/* * QEMU Plugin API * * This provides the API that is available to the plugins to interact * with QEMU. We have to be careful not to expose internal details of * how QEMU works so we abstract out things like translation and * instructions to anonymous data types: * * qemu_plugin_tb * qemu_plugin_insn * qemu_plugin_register * * Which can then be passed back into the API to do additional things. * As such all the public functions in here are exported in * qemu-plugin.h. * * The general life-cycle of a plugin is: * * - plugin is loaded, public qemu_plugin_install called * - the install func registers callbacks for events * - usually an atexit_cb is registered to dump info at the end * - when a registered event occurs the plugin is called * - some events pass additional info * - during translation the plugin can decide to instrument any * instruction * - when QEMU exits all the registered atexit callbacks are called * * Copyright (C) 2017, Emilio G. Cota * Copyright (C) 2019, Linaro * * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * SPDX-License-Identifier: GPL-2.0-or-later * */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "qemu/plugin.h" #include "qemu/log.h" #include "tcg/tcg.h" #include "exec/exec-all.h" #include "exec/gdbstub.h" #include "exec/translator.h" #include "disas/disas.h" #include "plugin.h" #ifndef CONFIG_USER_ONLY #include "exec/ram_addr.h" #include "qemu/plugin-memory.h" #include "hw/boards.h" #else #include "qemu.h" #ifdef CONFIG_LINUX #include "loader.h" #endif #endif /* Uninstall and Reset handlers */ void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) { plugin_reset_uninstall(id, cb, false); } void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) { plugin_reset_uninstall(id, cb, true); } /* * Plugin Register Functions * * This allows the plugin to register callbacks for various events * during the translation. */ void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_simple_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); } void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_simple_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); } static bool tb_is_mem_only(void) { return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY; } void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, qemu_plugin_vcpu_udata_cb_t cb, enum qemu_plugin_cb_flags flags, void *udata) { if (!tb_is_mem_only()) { plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata); } } void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb, qemu_plugin_vcpu_udata_cb_t cb, enum qemu_plugin_cb_flags flags, enum qemu_plugin_cond cond, qemu_plugin_u64 entry, uint64_t imm, void *udata) { if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) { return; } if (cond == QEMU_PLUGIN_COND_ALWAYS) { qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata); return; } plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags, cond, entry, imm, udata); } void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( struct qemu_plugin_tb *tb, enum qemu_plugin_op op, qemu_plugin_u64 entry, uint64_t imm) { if (!tb_is_mem_only()) { plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm); } } void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, qemu_plugin_vcpu_udata_cb_t cb, enum qemu_plugin_cb_flags flags, void *udata) { if (!tb_is_mem_only()) { plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata); } } void qemu_plugin_register_vcpu_insn_exec_cond_cb( struct qemu_plugin_insn *insn, qemu_plugin_vcpu_udata_cb_t cb, enum qemu_plugin_cb_flags flags, enum qemu_plugin_cond cond, qemu_plugin_u64 entry, uint64_t imm, void *udata) { if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) { return; } if (cond == QEMU_PLUGIN_COND_ALWAYS) { qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata); return; } plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags, cond, entry, imm, udata); } void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu( struct qemu_plugin_insn *insn, enum qemu_plugin_op op, qemu_plugin_u64 entry, uint64_t imm) { if (!tb_is_mem_only()) { plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm); } } /* * We always plant memory instrumentation because they don't finalise until * after the operation has complete. */ void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, qemu_plugin_vcpu_mem_cb_t cb, enum qemu_plugin_cb_flags flags, enum qemu_plugin_mem_rw rw, void *udata) { plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata); } void qemu_plugin_register_vcpu_mem_inline_per_vcpu( struct qemu_plugin_insn *insn, enum qemu_plugin_mem_rw rw, enum qemu_plugin_op op, qemu_plugin_u64 entry, uint64_t imm) { plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm); } void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_tb_trans_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); } void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_syscall_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); } void qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_syscall_ret_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); } /* * Plugin Queries * * These are queries that the plugin can make to gauge information * from our opaque data types. We do not want to leak internal details * here just information useful to the plugin. */ /* * Translation block information: * * A plugin can query the virtual address of the start of the block * and the number of instructions in it. It can also get access to * each translated instruction. */ size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) { return tb->n; } uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) { const DisasContextBase *db = tcg_ctx->plugin_db; return db->pc_first; } struct qemu_plugin_insn * qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) { struct qemu_plugin_insn *insn; if (unlikely(idx >= tb->n)) { return NULL; } insn = g_ptr_array_index(tb->insns, idx); return insn; } /* * Instruction information * * These queries allow the plugin to retrieve information about each * instruction being translated. */ size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn, void *dest, size_t len) { const DisasContextBase *db = tcg_ctx->plugin_db; len = MIN(len, insn->len); return translator_st(db, dest, insn->vaddr, len) ? len : 0; } size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) { return insn->len; } uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) { return insn->vaddr; } void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) { const