mirror of
https://gitlab.com/qemu-project/qemu
synced 2024-11-05 20:35:44 +00:00
Virtual hash page table handling on pSeries machine
On pSeries logical partitions, excepting the old POWER4-style full system partitions, the guest does not have direct access to the hardware page table. Instead, the pagetable exists in hypervisor memory, and the guest must manipulate it with hypercalls. However, our current pSeries emulation more closely resembles the old style where the guest must set up and handle the pagetables itself. This patch converts it to act like a modern partition. This involves two things: first, the hash translation path is modified to permit the has table to be stored externally to the emulated machine's RAM. The pSeries machine init code configures the CPUs to use this mode. Secondly, we emulate the PAPR hypercalls for manipulating the external hashed page table. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
This commit is contained in:
parent
4040ab7237
commit
f43e35255c
4 changed files with 315 additions and 12 deletions
35
hw/spapr.c
35
hw/spapr.c
|
@ -52,12 +52,15 @@ static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize,
|
|||
sPAPREnvironment *spapr,
|
||||
target_phys_addr_t initrd_base,
|
||||
target_phys_addr_t initrd_size,
|
||||
const char *kernel_cmdline)
|
||||
const char *kernel_cmdline,
|
||||
long hash_shift)
|
||||
{
|
||||
void *fdt;
|
||||
uint64_t mem_reg_property[] = { 0, cpu_to_be64(ramsize) };
|
||||
uint32_t start_prop = cpu_to_be32(initrd_base);
|
||||
uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
|
||||
uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
|
||||
char hypertas_prop[] = "hcall-pft\0hcall-term";
|
||||
int i;
|
||||
char *modelname;
|
||||
int ret;
|
||||
|
@ -145,6 +148,8 @@ static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize,
|
|||
* full emu, for kvm we should copy it from the host */
|
||||
_FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
|
||||
_FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
|
||||
_FDT((fdt_property(fdt, "ibm,pft-size",
|
||||
pft_size_prop, sizeof(pft_size_prop))));
|
||||
_FDT((fdt_property_string(fdt, "status", "okay")));
|
||||
_FDT((fdt_property(fdt, "64-bit", NULL, 0)));
|
||||
|
||||
|
@ -160,6 +165,14 @@ static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize,
|
|||
|
||||
_FDT((fdt_end_node(fdt)));
|
||||
|
||||
/* RTAS */
|
||||
_FDT((fdt_begin_node(fdt, "rtas")));
|
||||
|
||||
_FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
|
||||
sizeof(hypertas_prop))));
|
||||
|
||||
_FDT((fdt_end_node(fdt)));
|
||||
|
||||
/* vdevice */
|
||||
_FDT((fdt_begin_node(fdt, "vdevice")));
|
||||
|
||||
|
@ -208,12 +221,13 @@ static void ppc_spapr_init(ram_addr_t ram_size,
|
|||
const char *cpu_model)
|
||||
{
|
||||
CPUState *envs[MAX_CPUS];
|
||||
void *fdt;
|
||||
void *fdt, *htab;
|
||||
int i;
|
||||
ram_addr_t ram_offset;
|
||||
target_phys_addr_t fdt_addr;
|
||||
uint32_t kernel_base, initrd_base;
|
||||
long kernel_size, initrd_size;
|
||||
long kernel_size, initrd_size, htab_size;
|
||||
long pteg_shift = 17;
|
||||
int fdt_size;
|
||||
|
||||
spapr = qemu_malloc(sizeof(*spapr));
|
||||
