);
}
end_exclusive();
}
static void qemu_plugin_vcpu_init__async(CPUState *cpu, run_on_cpu_data unused)
{
bool success;
assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
qemu_rec_mutex_lock(&plugin.lock);
plugin.num_vcpus = MAX(plugin.num_vcpus, cpu->cpu_index + 1);
plugin_cpu_update__locked(&cpu->cpu_index, NULL, NULL);
success = g_hash_table_insert(plugin.cpu_ht, &cpu->cpu_index,
&cpu->cpu_index);
g_assert(success);
plugin_grow_scoreboards__locked(cpu);
qemu_rec_mutex_unlock(&plugin.lock);
plugin_vcpu_cb__simple(cpu, QEMU_PLUGIN_EV_VCPU_INIT);
}
void qemu_plugin_vcpu_init_hook(CPUState *cpu)
{
/* Plugin initialization must wait until the cpu start executing code */
async_run_on_cpu(cpu, qemu_plugin_vcpu_init__async, RUN_ON_CPU_NULL);
}
void qemu_plugin_vcpu_exit_hook(CPUState *cpu)
{
bool success;
plugin_vcpu_cb__simple(cpu, QEMU_PLUGIN_EV_VCPU_EXIT);
assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
qemu_rec_mutex_lock(&plugin.lock);
success = g_hash_table_remove(plugin.cpu_ht, &cpu->cpu_index);
g_assert(success);
qemu_rec_mutex_unlock(&plugin.lock);
}
struct plugin_for_each_args {
struct qemu_plugin_ctx *ctx;
qemu_plugin_vcpu_simple_cb_t cb;
};
static void plugin_vcpu_for_each(gpointer k, gpointer v, gpointer udata)
{
struct plugin_for_each_args *args = udata;
int cpu_index = *(int *)k;
args->cb(args->ctx->id, cpu_index);
}
void qemu_plugin_vcpu_for_each(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
struct plugin_for_each_args args;
if (cb == NULL) {
return;
}
qemu_rec_mutex_lock(&plugin.lock);
args.ctx = plugin_id_to_ctx_locked(id);
args.cb = cb;
g_hash_table_foreach(plugin.cpu_ht, plugin_vcpu_for_each, &args);
qemu_rec_mutex_unlock(&plugin.lock);
}
/* Allocate and return a callback record */
static struct qemu_plugin_dyn_cb *plugin_get_dyn_cb(GArray **arr)
{
GArray *cbs = *arr;
if (!cbs) {
cbs = g_array_sized_new(false, true,
sizeof(struct qemu_plugin_dyn_cb), 1);
*arr = cbs;
}
g_array_set_size(cbs, cbs->len + 1);
return &g_array_index(cbs, struct qemu_plugin_dyn_cb, cbs->len - 1);
}
static enum plugin_dyn_cb_type op_to_cb_type(enum qemu_plugin_op op)
{
switch (op) {
case QEMU_PLUGIN_INLINE_ADD_U64:
return PLUGIN_CB_INLINE_ADD_U64;
case QEMU_PLUGIN_INLINE_STORE_U64:
return PLUGIN_CB_INLINE_STORE_U64;
default:
g_assert_not_reached();
}
}
void plugin_register_inline_op_on_entry(GArray **arr,
enum qemu_plugin_mem_rw rw,
enum qemu_plugin_op op,
qemu_plugin_u64 entry,
uint64_t imm)
{
struct qemu_plugin_dyn_cb *dyn_cb;
struct qemu_plugin_inline_cb inline_cb = { .rw = rw,
.entry = entry,
.imm = imm };
dyn_cb = plugin_get_dyn_cb(arr);
dyn_cb->type = op_to_cb_type(op);
dyn_cb->inline_insn = inline_cb;
}
void plugin_register_dyn_cb__udata(GArray **arr,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
void *udata)
{
static TCGHelperInfo info[3] = {
[QEMU_PLUGIN_CB_NO_REGS].flags = TCG_CALL_NO_RWG,
[QEMU_PLUGIN_CB_R_REGS].flags = TCG_CALL_NO_WG,
/*
