/* * ACPI implementation * * Copyright (c) 2006 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "sysemu/sysemu.h" #include "hw/hw.h" #include "hw/pc.h" #include "hw/acpi.h" #include "monitor/monitor.h" struct acpi_table_header { uint16_t _length; /* our length, not actual part of the hdr */ /* XXX why we have 2 length fields here? */ char sig[4]; /* ACPI signature (4 ASCII characters) */ uint32_t length; /* Length of table, in bytes, including header */ uint8_t revision; /* ACPI Specification minor version # */ uint8_t checksum; /* To make sum of entire table == 0 */ char oem_id[6]; /* OEM identification */ char oem_table_id[8]; /* OEM table identification */ uint32_t oem_revision; /* OEM revision number */ char asl_compiler_id[4]; /* ASL compiler vendor ID */ uint32_t asl_compiler_revision; /* ASL compiler revision number */ } QEMU_PACKED; #define ACPI_TABLE_HDR_SIZE sizeof(struct acpi_table_header) #define ACPI_TABLE_PFX_SIZE sizeof(uint16_t) /* size of the extra prefix */ static const char dfl_hdr[ACPI_TABLE_HDR_SIZE] = "\0\0" /* fake _length (2) */ "QEMU\0\0\0\0\1\0" /* sig (4), len(4), revno (1), csum (1) */ "QEMUQEQEMUQEMU\1\0\0\0" /* OEM id (6), table (8), revno (4) */ "QEMU\1\0\0\0" /* ASL compiler ID (4), version (4) */ ; char *acpi_tables; size_t acpi_tables_len; static int acpi_checksum(const uint8_t *data, int len) { int sum, i; sum = 0; for (i = 0; i < len; i++) { sum += data[i]; } return (-sum) & 0xff; } /* XXX fixme: this function uses obsolete argument parsing interface */ int acpi_table_add(const char *t) { char buf[1024], *p, *f; unsigned long val; size_t len, start, allen; bool has_header; int changed; int r; struct acpi_table_header hdr; r = 0; r |= get_param_value(buf, sizeof(buf), "data", t) ? 1 : 0; r |= get_param_value(buf, sizeof(buf), "file", t) ? 2 : 0; switch (r) { case 0: buf[0] = '\0'; /* fallthrough for default behavior */ case 1: has_header = false; break; case 2: has_header = true; break; default: fprintf(stderr, "acpitable: both data and file are specified\n"); return -1; } if (!acpi_tables) { allen = sizeof(uint16_t); acpi_tables = g_malloc0(allen); } else { allen = acpi_tables_len; } start = allen; acpi_tables = g_realloc(acpi_tables, start + ACPI_TABLE_HDR_SIZE); allen += has_header ? ACPI_TABLE_PFX_SIZE : ACPI_TABLE_HDR_SIZE; /* now read in the data files, reallocating buffer as needed */ for (f = strtok(buf, ":"); f; f = strtok(NULL, ":")) { int fd = open(f, O_RDONLY | O_BINARY); if (fd < 0) { fprintf(stderr, "can't open file %s: %s\n", f, strerror(errno)); return -1; } for (;;) { char data[8192]; r = read(fd, data, sizeof(data)); if (r == 0) { break; } else if (r > 0) { acpi_tables = g_realloc(acpi_tables, allen + r); memcpy(acpi_tables + allen, data, r); allen += r; } else if (errno != EINTR) { fprintf(stderr, "can't read file %s: %s\n", f, strerror(errno)); close(fd); return -1; } } close(fd); } /* now fill in the header fields */ f = acpi_tables + start; /* start of the table */ changed = 0; /* copy the header to temp place to align the fields */ memcpy(&hdr, has_header ? f : dfl_hdr, ACPI_TABLE_HDR_SIZE); /* length