|
@ -250,6 +264,18 @@ static void ppc_spapr_init(ram_addr_t ram_size,
|
|||
ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
|
||||
cpu_register_physical_memory(0, ram_size, ram_offset);
|
||||
|
||||
/* allocate hash page table. For now we always make this 16mb,
|
||||
* later we should probably make it scale to the size of guest
|
||||
* RAM */
|
||||
htab_size = 1ULL << (pteg_shift + 7);
|
||||
htab = qemu_mallocz(htab_size);
|
||||
|
||||
for (i = 0; i < smp_cpus; i++) {
|
||||
envs[i]->external_htab = htab;
|
||||
envs[i]->htab_base = -1;
|
||||
envs[i]->htab_mask = htab_size - 1;
|
||||
}
|
||||
|
||||
spapr->vio_bus = spapr_vio_bus_init();
|
||||
|
||||
for (i = 0; i < MAX_SERIAL_PORTS; i++) {
|
||||
|
@ -296,7 +322,8 @@ static void ppc_spapr_init(ram_addr_t ram_size,
|
|||
|
||||
/* Prepare the device tree */
|
||||
fdt = spapr_create_fdt(&fdt_size, ram_size, cpu_model, envs, spapr,
|
||||
initrd_base, initrd_size, kernel_cmdline);
|
||||
initrd_base, initrd_size, kernel_cmdline,
|
||||
pteg_shift + 7);
|
||||
assert(fdt != NULL);
|
||||
|
||||
cpu_physical_memory_write(fdt_addr, fdt, fdt_size);
|
||||
|
|
254
hw/spapr_hcall.c
254
hw/spapr_hcall.c
|
@ -1,8 +1,253 @@
|
|||
#include "sysemu.h"
|
||||
#include "cpu.h"
|
||||
#include "qemu-char.h"
|
||||
#include "sysemu.h"
|
||||
#include "qemu-char.h"
|
||||
#include "exec-all.h"
|
||||
#include "hw/spapr.h"
|
||||
|
||||
#define HPTES_PER_GROUP 8
|
||||
|
||||
#define HPTE_V_SSIZE_SHIFT 62
|
||||
#define HPTE_V_AVPN_SHIFT 7
|
||||
#define HPTE_V_AVPN 0x3fffffffffffff80ULL
|
||||
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
|
||||
#define HPTE_V_COMPARE(x, y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
|
||||
#define HPTE_V_BOLTED 0x0000000000000010ULL
|
||||
#define HPTE_V_LOCK 0x0000000000000008ULL
|
||||
#define HPTE_V_LARGE 0x0000000000000004ULL
|
||||
#define HPTE_V_SECONDARY 0x0000000000000002ULL
|
||||
#define HPTE_V_VALID 0x0000000000000001ULL
|
||||
|
||||
#define HPTE_R_PP0 0x8000000000000000ULL
|
||||
#define HPTE_R_TS 0x4000000000000000ULL
|
||||
#define HPTE_R_KEY_HI 0x3000000000000000ULL
|
||||
#define HPTE_R_RPN_SHIFT 12
|
||||
#define HPTE_R_RPN 0x3ffffffffffff000ULL
|
||||
#define HPTE_R_FLAGS 0x00000000000003ffULL
|
||||
#define HPTE_R_PP 0x0000000000000003ULL
|
||||
#define HPTE_R_N 0x0000000000000004ULL
|
||||
#define HPTE_R_G 0x0000000000000008ULL
|
||||
#define HPTE_R_M 0x0000000000000010ULL
|
||||
#define HPTE_R_I 0x0000000000000020ULL
|
||||
#define HPTE_R_W 0x0000000000000040ULL
|
||||
#define HPTE_R_WIMG 0x0000000000000078ULL
|
||||
#define HPTE_R_C 0x0000000000000080ULL
|
||||
#define HPTE_R_R 0x0000000000000100ULL
|
||||
#define HPTE_R_KEY_LO 0x0000000000000e00ULL
|
||||
|
||||
#define HPTE_V_1TB_SEG 0x4000000000000000ULL
|
||||
#define HPTE_V_VRMA_MASK 0x4001ffffff000000ULL
|
||||
|
||||
#define HPTE_V_HVLOCK 0x40ULL
|
||||
|
||||
static inline int lock_hpte(void *hpte, target_ulong bits)
|
||||
{
|
||||
uint64_t pteh;
|
||||
|
||||
pteh = ldq_p(hpte);
|
||||
|
||||
/* We're protected by qemu's global lock here */
|
||||
if (pteh & bits) {
|
||||
return 0;
|
||||
}
|
||||