* Match qemu_plugin_vcpu_udata_cb_t:
* void (*)(uint32_t, void *)
*/
[0 ... 2].typemask = (dh_typemask(void, 0) |
dh_typemask(i32, 1) |
dh_typemask(ptr, 2))
};
assert((unsigned)flags < ARRAY_SIZE(info));
struct qemu_plugin_dyn_cb *dyn_cb = plugin_get_dyn_cb(arr);
struct qemu_plugin_regular_cb regular_cb = { .f.vcpu_udata = cb,
.userp = udata,
.info = &info[flags] };
dyn_cb->type = PLUGIN_CB_REGULAR;
dyn_cb->regular = regular_cb;
}
void plugin_register_dyn_cond_cb__udata(GArray **arr,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_cond cond,
qemu_plugin_u64 entry,
uint64_t imm,
void *udata)
{
static TCGHelperInfo info[3] = {
[QEMU_PLUGIN_CB_NO_REGS].flags = TCG_CALL_NO_RWG,
[QEMU_PLUGIN_CB_R_REGS].flags = TCG_CALL_NO_WG,
/*
* Match qemu_plugin_vcpu_udata_cb_t:
* void (*)(uint32_t, void *)
*/
[0 ... 2].typemask = (dh_typemask(void, 0) |
dh_typemask(i32, 1) |
dh_typemask(ptr, 2))
};
assert((unsigned)flags < ARRAY_SIZE(info));
struct qemu_plugin_dyn_cb *dyn_cb = plugin_get_dyn_cb(arr);
struct qemu_plugin_conditional_cb cond_cb = { .userp = udata,
.f.vcpu_udata = cb,
.cond = cond,
.entry = entry,
.imm = imm,
.info = &info[flags] };
dyn_cb->type = PLUGIN_CB_COND;
dyn_cb->cond = cond_cb;
}
void plugin_register_vcpu_mem_cb(GArray **arr,
void *cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_mem_rw rw,
void *udata)
{
/*
* Expect that the underlying type for enum qemu_plugin_meminfo_t
* is either int32_t or uint32_t, aka int or unsigned int.
*/
QEMU_BUILD_BUG_ON(
!__builtin_types_compatible_p(qemu_plugin_meminfo_t, uint32_t) &&
!__builtin_types_compatible_p(qemu_plugin_meminfo_t, int32_t));
static TCGHelperInfo info[3] = {
[QEMU_PLUGIN_CB_NO_REGS].flags = TCG_CALL_NO_RWG,
[QEMU_PLUGIN_CB_R_REGS].flags = TCG_CALL_NO_WG,
/*
* Match qemu_plugin_vcpu_mem_cb_t:
* void (*)(uint32_t, qemu_plugin_meminfo_t, uint64_t, void *)
*/
[0 ... 2].typemask =
(dh_typemask(void, 0) |
dh_typemask(i32, 1) |
(__builtin_types_compatible_p(qemu_plugin_meminfo_t, uint32_t)
? dh_typemask(i32, 2) : dh_typemask(s32, 2)) |
dh_typemask(i64, 3) |
dh_typemask(ptr, 4))
};
assert((unsigned)flags < ARRAY_SIZE(info));
struct qemu_plugin_dyn_cb *dyn_cb = plugin_get_dyn_cb(arr);
struct qemu_plugin_regular_cb regular_cb = { .userp = udata,
.rw = rw,
.f.vcpu_mem = cb,
.info = &info[flags] };
dyn_cb->type = PLUGIN_CB_MEM_REGULAR;
dyn_cb->regular = regular_cb;
}
/*
* Disable CFI checks.
* The callback function has been loaded from an external library so we do not
* have type information
*/
QEMU_DISABLE_CFI
void qemu_plugin_tb_trans_cb(CPUState *cpu, struct qemu_plugin_tb *tb)
{
struct qemu_plugin_cb *cb, *next;
enum qemu_plugin_event ev = QEMU_PLUGIN_EV_VCPU_TB_TRANS;
/* no plugin_state->event_mask check here; caller should have checked */
QLIST_FOREACH_SAFE_RCU(cb, &plugin.cb_lists[ev], entry, next) {
qemu_plugin_vcpu_tb_trans_cb_t func = cb->f.vcpu_tb_trans;
func(cb->ctx->id, tb);
}
}
/*
* Disable CFI checks.