DisasContextBase *db = tcg_ctx->plugin_db; vaddr page0_last = db->pc_first | ~TARGET_PAGE_MASK; if (db->fake_insn) { return NULL; } /* * ??? The return value is not intended for use of host memory, * but as a proxy for address space and physical address. * Thus we are only interested in the first byte and do not * care about spanning pages. */ if (insn->vaddr <= page0_last) { if (db->host_addr[0] == NULL) { return NULL; } return db->host_addr[0] + insn->vaddr - db->pc_first; } else { if (db->host_addr[1] == NULL) { return NULL; } return db->host_addr[1] + insn->vaddr - (page0_last + 1); } } char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) { return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db, insn->vaddr, insn->len); } const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) { const char *sym = lookup_symbol(insn->vaddr); return sym[0] != 0 ? sym : NULL; } /* * The memory queries allow the plugin to query information about a * memory access. */ unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) { MemOp op = get_memop(info); return op & MO_SIZE; } bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) { MemOp op = get_memop(info); return op & MO_SIGN; } bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) { MemOp op = get_memop(info); return (op & MO_BSWAP) == MO_BE; } bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) { return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; } /* * Virtual Memory queries */ #ifdef CONFIG_SOFTMMU static __thread struct qemu_plugin_hwaddr hwaddr_info; #endif struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, uint64_t vaddr) { #ifdef CONFIG_SOFTMMU CPUState *cpu = current_cpu; unsigned int mmu_idx = get_mmuidx(info); enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; assert(mmu_idx < NB_MMU_MODES); if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, hwaddr_info.is_store, &hwaddr_info)) { error_report("invalid use of qemu_plugin_get_hwaddr"); return NULL; } return &hwaddr_info; #else return NULL; #endif } bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) { #ifdef CONFIG_SOFTMMU return haddr->is_io; #else return false; #endif } uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) { #ifdef CONFIG_SOFTMMU if (haddr) { return haddr->phys_addr; } #endif return 0; } const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) { #ifdef CONFIG_SOFTMMU if (h && h->is_io) { MemoryRegion *mr = h->mr; if (!mr->name) { unsigned maddr = (uintptr_t)mr; g_autofree char *temp = g_strdup_printf("anon%08x", maddr); return g_intern_string(temp); } else { return g_intern_string(mr->name); } } else { return g_intern_static_string("RAM"); } #else return g_intern_static_string("Invalid"); #endif } int qemu_plugin_num_vcpus(void) { return plugin_num_vcpus(); } /* * Plugin output */ void qemu_plugin_outs(const char *string) { qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); } bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) { return name && value && qapi_bool_parse(name, value, ret, NULL); } /* * Binary path, start and end locations */ const char *qemu_plugin_path_to_binary(void) { char *path = NULL; #ifdef CONFIG_USER_ONLY TaskState *ts = get_task_state(current_cpu); path = g_strdup(ts->bprm->filename); #endif return path; } uint64_t qemu_plugin_start_code(void) { uint64_t start = 0; #ifdef CONFIG_USER_ONLY TaskState *ts = get_task_state(current_cpu); start = ts->info->start_code; #endif return start; } uint64_t qemu_plugin_end_code(void) { uint64_t end = 0; #ifdef CONFIG_USER_ONLY TaskState *ts = get_task_state(current_cpu); end = ts->info->end_code; #endif return end; } uint64_t qemu_plugin_entry_code(void) { uint64_t entry = 0; #ifdef CONFIG_USER_ONLY TaskState *ts = get_task_state(current_cpu); entry = ts->info->entry; #endif return entry; } /* * Create register handles. * * We need to create a handle for each register so the plugin * infrastructure can call gdbstub to read a register. They are * currently just a pointer encapsulation of the gdb_reg but in * future may hold internal plugin state so its important plugin * authors are not tempted to treat them as numbers. * * We also construct a result array with those handles and some * ancillary data the plugin might find useful. */ static GArray *create_register_handles(GArray *gdbstub_regs) { GArray *find_data = g_array_new(true, true, sizeof(qemu_plugin_reg_descriptor)); for (int i = 0; i < gdbstub_regs->len; i++) { GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i); qemu_plugin_reg_descriptor desc; /* skip "un-named" regs */ if (!grd->name) { continue; } /* Create a record for the plugin */ desc.handle = GINT_TO_POINTER(grd->gdb_reg); desc.name = g_intern_string(grd->name); desc.feature = g_intern_string(grd->feature_name); g_array_append_val(find_data, desc); } return find_data; } GArray *qemu_plugin_get_registers(void) { g_assert(current_cpu); g_autoptr(GArray) regs = gdb_get_register_list(current_cpu); return create_register_handles(regs); } int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf) { g_assert(current_cpu); return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg)); } struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size) { return plugin_scoreboard_new(element_size); } void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score) { plugin_scoreboard_free(score); } void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score, unsigned int vcpu_index) { g_assert(vcpu_index < qemu_plugin_num_vcpus()); /* we can't use g_array_index since entry size is not statically known */ char *base_ptr = score->data->data; return base_ptr + vcpu_index * g_array_get_element_size(score->data); } static uint64_t *plugin_u64_address(qemu_plugin_u64 entry, unsigned int vcpu_index) { char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index); return (uint64_t *)(ptr + entry.offset); } void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index, uint64_t added) { *plugin_u64_address(entry, vcpu_index) += added; } uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry, unsigned int vcpu_index) { return *plugin_u64_address(entry, vcpu_index); } void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index, uint64_t val) { *plugin_u64_address(entry, vcpu_index) = val; } uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry) { uint64_t total = 0; for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) { total += qemu_plugin_u64_get(entry, i); } return total; }