stq_p(hpte, pteh | HPTE_V_HVLOCK);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static target_ulong compute_tlbie_rb(target_ulong v, target_ulong r,
|
||||
target_ulong pte_index)
|
||||
{
|
||||
target_ulong rb, va_low;
|
||||
|
||||
rb = (v & ~0x7fULL) << 16; /* AVA field */
|
||||
va_low = pte_index >> 3;
|
||||
if (v & HPTE_V_SECONDARY) {
|
||||
va_low = ~va_low;
|
||||
}
|
||||
/* xor vsid from AVA */
|
||||
if (!(v & HPTE_V_1TB_SEG)) {
|
||||
va_low ^= v >> 12;
|
||||
} else {
|
||||
va_low ^= v >> 24;
|
||||
}
|
||||
va_low &= 0x7ff;
|
||||
if (v & HPTE_V_LARGE) {
|
||||
rb |= 1; /* L field */
|
||||
#if 0 /* Disable that P7 specific bit for now */
|
||||
if (r & 0xff000) {
|
||||
/* non-16MB large page, must be 64k */
|
||||
/* (masks depend on page size) */
|
||||
rb |= 0x1000; /* page encoding in LP field */
|
||||
rb |= (va_low & 0x7f) << 16; /* 7b of VA in AVA/LP field */
|
||||
rb |= (va_low & 0xfe); /* AVAL field */
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
/* 4kB page */
|
||||
rb |= (va_low & 0x7ff) << 12; /* remaining 11b of AVA */
|
||||
}
|
||||
rb |= (v >> 54) & 0x300; /* B field */
|
||||
return rb;
|
||||
}
|
||||
|
||||
static target_ulong h_enter(CPUState *env, sPAPREnvironment *spapr,
|
||||
target_ulong opcode, target_ulong *args)
|
||||
{
|
||||
target_ulong flags = args[0];
|
||||
target_ulong pte_index = args[1];
|
||||
target_ulong pteh = args[2];
|
||||
target_ulong ptel = args[3];
|
||||
target_ulong porder;
|
||||
target_ulong i, pa;
|
||||
uint8_t *hpte;
|
||||
|
||||
/* only handle 4k and 16M pages for now */
|
||||
porder = 12;
|
||||
if (pteh & HPTE_V_LARGE) {
|
||||
#if 0 /* We don't support 64k pages yet */
|
||||
if ((ptel & 0xf000) == 0x1000) {
|
||||
/* 64k page */
|
||||
porder = 16;
|
||||
} else
|
||||
#endif
|
||||
if ((ptel & 0xff000) == 0) {
|
||||
/* 16M page */
|
||||
porder = 24;
|
||||
/* lowest AVA bit must be 0 for 16M pages */
|
||||
if (pteh & 0x80) {
|
||||
return H_PARAMETER;
|
||||
}
|
||||
} else {
|
||||
return H_PARAMETER;
|
||||
}
|
||||
}
|
||||
|
||||
pa = ptel & HPTE_R_RPN;
|
||||
/* FIXME: bounds check the pa? */
|
||||
|
||||
/* Check WIMG */
|
||||
if ((ptel & HPTE_R_WIMG) != HPTE_R_M) {
|
||||
return H_PARAMETER;
|
||||
}
|
||||
pteh &= ~0x60ULL;
|
||||
|
||||
if ((pte_index * HASH_PTE_SIZE_64) & ~env->htab_mask) {
|
||||
return H_PARAMETER;
|
||||
}
|
||||
if (likely((flags & H_EXACT) == 0)) {
|
||||
pte_index &= ~7ULL;
|
||||
hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
|
||||
for (i = 0; ; ++i) {
|
||||
if (i == 8) {
|
||||
return H_PTEG_FULL;
|
||||
}
|
||||
if (((ldq_p(hpte) & HPTE_V_VALID) == 0) &&
|
||||
lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID)) {
|
||||
break;
|
||||
}
|
||||
hpte += HASH_PTE_SIZE_64;
|
||||
}
|
||||
} else {
|
||||
i = 0;
|
||||
hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
|
||||
if (!lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID)) {
|
||||
return H_PTEG_FULL;
|
||||
}
|
||||
}
|
||||
stq_p(hpte + (HASH_PTE_SIZE_64/2), ptel);
|
||||
/* eieio(); FIXME: need some sort of barrier for smp? */
|
||||
stq_p(hpte, pteh);
|
||||
|
||||
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
|
||||
args[0] = pte_index + i;