* The callback function has been loaded from an external library so we do not
* have type information
*/
QEMU_DISABLE_CFI
void
qemu_plugin_vcpu_syscall(CPUState *cpu, int64_t num, uint64_t a1, uint64_t a2,
uint64_t a3, uint64_t a4, uint64_t a5,
uint64_t a6, uint64_t a7, uint64_t a8)
{
struct qemu_plugin_cb *cb, *next;
enum qemu_plugin_event ev = QEMU_PLUGIN_EV_VCPU_SYSCALL;
if (!test_bit(ev, cpu->plugin_state->event_mask)) {
return;
}
QLIST_FOREACH_SAFE_RCU(cb, &plugin.cb_lists[ev], entry, next) {
qemu_plugin_vcpu_syscall_cb_t func = cb->f.vcpu_syscall;
func(cb->ctx->id, cpu->cpu_index, num, a1, a2, a3, a4, a5, a6, a7, a8);
}
}
/*
* Disable CFI checks.
* The callback function has been loaded from an external library so we do not
* have type information
*/
QEMU_DISABLE_CFI
void qemu_plugin_vcpu_syscall_ret(CPUState *cpu, int64_t num, int64_t ret)
{
struct qemu_plugin_cb *cb, *next;
enum qemu_plugin_event ev = QEMU_PLUGIN_EV_VCPU_SYSCALL_RET;
if (!test_bit(ev, cpu->plugin_state->event_mask)) {
return;
}
QLIST_FOREACH_SAFE_RCU(cb, &plugin.cb_lists[ev], entry, next) {
qemu_plugin_vcpu_syscall_ret_cb_t func = cb->f.vcpu_syscall_ret;
func(cb->ctx->id, cpu->cpu_index, num, ret);
}
}
void qemu_plugin_vcpu_idle_cb(CPUState *cpu)
{
/* idle and resume cb may be called before init, ignore in this case */
if (cpu->cpu_index < plugin.num_vcpus) {
plugin_vcpu_cb__simple(cpu, QEMU_PLUGIN_EV_VCPU_IDLE);
}
}
void qemu_plugin_vcpu_resume_cb(CPUState *cpu)
{
if (cpu->cpu_index < plugin.num_vcpus) {
plugin_vcpu_cb__simple(cpu, QEMU_PLUGIN_EV_VCPU_RESUME);
}
}
void qemu_plugin_register_vcpu_idle_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_IDLE, cb);
}
void qemu_plugin_register_vcpu_resume_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_RESUME, cb);
}
void qemu_plugin_register_flush_cb(qemu_plugin_id_t id,
qemu_plugin_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_FLUSH, cb);
}
static bool free_dyn_cb_arr(void *p, uint32_t h, void *userp)
{
g_array_free((GArray *) p, true);
return true;
}
void qemu_plugin_flush_cb(void)
{
qht_iter_remove(&plugin.dyn_cb_arr_ht, free_dyn_cb_arr, NULL);
qht_reset(&plugin.dyn_cb_arr_ht);
plugin_cb__simple(QEMU_PLUGIN_EV_FLUSH);
}
void exec_inline_op(enum plugin_dyn_cb_type type,
struct qemu_plugin_inline_cb *cb,
int cpu_index)
{
char *ptr = cb->entry.score->data->data;
size_t elem_size = g_array_get_element_size(
cb->entry.score->data);
size_t offset = cb->entry.offset;
uint64_t *val = (uint64_t *)(ptr + offset + cpu_index * elem_size);
switch (type) {
case PLUGIN_CB_INLINE_ADD_U64:
*val += cb->imm;
break;
case PLUGIN_CB_INLINE_STORE_U64:
*val = cb->imm;
break;
default:
g_assert_not_reached();
}
}
void qemu_plugin_vcpu_mem_cb(CPUState *cpu, uint64_t vaddr,
uint64_t value_low,
uint64_t value_high,
MemOpIdx oi, enum qemu_plugin_mem_rw rw)
{
GArray *arr = cpu->neg.plugin_mem_cbs;
size_t i;
if (arr == NULL) {
return;
}
cpu->neg.plugin_mem_value_low = value_low;
cpu->neg.plugin_mem_value_high = value_high;
for (i = 0; i < arr->len; i++) {
struct qemu_plugin_dyn_cb *cb =
&g_array_index(arr, struct qemu_plugin_dyn_cb, i);
switch (cb->type) {
case PLUGIN_CB_MEM_REGULAR:
if (rw & cb->regular.rw) {
cb->regular.f.vcpu_mem(cpu->cpu_index,
make_plugin_meminfo(oi, rw),
vaddr, cb->regular.userp);
}
break;
case PLUGIN_CB_INLINE_ADD_U64:
case PLUGIN_CB_INLINE_STORE_U64:
if (rw & cb->inline_insn.rw) {
exec_inline_op(cb->type, &cb->inline_insn, cpu->cpu_index);
}
break;
default:
g_assert_not_reached();
}
}
}
void qemu_plugin_atexit_cb(void)
{
plugin_cb__udata(QEMU_PLUGIN_EV_ATEXIT);
}
void qemu_plugin_register_atexit_cb(qemu_plugin_id_t id,
qemu_plugin_udata_cb_t cb,
void *udata)
{
plugin_register_cb_udata(id, QEMU_PLUGIN_EV_ATEXIT, cb, udata);
}
/*
* Handle exit from linux-user. Unlike the normal atexit() mechanism
* we need to handle the clean-up manually as it's possible threads
* are still running. We need to remove all callbacks from code
* generation, flush the current translations and then we can safely
* trigger the exit callbacks.