of the table minus our prefix */ len = allen - start - ACPI_TABLE_PFX_SIZE; hdr._length = cpu_to_le16(len); if (get_param_value(buf, sizeof(buf), "sig", t)) { /* strncpy is justified: the field need not be NUL-terminated. */ strncpy(hdr.sig, buf, sizeof(hdr.sig)); ++changed; } /* length of the table including header, in bytes */ if (has_header) { /* check if actual length is correct */ val = le32_to_cpu(hdr.length); if (val != len) { fprintf(stderr, "warning: acpitable has wrong length," " header says %lu, actual size %zu bytes\n", val, len); ++changed; } } /* we may avoid putting length here if has_header is true */ hdr.length = cpu_to_le32(len); if (get_param_value(buf, sizeof(buf), "rev", t)) { val = strtoul(buf, &p, 0); if (val > 255 || *p) { fprintf(stderr, "acpitable: \"rev=%s\" is invalid\n", buf); return -1; } hdr.revision = (uint8_t)val; ++changed; } if (get_param_value(buf, sizeof(buf), "oem_id", t)) { /* strncpy is justified: the field need not be NUL-terminated. */ strncpy(hdr.oem_id, buf, sizeof(hdr.oem_id)); ++changed; } if (get_param_value(buf, sizeof(buf), "oem_table_id", t)) { /* strncpy is justified: the field need not be NUL-terminated. */ strncpy(hdr.oem_table_id, buf, sizeof(hdr.oem_table_id)); ++changed; } if (get_param_value(buf, sizeof(buf), "oem_rev", t)) { val = strtol(buf, &p, 0); if (*p) { fprintf(stderr, "acpitable: \"oem_rev=%s\" is invalid\n", buf); return -1; } hdr.oem_revision = cpu_to_le32(val); ++changed; } if (get_param_value(buf, sizeof(buf), "asl_compiler_id", t)) { /* strncpy is justified: the field need not be NUL-terminated. */ strncpy(hdr.asl_compiler_id, buf, sizeof(hdr.asl_compiler_id)); ++changed; } if (get_param_value(buf, sizeof(buf), "asl_compiler_rev", t)) { val = strtol(buf, &p, 0); if (*p) { fprintf(stderr, "acpitable: \"%s=%s\" is invalid\n", "asl_compiler_rev", buf); return -1; } hdr.asl_compiler_revision = cpu_to_le32(val); ++changed; } if (!has_header && !changed) { fprintf(stderr, "warning: acpitable: no table headers are specified\n"); } /* now calculate checksum of the table, complete with the header */ /* we may as well leave checksum intact if has_header is true */ /* alternatively there may be a way to set cksum to a given value */ hdr.checksum = 0; /* for checksum calculation */ /* put header back */ memcpy(f, &hdr, sizeof(hdr)); if (changed || !has_header || 1) { ((struct acpi_table_header *)f)->checksum = acpi_checksum((uint8_t *)f + ACPI_TABLE_PFX_SIZE, len); } /* increase number of tables */ (*(uint16_t *)acpi_tables) = cpu_to_le32(le32_to_cpu(*(uint16_t *)acpi_tables) + 1); acpi_tables_len = allen; return 0; } static void acpi_notify_wakeup(Notifier *notifier, void *data) { ACPIREGS *ar = container_of(notifier, ACPIREGS, wakeup); WakeupReason *reason = data; switch (*reason) { case QEMU_WAKEUP_REASON_RTC: ar->pm1.evt.sts |= (ACPI_BITMASK_WAKE_STATUS | ACPI_BITMASK_RT_CLOCK_STATUS); break; case QEMU_WAKEUP_REASON_PMTIMER: ar->pm1.evt.sts |= (ACPI_BITMASK_WAKE_STATUS | ACPI_BITMASK_TIMER_STATUS); break; case QEMU_WAKEUP_REASON_OTHER: default: /* ACPI_BITMASK_WAKE_STATUS should be set on resume. Pretend that resume was caused by power button */ ar->pm1.evt.sts |= (ACPI_BITMASK_WAKE_STATUS | ACPI_BITMASK_POWER_BUTTON_STATUS); break; } } /* ACPI PM1a EVT */ uint16_t acpi_pm1_evt_get_sts(ACPIREGS *ar) { int64_t d = acpi_pm_tmr_get_clock(); if (d >= ar->tmr.overflow_time) { ar->pm1.evt.sts |= ACPI_BITMASK_TIMER_STATUS; } return ar->pm1.evt.sts; } static void acpi_pm1_evt_write_sts(ACPIREGS *ar, uint16_t val) { uint16_t pm1_sts = acpi_pm1_evt_get_sts(ar); if (pm1_sts & val & ACPI_BITMASK_TIMER_STATUS) { /* if TMRSTS is reset, then compute the new overflow time */ acpi_pm_tmr_calc_overflow_time(ar); } ar->pm1.evt.sts &= ~val; } static void acpi_pm1_evt_write_en(ACPIREGS *ar, uint16_t val) { ar->pm1.evt.en = val; qemu_system_wakeup_enable(QEMU_WAKEUP_REASON_RTC, val & ACPI_BITMASK_RT_CLOCK_ENABLE); qemu_system_wakeup_enable(QEMU_WAKEUP_REASON_PMTIMER, val & ACPI_BITMASK_TIMER_ENABLE); } void acpi_pm1_evt_power_down(ACPIREGS *ar) { if (ar->pm1.evt.en & ACPI_BITMASK_POWER_BUTTON_ENABLE) { ar->pm1.evt.sts |= ACPI_BITMASK_POWER_BUTTON_STATUS; ar->tmr.update_sci(ar); } } void acpi_pm1_evt_reset(ACPIREGS *ar) { ar->pm1.evt.sts = 0; ar->pm1.evt.en = 0; qemu_system_wakeup_enable(QEMU_WAKEUP_REASON_RTC, 0); qemu_system_wakeup_enable(QEMU_WAKEUP_REASON_PMTIMER, 0); } static uint64_t acpi_pm_evt_read(void *opaque, hwaddr addr, unsigned width) { ACPIREGS *ar = opaque; switch (addr) { case 0: return acpi_pm1_evt_get_sts(ar); case 2: return ar->pm1.evt.en; default: return 0; } } static void acpi_pm_evt_write(void *opaque, hwaddr addr, uint64_t val, unsigned width) { ACPIREGS *ar = opaque; switch (addr) { case 0: acpi_pm1_evt_write_sts(ar, val); ar->pm1.evt.update_sci(ar); break; case 2: acpi_pm1_evt_write_en(ar, val); ar->pm1.evt.update_sci(ar); break; } } static const MemoryRegionOps acpi_pm_evt_ops = { .read = acpi_pm_evt_read, .write = acpi_pm_evt_write, .valid.min_access_size = 2, .valid.max_access_size = 2, .endianness = DEVICE_LITTLE_ENDIAN, }; void acpi_pm1_evt_init(ACPIREGS *ar, acpi_update_sci_fn update_sci, MemoryRegion *parent) { ar->pm1.evt.update_sci = update_sci; memory_region_init_io(&ar->pm1.evt.io, &acpi_pm_evt_ops, ar, "acpi-evt", 4); memory_region_add_subregion(parent, 0, &ar->pm1.evt.io); } /* ACPI PM_TMR */ void acpi_pm_tmr_update(ACPIREGS *ar, bool enable) { int64_t expire_time; /* schedule a timer interruption if needed */ if (enable) { expire_time = muldiv64(ar->tmr.overflow_time, get_ticks_per_sec(), PM_TIMER_FREQUENCY); qemu_mod_timer(ar->tmr.timer, expire_time); } else { qemu_del_timer(ar->tmr.timer); } } void acpi_pm_tmr_calc_overflow_time(ACPIREGS *ar) { int64_t d = acpi_pm_tmr_get_clock(); ar->tmr.overflow_time = (d + 0x800000LL) & ~0x7fffffLL; } static uint32_t acpi_pm_tmr_get(ACPIREGS *ar) { uint32_t d = acpi_pm_tmr_get_clock(); return d & 0xffffff; } static void acpi_pm_tmr_timer(void *opaque) { ACPIREGS *ar = opaque; qemu_system_wakeup_request(QEMU_WAKEUP_REASON_PMTIMER); ar->tmr.update_sci(ar); } static uint64_t acpi_pm_tmr_read(void *opaque, hwaddr addr, unsigned width) { return acpi_pm_tmr_get(opaque); } static