|
||||
return H_SUCCESS;
|
||||
}
|
||||
|
||||
static target_ulong h_remove(CPUState *env, sPAPREnvironment *spapr,
|
||||
target_ulong opcode, target_ulong *args)
|
||||
{
|
||||
target_ulong flags = args[0];
|
||||
target_ulong pte_index = args[1];
|
||||
target_ulong avpn = args[2];
|
||||
uint8_t *hpte;
|
||||
target_ulong v, r, rb;
|
||||
|
||||
if ((pte_index * HASH_PTE_SIZE_64) & ~env->htab_mask) {
|
||||
return H_PARAMETER;
|
||||
}
|
||||
|
||||
hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
|
||||
while (!lock_hpte(hpte, HPTE_V_HVLOCK)) {
|
||||
/* We have no real concurrency in qemu soft-emulation, so we
|
||||
* will never actually have a contested lock */
|
||||
assert(0);
|
||||
}
|
||||
|
||||
v = ldq_p(hpte);
|
||||
r = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
|
||||
|
||||
if ((v & HPTE_V_VALID) == 0 ||
|
||||
((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
|
||||
((flags & H_ANDCOND) && (v & avpn) != 0)) {
|
||||
stq_p(hpte, v & ~HPTE_V_HVLOCK);
|
||||
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
|
||||
return H_NOT_FOUND;
|
||||
}
|
||||
args[0] = v & ~HPTE_V_HVLOCK;
|
||||
args[1] = r;
|
||||
stq_p(hpte, 0);
|
||||
rb = compute_tlbie_rb(v, r, pte_index);
|
||||
ppc_tlb_invalidate_one(env, rb);
|
||||
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
|
||||
return H_SUCCESS;
|
||||
}
|
||||
|
||||
static target_ulong h_protect(CPUState *env, sPAPREnvironment *spapr,
|
||||
target_ulong opcode, target_ulong *args)
|
||||
{
|
||||
target_ulong flags = args[0];
|
||||
target_ulong pte_index = args[1];
|
||||
target_ulong avpn = args[2];
|
||||
uint8_t *hpte;
|
||||
target_ulong v, r, rb;
|
||||
|
||||
if ((pte_index * HASH_PTE_SIZE_64) & ~env->htab_mask) {
|
||||
return H_PARAMETER;
|
||||
}
|
||||
|
||||
hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
|
||||
while (!lock_hpte(hpte, HPTE_V_HVLOCK)) {
|
||||
/* We have no real concurrency in qemu soft-emulation, so we
|
||||
* will never actually have a contested lock */
|
||||
assert(0);
|
||||
}
|
||||
|
||||
v = ldq_p(hpte);
|
||||
r = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
|
||||
|
||||
if ((v & HPTE_V_VALID) == 0 ||
|
||||
((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
|
||||
stq_p(hpte, v & ~HPTE_V_HVLOCK);
|
||||
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
|
||||
return H_NOT_FOUND;
|
||||
}
|
||||
|
||||
r &= ~(HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
|
||||
HPTE_R_KEY_HI | HPTE_R_KEY_LO);
|
||||
r |= (flags << 55) & HPTE_R_PP0;
|
||||
r |= (flags << 48) & HPTE_R_KEY_HI;
|
||||
r |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
|
||||
rb = compute_tlbie_rb(v, r, pte_index);
|
||||
stq_p(hpte, v & ~HPTE_V_VALID);
|
||||
ppc_tlb_invalidate_one(env, rb);
|
||||
stq_p(hpte + (HASH_PTE_SIZE_64/2), r);
|
||||
/* Don't need a memory barrier, due to qemu's global lock */
|
||||
stq_p(hpte, v & ~HPTE_V_HVLOCK);
|
||||
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
|
||||
return H_SUCCESS;
|
||||
}
|
||||
|
||||
spapr_hcall_fn hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
|
||||
|
||||
void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
|