*/
void qemu_plugin_user_exit(void)
{
enum qemu_plugin_event ev;
CPUState *cpu;
/*
* Locking order: we must acquire locks in an order that is consistent
* with the one in fork_start(). That is:
* - start_exclusive(), which acquires qemu_cpu_list_lock,
* must be called before acquiring plugin.lock.
* - tb_flush(), which acquires mmap_lock(), must be called
* while plugin.lock is not held.
*/
start_exclusive();
qemu_rec_mutex_lock(&plugin.lock);
/* un-register all callbacks except the final AT_EXIT one */
for (ev = 0; ev < QEMU_PLUGIN_EV_MAX; ev++) {
if (ev != QEMU_PLUGIN_EV_ATEXIT) {
struct qemu_plugin_cb *cb, *next;
QLIST_FOREACH_SAFE_RCU(cb, &plugin.cb_lists[ev], entry, next) {
plugin_unregister_cb__locked(cb->ctx, ev);
}
}
}
CPU_FOREACH(cpu) {
qemu_plugin_disable_mem_helpers(cpu);
}
qemu_rec_mutex_unlock(&plugin.lock);
tb_flush(current_cpu);
end_exclusive();
/* now it's safe to handle the exit case */
qemu_plugin_atexit_cb();
}
/*
* Helpers for *-user to ensure locks are sane across fork() events.
*/
void qemu_plugin_user_prefork_lock(void)
{
qemu_rec_mutex_lock(&plugin.lock);
}
void qemu_plugin_user_postfork(bool is_child)
{
if (is_child) {
/* should we just reset via plugin_init? */
qemu_rec_mutex_init(&plugin.lock);
} else {
qemu_rec_mutex_unlock(&plugin.lock);
}
}
static bool plugin_dyn_cb_arr_cmp(const void *ap, const void *bp)
{
return ap == bp;
}
static void __attribute__((__constructor__)) plugin_init(void)
{
int i;
for (i = 0; i < QEMU_PLUGIN_EV_MAX; i++) {
QLIST_INIT(&plugin.cb_lists[i]);
}
qemu_rec_mutex_init(&plugin.lock);
plugin.id_ht = g_hash_table_new(g_int64_hash, g_int64_equal);
plugin.cpu_ht = g_hash_table_new(g_int_hash, g_int_equal);
QLIST_INIT(&plugin.scoreboards);
plugin.scoreboard_alloc_size = 16; /* avoid frequent reallocation */
QTAILQ_INIT(&plugin.ctxs);
qht_init(&plugin.dyn_cb_arr_ht, plugin_dyn_cb_arr_cmp, 16,
QHT_MODE_AUTO_RESIZE);
atexit(qemu_plugin_atexit_cb);
}
int plugin_num_vcpus(void)
{
return plugin.num_vcpus;
}
struct qemu_plugin_scoreboard *plugin_scoreboard_new(size_t element_size)
{
struct qemu_plugin_scoreboard *score =
g_malloc0(sizeof(struct qemu_plugin_scoreboard));
score->data = g_array_new(FALSE, TRUE, element_size);
g_array_set_size(score->data, plugin.scoreboard_alloc_size);
qemu_rec_mutex_lock(&plugin.lock);
QLIST_INSERT_HEAD(&plugin.scoreboards, score, entry);
qemu_rec_mutex_unlock(&plugin.lock);
return score;
}
void plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
{
qemu_rec_mutex_lock(&plugin.lock);
QLIST_REMOVE(score, entry);
qemu_rec_mutex_unlock(&plugin.lock);
g_array_free(score->data, TRUE);
g_free(score);
}