const MemoryRegionOps acpi_pm_tmr_ops = { .read = acpi_pm_tmr_read, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; void acpi_pm_tmr_init(ACPIREGS *ar, acpi_update_sci_fn update_sci, MemoryRegion *parent) { ar->tmr.update_sci = update_sci; ar->tmr.timer = qemu_new_timer_ns(vm_clock, acpi_pm_tmr_timer, ar); memory_region_init_io(&ar->tmr.io, &acpi_pm_tmr_ops, ar, "acpi-tmr", 4); memory_region_add_subregion(parent, 8, &ar->tmr.io); } void acpi_pm_tmr_reset(ACPIREGS *ar) { ar->tmr.overflow_time = 0; qemu_del_timer(ar->tmr.timer); } /* ACPI PM1aCNT */ static void acpi_pm1_cnt_write(ACPIREGS *ar, uint16_t val) { ar->pm1.cnt.cnt = val & ~(ACPI_BITMASK_SLEEP_ENABLE); if (val & ACPI_BITMASK_SLEEP_ENABLE) { /* change suspend type */ uint16_t sus_typ = (val >> 10) & 7; switch(sus_typ) { case 0: /* soft power off */ qemu_system_shutdown_request(); break; case 1: qemu_system_suspend_request(); break; default: if (sus_typ == ar->pm1.cnt.s4_val) { /* S4 request */ monitor_protocol_event(QEVENT_SUSPEND_DISK, NULL); qemu_system_shutdown_request(); } break; } } } void acpi_pm1_cnt_update(ACPIREGS *ar, bool sci_enable, bool sci_disable) { /* ACPI specs 3.0, 4.7.2.5 */ if (sci_enable) { ar->pm1.cnt.cnt |= ACPI_BITMASK_SCI_ENABLE; } else if (sci_disable) { ar->pm1.cnt.cnt &= ~ACPI_BITMASK_SCI_ENABLE; } } static uint64_t acpi_pm_cnt_read(void *opaque, hwaddr addr, unsigned width) { ACPIREGS *ar = opaque; return ar->pm1.cnt.cnt; } static void acpi_pm_cnt_write(void *opaque, hwaddr addr, uint64_t val, unsigned width) { acpi_pm1_cnt_write(opaque, val); } static const MemoryRegionOps acpi_pm_cnt_ops = { .read = acpi_pm_cnt_read, .write = acpi_pm_cnt_write, .valid.min_access_size = 2, .valid.max_access_size = 2, .endianness = DEVICE_LITTLE_ENDIAN, }; void acpi_pm1_cnt_init(ACPIREGS *ar, MemoryRegion *parent) { ar->wakeup.notify = acpi_notify_wakeup; qemu_register_wakeup_notifier(&ar->wakeup); memory_region_init_io(&ar->pm1.cnt.io, &acpi_pm_cnt_ops, ar, "acpi-cnt", 2); memory_region_add_subregion(parent, 4, &ar->pm1.cnt.io); } void acpi_pm1_cnt_reset(ACPIREGS *ar) { ar->pm1.cnt.cnt = 0; } /* ACPI GPE */ void acpi_gpe_init(ACPIREGS *ar, uint8_t len) { ar->gpe.len = len; ar->gpe.sts = g_malloc0(len / 2); ar->gpe.en = g_malloc0(len / 2); } void acpi_gpe_reset(ACPIREGS *ar) { memset(ar->gpe.sts, 0, ar->gpe.len / 2); memset(ar->gpe.en, 0, ar->gpe.len / 2); } static uint8_t *acpi_gpe_ioport_get_ptr(ACPIREGS *ar, uint32_t addr) { uint8_t *cur = NULL; if (addr < ar->gpe.len / 2) { cur = ar->gpe.sts + addr; } else if (addr < ar->gpe.len) { cur = ar->gpe.en + addr - ar->gpe.len / 2; } else { abort(); } return cur; } void acpi_gpe_ioport_writeb(ACPIREGS *ar, uint32_t addr, uint32_t val) { uint8_t *cur; cur = acpi_gpe_ioport_get_ptr(ar, addr); if (addr < ar->gpe.len / 2) { /* GPE_STS */ *cur = (*cur) & ~val; } else if (addr < ar->gpe.len) { /* GPE_EN */ *cur = val; } else { abort(); } } uint32_t acpi_gpe_ioport_readb(ACPIREGS *ar, uint32_t addr) { uint8_t *cur; uint32_t val; cur = acpi_gpe_ioport_get_ptr(ar, addr); val = 0; if (cur != NULL) { val = *cur; } return val; }