||||
|
@ -39,3 +284,12 @@ target_ulong spapr_hypercall(CPUState *env, target_ulong opcode,
|
|||
hcall_dprintf("Unimplemented hcall 0x" TARGET_FMT_lx "\n", opcode);
|
||||
return H_FUNCTION;
|
||||
}
|
||||
|
||||
static void hypercall_init(void)
|
||||
{
|
||||
/* hcall-pft */
|
||||
spapr_register_hypercall(H_ENTER, h_enter);
|
||||
spapr_register_hypercall(H_REMOVE, h_remove);
|
||||
spapr_register_hypercall(H_PROTECT, h_protect);
|
||||
}
|
||||
device_init(hypercall_init);
|
||||
|
|
|
@ -670,6 +670,8 @@ struct CPUPPCState {
|
|||
target_phys_addr_t htab_base;
|
||||
target_phys_addr_t htab_mask;
|
||||
target_ulong sr[32];
|
||||
/* externally stored hash table */
|
||||
uint8_t *external_htab;
|
||||
/* BATs */
|
||||
int nb_BATs;
|
||||
target_ulong DBAT[2][8];
|
||||
|
|
|
@ -589,8 +589,13 @@ static inline int _find_pte(CPUState *env, mmu_ctx_t *ctx, int is_64b, int h,
|
|||
for (i = 0; i < 8; i++) {
|
||||
#if defined(TARGET_PPC64)
|
||||
if (is_64b) {
|
||||
pte0 = ldq_phys(env->htab_base + pteg_off + (i * 16));
|
||||
pte1 = ldq_phys(env->htab_base + pteg_off + (i * 16) + 8);
|
||||
if (env->external_htab) {
|
||||
pte0 = ldq_p(env->external_htab + pteg_off + (i * 16));
|
||||
pte1 = ldq_p(env->external_htab + pteg_off + (i * 16) + 8);
|
||||
} else {
|
||||
pte0 = ldq_phys(env->htab_base + pteg_off + (i * 16));
|
||||
pte1 = ldq_phys(env->htab_base + pteg_off + (i * 16) + 8);
|
||||
}
|
||||
|
||||
/* We have a TLB that saves 4K pages, so let's
|
||||
* split a huge page to 4k chunks */
|
||||
|
@ -606,8 +611,13 @@ static inline int _find_pte(CPUState *env, mmu_ctx_t *ctx, int is_64b, int h,
|
|||
} else
|
||||
#endif
|
||||
{
|
||||
pte0 = ldl_phys(env->htab_base + pteg_off + (i * 8));
|
||||
pte1 = ldl_phys(env->htab_base + pteg_off + (i * 8) + 4);
|
||||
if (env->external_htab) {
|
||||
pte0 = ldl_p(env->external_htab + pteg_off + (i * 8));
|
||||
pte1 = ldl_p(env->external_htab + pteg_off + (i * 8) + 4);
|
||||
} else {
|
||||
pte0 = ldl_phys(env->htab_base + pteg_off + (i * 8));
|
||||
pte1 = ldl_phys(env->htab_base + pteg_off + (i * 8) + 4);
|
||||
}
|
||||
r = pte32_check(ctx, pte0, pte1, h, rw, type);
|
||||
LOG_MMU("Load pte from " TARGET_FMT_lx " => " TARGET_FMT_lx " "
|
||||
TARGET_FMT_lx " %d %d %d " TARGET_FMT_lx "\n",
|
||||
|
@ -647,13 +657,23 @@ static inline int _find_pte(CPUState *env, mmu_ctx_t *ctx, int is_64b, int h,
|
|||
if (pte_update_flags(ctx, &pte1, ret, rw) == 1) {
|
||||
#if defined(TARGET_PPC64)
|
||||
if (is_64b) {
|
||||
stq_phys_notdirty(env->htab_base + pteg_off + (good * 16) + 8,
|
||||
pte1);
|
||||
if (env->external_htab) {
|
||||
stq_p(env->external_htab + pteg_off + (good * 16) + 8,
|
||||
pte1);
|
||||
} else {
|
||||
stq_phys_notdirty(env->htab_base + pteg_off +
|
||||
(good * 16) + 8, pte1);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
stl_phys_notdirty(env->htab_base + pteg_off + (good * 8) + 4,
|
||||
pte1);
|
||||
if (env->external_htab) {
|
||||
stl_p(env->external_htab + pteg_off + (good * 8) + 4,
|
||||
pte1);
|
||||
} else {
|
||||
stl_phys_notdirty(env->htab_base + pteg_off +
|
||||
(good * 8) + 4, pte1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue