target-arm queue:

* Fix various bugs that might result in an assert() due to
    incorrect hflags for M-profile CPUs
  * Fix Aspeed SMC Controller user-mode select handling
  * Report correct (with-tag) address in fault address register
    when TBI is enabled
  * cubieboard: make sure SOC object isn't leaked
  * fsl-imx25: Wire up eSDHC controllers
  * fsl-imx25: Wire up USB controllers
  * New board model: orangepi-pc (OrangePi PC)
  * ARM/KVM: if user doesn't select GIC version and the
    host kernel can only provide GICv3, use that, rather
    than defaulting to "fail because GICv2 isn't possible"
  * kvm: Only do KVM_SET_VCPU_EVENTS at the last stage of sync
 -----BEGIN PGP SIGNATURE-----
 
 iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAl5qZsIZHHBldGVyLm1h
 eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3krfD/40xprKOtpel6si3edDQsw5
 j6LamqJDvaUdtG713OjR6yjvvQiXCw9yCDlfGhBlLhLW1t0aGKrrZoRC4CNMOt0J
 34WAcDP0iz3ALEwpfNfr/DWFwiGjamabrRsGcq08Q42G7+UA7FhUEvL25ZApfRFy
 8O2gs3bDv30pfa5oJwYJhvSHcNeR9YKueK+WGw16gRkSoNbjUxnSpyiGnxbMaNpg
 aL+ZQzQ0BOAyeOg/0LUdZ9meAvWwR0NppgK0ujJxq68/6tPz8tv2+pQgllNYSQRO
 vDr4mj6MlJNW62M5IAKRZ/6zTz34+7UYQ7mTK2VTWt2qtfrANz+EpcDljtc/8EIF
 lAVd1W099DNdqgFcUGZzoWyRbmjz9B76WTJ43orY5AbMZN5l4XwAGItkE6yQbqKd
 kqPKP2ICFj/0JhgBoTzo0J/5wV2izZKKnih990IJU390oWoiVRbdWlQDJ2ujQ3AV
 havWhR/tL399K1UZl8act/J9rifq9J3mbiqpx2XEEiFMu93FDNCPtJioix1Swvpx
 ERMB9VA6JNAHZ6oAGgNmTHG3nSJtpcin8XxR5YcKWSYiksPjkce1sEwtRbyxBHtq
 jb/yk5mjyrbYTy3Gmg85/Fh74XnELsnwmADFdezHXUu4EPxth/ssCuXlXs8DIciI
 sWGFVJpDoWSXEqi4FjvhIQ==
 =LLqm
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20200312' into staging

target-arm queue:
 * Fix various bugs that might result in an assert() due to
   incorrect hflags for M-profile CPUs
 * Fix Aspeed SMC Controller user-mode select handling
 * Report correct (with-tag) address in fault address register
   when TBI is enabled
 * cubieboard: make sure SOC object isn't leaked
 * fsl-imx25: Wire up eSDHC controllers
 * fsl-imx25: Wire up USB controllers
 * New board model: orangepi-pc (OrangePi PC)
 * ARM/KVM: if user doesn't select GIC version and the
   host kernel can only provide GICv3, use that, rather
   than defaulting to "fail because GICv2 isn't possible"
 * kvm: Only do KVM_SET_VCPU_EVENTS at the last stage of sync

# gpg: Signature made Thu 12 Mar 2020 16:43:46 GMT
# gpg:                using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg:                issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate]
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20200312: (36 commits)
  target/arm: kvm: Inject events at the last stage of sync
  hw/arm/virt: kvm: allow gicv3 by default if v2 cannot work
  hw/arm/virt: kvm: Restructure finalize_gic_version()
  target/arm/kvm: Let kvm_arm_vgic_probe() return a bitmap
  hw/arm/virt: Introduce finalize_gic_version()
  hw/arm/virt: Introduce VirtGICType enum type
  hw/arm/virt: Document 'max' value in gic-version property description
  docs: add Orange Pi PC document
  tests/boot_linux_console: Test booting NetBSD via U-Boot on OrangePi PC
  tests/boot_linux_console: Add a SLOW test booting Ubuntu on OrangePi PC
  tests/boot_linux_console: Add a SD card test for the OrangePi PC board
  tests/boot_linux_console: Add initrd test for the Orange Pi PC board
  tests/boot_linux_console: Add a quick test for the OrangePi PC board
  hw/arm/allwinner: add RTC device support
  hw/arm/allwinner-h3: add SDRAM controller device
  hw/arm/allwinner-h3: add Boot ROM support
  hw/arm/allwinner-h3: add EMAC ethernet device
  hw/arm/allwinner: add SD/MMC host controller
  hw/arm/allwinner: add Security Identifier device
  hw/arm/allwinner: add CPU Configuration module
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2020-03-12 17:34:34 +00:00
commit d4f7d56759
57 changed files with 5787 additions and 74 deletions

View file

@ -492,6 +492,15 @@ F: hw/*/allwinner*
F: include/hw/*/allwinner*
F: hw/arm/cubieboard.c
Allwinner-h3
M: Niek Linnenbank <nieklinnenbank@gmail.com>
L: qemu-arm@nongnu.org
S: Maintained
F: hw/*/allwinner-h3*
F: include/hw/*/allwinner-h3*
F: hw/arm/orangepi.c
F: docs/system/orangepi.rst
ARM PrimeCell and CMSDK devices
M: Peter Maydell <peter.maydell@linaro.org>
L: qemu-arm@nongnu.org

View file

@ -175,6 +175,7 @@ trace-events-subdirs += hw/scsi
trace-events-subdirs += hw/sd
trace-events-subdirs += hw/sparc
trace-events-subdirs += hw/sparc64
trace-events-subdirs += hw/ssi
trace-events-subdirs += hw/timer
trace-events-subdirs += hw/tpm
trace-events-subdirs += hw/usb

View file

@ -41,3 +41,4 @@ CONFIG_FSL_IMX25=y
CONFIG_FSL_IMX7=y
CONFIG_FSL_IMX6UL=y
CONFIG_SEMIHOSTING=y
CONFIG_ALLWINNER_H3=y

View file

@ -0,0 +1,253 @@
Orange Pi PC (``orangepi-pc``)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The Xunlong Orange Pi PC is an Allwinner H3 System on Chip
based embedded computer with mainline support in both U-Boot
and Linux. The board comes with a Quad Core Cortex-A7 @ 1.3GHz,
1GiB RAM, 100Mbit ethernet, USB, SD/MMC, USB, HDMI and
various other I/O.
Supported devices
"""""""""""""""""
The Orange Pi PC machine supports the following devices:
* SMP (Quad Core Cortex-A7)
* Generic Interrupt Controller configuration
* SRAM mappings
* SDRAM controller
* Real Time Clock
* Timer device (re-used from Allwinner A10)
* UART
* SD/MMC storage controller
* EMAC ethernet
* USB 2.0 interfaces
* Clock Control Unit
* System Control module
* Security Identifier device
Limitations
"""""""""""
Currently, Orange Pi PC does *not* support the following features:
- Graphical output via HDMI, GPU and/or the Display Engine
- Audio output
- Hardware Watchdog
Also see the 'unimplemented' array in the Allwinner H3 SoC module
for a complete list of unimplemented I/O devices: ``./hw/arm/allwinner-h3.c``
Boot options
""""""""""""
The Orange Pi PC machine can start using the standard -kernel functionality
for loading a Linux kernel or ELF executable. Additionally, the Orange Pi PC
machine can also emulate the BootROM which is present on an actual Allwinner H3
based SoC, which loads the bootloader from a SD card, specified via the -sd argument
to qemu-system-arm.
Machine-specific options
""""""""""""""""""""""""
The following machine-specific options are supported:
- allwinner-rtc.base-year=YYYY
The Allwinner RTC device is automatically created by the Orange Pi PC machine
and uses a default base year value which can be overridden using the 'base-year' property.
The base year is the actual represented year when the RTC year value is zero.
This option can be used in case the target operating system driver uses a different
base year value. The minimum value for the base year is 1900.
- allwinner-sid.identifier=abcd1122-a000-b000-c000-12345678ffff
The Security Identifier value can be read by the guest.
For example, U-Boot uses it to determine a unique MAC address.
The above machine-specific options can be specified in qemu-system-arm
via the '-global' argument, for example:
.. code-block:: bash
$ qemu-system-arm -M orangepi-pc -sd mycard.img \
-global allwinner-rtc.base-year=2000
Running mainline Linux
""""""""""""""""""""""
Mainline Linux kernels from 4.19 up to latest master are known to work.
To build a Linux mainline kernel that can be booted by the Orange Pi PC machine,
simply configure the kernel using the sunxi_defconfig configuration:
.. code-block:: bash
$ ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- make mrproper
$ ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- make sunxi_defconfig
To be able to use USB storage, you need to manually enable the corresponding
configuration item. Start the kconfig configuration tool:
.. code-block:: bash
$ ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- make menuconfig
Navigate to the following item, enable it and save your configuration:
Device Drivers > USB support > USB Mass Storage support
Build the Linux kernel with:
.. code-block:: bash
$ ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- make
To boot the newly build linux kernel in QEMU with the Orange Pi PC machine, use:
.. code-block:: bash
$ qemu-system-arm -M orangepi-pc -nic user -nographic \
-kernel /path/to/linux/arch/arm/boot/zImage \
-append 'console=ttyS0,115200' \
-dtb /path/to/linux/arch/arm/boot/dts/sun8i-h3-orangepi-pc.dtb
Orange Pi PC images
"""""""""""""""""""
Note that the mainline kernel does not have a root filesystem. You may provide it
with an official Orange Pi PC image from the official website:
http://www.orangepi.org/downloadresources/
Another possibility is to run an Armbian image for Orange Pi PC which
can be downloaded from:
https://www.armbian.com/orange-pi-pc/
Alternatively, you can also choose to build you own image with buildroot
using the orangepi_pc_defconfig. Also see https://buildroot.org for more information.
You can choose to attach the selected image either as an SD card or as USB mass storage.
For example, to boot using the Orange Pi PC Debian image on SD card, simply add the -sd
argument and provide the proper root= kernel parameter:
.. code-block:: bash
$ qemu-system-arm -M orangepi-pc -nic user -nographic \
-kernel /path/to/linux/arch/arm/boot/zImage \
-append 'console=ttyS0,115200 root=/dev/mmcblk0p2' \
-dtb /path/to/linux/arch/arm/boot/dts/sun8i-h3-orangepi-pc.dtb \
-sd OrangePi_pc_debian_stretch_server_linux5.3.5_v1.0.img
To attach the image as an USB mass storage device to the machine,
simply append to the command:
.. code-block:: bash
-drive if=none,id=stick,file=myimage.img \
-device usb-storage,bus=usb-bus.0,drive=stick
Instead of providing a custom Linux kernel via the -kernel command you may also
choose to let the Orange Pi PC machine load the bootloader from SD card, just like
a real board would do using the BootROM. Simply pass the selected image via the -sd
argument and remove the -kernel, -append, -dbt and -initrd arguments:
.. code-block:: bash
$ qemu-system-arm -M orangepi-pc -nic user -nographic \
-sd Armbian_19.11.3_Orangepipc_buster_current_5.3.9.img
Note that both the official Orange Pi PC images and Armbian images start
a lot of userland programs via systemd. Depending on the host hardware and OS,
they may be slow to emulate, especially due to emulating the 4 cores.
To help reduce the performance slow down due to emulating the 4 cores, you can
give the following kernel parameters via U-Boot (or via -append):
.. code-block:: bash
=> setenv extraargs 'systemd.default_timeout_start_sec=9000 loglevel=7 nosmp console=ttyS0,115200'
Running U-Boot
""""""""""""""
U-Boot mainline can be build and configured using the orangepi_pc_defconfig
using similar commands as describe above for Linux. Note that it is recommended
for development/testing to select the following configuration setting in U-Boot:
Device Tree Control > Provider for DTB for DT Control > Embedded DTB
To start U-Boot using the Orange Pi PC machine, provide the
u-boot binary to the -kernel argument:
.. code-block:: bash
$ qemu-system-arm -M orangepi-pc -nic user -nographic \
-kernel /path/to/uboot/u-boot -sd disk.img
Use the following U-boot commands to load and boot a Linux kernel from SD card:
.. code-block:: bash
=> setenv bootargs console=ttyS0,115200
=> ext2load mmc 0 0x42000000 zImage
=> ext2load mmc 0 0x43000000 sun8i-h3-orangepi-pc.dtb
=> bootz 0x42000000 - 0x43000000
Running NetBSD
""""""""""""""
The NetBSD operating system also includes support for Allwinner H3 based boards,
including the Orange Pi PC. NetBSD 9.0 is known to work best for the Orange Pi PC
board and provides a fully working system with serial console, networking and storage.
For the Orange Pi PC machine, get the 'evbarm-earmv7hf' based image from:
https://cdn.netbsd.org/pub/NetBSD/NetBSD-9.0/evbarm-earmv7hf/binary/gzimg/armv7.img.gz
The image requires manually installing U-Boot in the image. Build U-Boot with
the orangepi_pc_defconfig configuration as described in the previous section.
Next, unzip the NetBSD image and write the U-Boot binary including SPL using:
.. code-block:: bash
$ gunzip armv7.img.gz
$ dd if=/path/to/u-boot-sunxi-with-spl.bin of=armv7.img bs=1024 seek=8 conv=notrunc
Finally, before starting the machine the SD image must be extended such
that the NetBSD kernel will not conclude the NetBSD partition is larger than
the emulated SD card:
.. code-block:: bash
$ dd if=/dev/zero bs=1M count=64 >> armv7.img
Start the machine using the following command:
.. code-block:: bash
$ qemu-system-arm -M orangepi-pc -nic user -nographic \
-sd armv7.img -global allwinner-rtc.base-year=2000
At the U-Boot stage, interrupt the automatic boot process by pressing a key
and set the following environment variables before booting:
.. code-block:: bash
=> setenv bootargs root=ld0a
=> setenv kernel netbsd-GENERIC.ub
=> setenv fdtfile dtb/sun8i-h3-orangepi-pc.dtb
=> setenv bootcmd 'fatload mmc 0:1 ${kernel_addr_r} ${kernel}; fatload mmc 0:1 ${fdt_addr_r} ${fdtfile}; fdt addr ${fdt_addr_r}; bootm ${kernel_addr_r} - ${fdt_addr_r}'
Optionally you may save the environment variables to SD card with 'saveenv'.
To continue booting simply give the 'boot' command and NetBSD boots.
Orange Pi PC acceptance tests
"""""""""""""""""""""""""""""
The Orange Pi PC machine has several acceptance tests included.
To run the whole set of tests, build QEMU from source and simply
provide the following command:
.. code-block:: bash
$ AVOCADO_ALLOW_LARGE_STORAGE=yes avocado --show=app,console run \
-t machine:orangepi-pc tests/acceptance/boot_linux_console.py

View file

@ -68,6 +68,7 @@ undocumented; you can get a complete list by running
``qemu-system-aarch64 --machine help``.
.. toctree::
:maxdepth: 1
arm/integratorcp
arm/versatile
@ -78,6 +79,7 @@ undocumented; you can get a complete list by running
arm/stellaris
arm/musicpal
arm/sx1
arm/orangepi
Arm CPU features
================

View file

@ -297,6 +297,18 @@ config ALLWINNER_A10
select SERIAL
select UNIMP
config ALLWINNER_H3
bool
select ALLWINNER_A10_PIT
select ALLWINNER_SUN8I_EMAC
select SERIAL
select ARM_TIMER
select ARM_GIC
select UNIMP
select USB_OHCI
select USB_EHCI_SYSBUS
select SD
config RASPI
bool
select FRAMEBUFFER

View file

@ -35,6 +35,7 @@ obj-$(CONFIG_DIGIC) += digic.o
obj-$(CONFIG_OMAP) += omap1.o omap2.o
obj-$(CONFIG_STRONGARM) += strongarm.o
obj-$(CONFIG_ALLWINNER_A10) += allwinner-a10.o cubieboard.o
obj-$(CONFIG_ALLWINNER_H3) += allwinner-h3.o orangepi.o
obj-$(CONFIG_RASPI) += bcm2835_peripherals.o bcm2836.o raspi.o
obj-$(CONFIG_STM32F205_SOC) += stm32f205_soc.o
obj-$(CONFIG_STM32F405_SOC) += stm32f405_soc.o

View file

@ -27,6 +27,7 @@
#include "hw/boards.h"
#include "hw/usb/hcd-ohci.h"
#define AW_A10_MMC0_BASE 0x01c0f000
#define AW_A10_PIC_REG_BASE 0x01c20400
#define AW_A10_PIT_REG_BASE 0x01c20c00
#define AW_A10_UART0_REG_BASE 0x01c28000
@ -34,6 +35,7 @@
#define AW_A10_EHCI_BASE 0x01c14000
#define AW_A10_OHCI_BASE 0x01c14400
#define AW_A10_SATA_BASE 0x01c18000
#define AW_A10_RTC_BASE 0x01c20d00
static void aw_a10_init(Object *obj)
{
@ -64,6 +66,12 @@ static void aw_a10_init(Object *obj)
sizeof(s->ohci[i]), TYPE_SYSBUS_OHCI);
}
}
sysbus_init_child_obj(obj, "mmc0", &s->mmc0, sizeof(s->mmc0),
TYPE_AW_SDHOST_SUN4I);
sysbus_init_child_obj(obj, "rtc", &s->rtc, sizeof(s->rtc),
TYPE_AW_RTC_SUN4I);
}
static void aw_a10_realize(DeviceState *dev, Error **errp)
@ -164,6 +172,17 @@ static void aw_a10_realize(DeviceState *dev, Error **errp)
qdev_get_gpio_in(dev, 64 + i));
}
}
/* SD/MMC */
qdev_init_nofail(DEVICE(&s->mmc0));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->mmc0), 0, AW_A10_MMC0_BASE);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->mmc0), 0, qdev_get_gpio_in(dev, 32));
object_property_add_alias(OBJECT(s), "sd-bus", OBJECT(&s->mmc0),
"sd-bus", &error_abort);
/* RTC */
qdev_init_nofail(DEVICE(&s->rtc));
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->rtc), 0, AW_A10_RTC_BASE, 10);
}
static void aw_a10_class_init(ObjectClass *oc, void *data)

465
hw/arm/allwinner-h3.c Normal file
View file

@ -0,0 +1,465 @@
/*
* Allwinner H3 System on Chip emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "exec/address-spaces.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "qemu/units.h"
#include "hw/qdev-core.h"
#include "cpu.h"
#include "hw/sysbus.h"
#include "hw/char/serial.h"
#include "hw/misc/unimp.h"
#include "hw/usb/hcd-ehci.h"
#include "hw/loader.h"
#include "sysemu/sysemu.h"
#include "hw/arm/allwinner-h3.h"
/* Memory map */
const hwaddr allwinner_h3_memmap[] = {
[AW_H3_SRAM_A1] = 0x00000000,
[AW_H3_SRAM_A2] = 0x00044000,
[AW_H3_SRAM_C] = 0x00010000,
[AW_H3_SYSCTRL] = 0x01c00000,
[AW_H3_MMC0] = 0x01c0f000,
[AW_H3_SID] = 0x01c14000,
[AW_H3_EHCI0] = 0x01c1a000,
[AW_H3_OHCI0] = 0x01c1a400,
[AW_H3_EHCI1] = 0x01c1b000,
[AW_H3_OHCI1] = 0x01c1b400,
[AW_H3_EHCI2] = 0x01c1c000,
[AW_H3_OHCI2] = 0x01c1c400,
[AW_H3_EHCI3] = 0x01c1d000,
[AW_H3_OHCI3] = 0x01c1d400,
[AW_H3_CCU] = 0x01c20000,
[AW_H3_PIT] = 0x01c20c00,
[AW_H3_UART0] = 0x01c28000,
[AW_H3_UART1] = 0x01c28400,
[AW_H3_UART2] = 0x01c28800,
[AW_H3_UART3] = 0x01c28c00,
[AW_H3_EMAC] = 0x01c30000,
[AW_H3_DRAMCOM] = 0x01c62000,
[AW_H3_DRAMCTL] = 0x01c63000,
[AW_H3_DRAMPHY] = 0x01c65000,
[AW_H3_GIC_DIST] = 0x01c81000,
[AW_H3_GIC_CPU] = 0x01c82000,
[AW_H3_GIC_HYP] = 0x01c84000,
[AW_H3_GIC_VCPU] = 0x01c86000,
[AW_H3_RTC] = 0x01f00000,
[AW_H3_CPUCFG] = 0x01f01c00,
[AW_H3_SDRAM] = 0x40000000
};
/* List of unimplemented devices */
struct AwH3Unimplemented {
const char *device_name;
hwaddr base;
hwaddr size;
} unimplemented[] = {
{ "d-engine", 0x01000000, 4 * MiB },
{ "d-inter", 0x01400000, 128 * KiB },
{ "dma", 0x01c02000, 4 * KiB },
{ "nfdc", 0x01c03000, 4 * KiB },
{ "ts", 0x01c06000, 4 * KiB },
{ "keymem", 0x01c0b000, 4 * KiB },
{ "lcd0", 0x01c0c000, 4 * KiB },
{ "lcd1", 0x01c0d000, 4 * KiB },
{ "ve", 0x01c0e000, 4 * KiB },
{ "mmc1", 0x01c10000, 4 * KiB },
{ "mmc2", 0x01c11000, 4 * KiB },
{ "crypto", 0x01c15000, 4 * KiB },
{ "msgbox", 0x01c17000, 4 * KiB },
{ "spinlock", 0x01c18000, 4 * KiB },
{ "usb0-otg", 0x01c19000, 4 * KiB },
{ "usb0-phy", 0x01c1a000, 4 * KiB },
{ "usb1-phy", 0x01c1b000, 4 * KiB },
{ "usb2-phy", 0x01c1c000, 4 * KiB },
{ "usb3-phy", 0x01c1d000, 4 * KiB },
{ "smc", 0x01c1e000, 4 * KiB },
{ "pio", 0x01c20800, 1 * KiB },
{ "owa", 0x01c21000, 1 * KiB },
{ "pwm", 0x01c21400, 1 * KiB },
{ "keyadc", 0x01c21800, 1 * KiB },
{ "pcm0", 0x01c22000, 1 * KiB },
{ "pcm1", 0x01c22400, 1 * KiB },
{ "pcm2", 0x01c22800, 1 * KiB },
{ "audio", 0x01c22c00, 2 * KiB },
{ "smta", 0x01c23400, 1 * KiB },
{ "ths", 0x01c25000, 1 * KiB },
{ "uart0", 0x01c28000, 1 * KiB },
{ "uart1", 0x01c28400, 1 * KiB },
{ "uart2", 0x01c28800, 1 * KiB },
{ "uart3", 0x01c28c00, 1 * KiB },
{ "twi0", 0x01c2ac00, 1 * KiB },
{ "twi1", 0x01c2b000, 1 * KiB },
{ "twi2", 0x01c2b400, 1 * KiB },
{ "scr", 0x01c2c400, 1 * KiB },
{ "gpu", 0x01c40000, 64 * KiB },
{ "hstmr", 0x01c60000, 4 * KiB },
{ "spi0", 0x01c68000, 4 * KiB },
{ "spi1", 0x01c69000, 4 * KiB },
{ "csi", 0x01cb0000, 320 * KiB },
{ "tve", 0x01e00000, 64 * KiB },
{ "hdmi", 0x01ee0000, 128 * KiB },
{ "r_timer", 0x01f00800, 1 * KiB },
{ "r_intc", 0x01f00c00, 1 * KiB },
{ "r_wdog", 0x01f01000, 1 * KiB },
{ "r_prcm", 0x01f01400, 1 * KiB },
{ "r_twd", 0x01f01800, 1 * KiB },
{ "r_cir-rx", 0x01f02000, 1 * KiB },
{ "r_twi", 0x01f02400, 1 * KiB },
{ "r_uart", 0x01f02800, 1 * KiB },
{ "r_pio", 0x01f02c00, 1 * KiB },
{ "r_pwm", 0x01f03800, 1 * KiB },
{ "core-dbg", 0x3f500000, 128 * KiB },
{ "tsgen-ro", 0x3f506000, 4 * KiB },
{ "tsgen-ctl", 0x3f507000, 4 * KiB },
{ "ddr-mem", 0x40000000, 2 * GiB },
{ "n-brom", 0xffff0000, 32 * KiB },
{ "s-brom", 0xffff0000, 64 * KiB }
};
/* Per Processor Interrupts */
enum {
AW_H3_GIC_PPI_MAINT = 9,
AW_H3_GIC_PPI_HYPTIMER = 10,
AW_H3_GIC_PPI_VIRTTIMER = 11,
AW_H3_GIC_PPI_SECTIMER = 13,
AW_H3_GIC_PPI_PHYSTIMER = 14
};
/* Shared Processor Interrupts */
enum {
AW_H3_GIC_SPI_UART0 = 0,
AW_H3_GIC_SPI_UART1 = 1,
AW_H3_GIC_SPI_UART2 = 2,
AW_H3_GIC_SPI_UART3 = 3,
AW_H3_GIC_SPI_TIMER0 = 18,
AW_H3_GIC_SPI_TIMER1 = 19,
AW_H3_GIC_SPI_MMC0 = 60,
AW_H3_GIC_SPI_EHCI0 = 72,
AW_H3_GIC_SPI_OHCI0 = 73,
AW_H3_GIC_SPI_EHCI1 = 74,
AW_H3_GIC_SPI_OHCI1 = 75,
AW_H3_GIC_SPI_EHCI2 = 76,
AW_H3_GIC_SPI_OHCI2 = 77,
AW_H3_GIC_SPI_EHCI3 = 78,
AW_H3_GIC_SPI_OHCI3 = 79,
AW_H3_GIC_SPI_EMAC = 82
};
/* Allwinner H3 general constants */
enum {
AW_H3_GIC_NUM_SPI = 128
};
void allwinner_h3_bootrom_setup(AwH3State *s, BlockBackend *blk)
{
const int64_t rom_size = 32 * KiB;
g_autofree uint8_t *buffer = g_new0(uint8_t, rom_size);
if (blk_pread(blk, 8 * KiB, buffer, rom_size) < 0) {
error_setg(&error_fatal, "%s: failed to read BlockBackend data",
__func__);
return;
}
rom_add_blob("allwinner-h3.bootrom", buffer, rom_size,
rom_size, s->memmap[AW_H3_SRAM_A1],
NULL, NULL, NULL, NULL, false);
}
static void allwinner_h3_init(Object *obj)
{
AwH3State *s = AW_H3(obj);
s->memmap = allwinner_h3_memmap;
for (int i = 0; i < AW_H3_NUM_CPUS; i++) {
object_initialize_child(obj, "cpu[*]", &s->cpus[i], sizeof(s->cpus[i]),
ARM_CPU_TYPE_NAME("cortex-a7"),
&error_abort, NULL);
}
sysbus_init_child_obj(obj, "gic", &s->gic, sizeof(s->gic),
TYPE_ARM_GIC);
sysbus_init_child_obj(obj, "timer", &s->timer, sizeof(s->timer),
TYPE_AW_A10_PIT);
object_property_add_alias(obj, "clk0-freq", OBJECT(&s->timer),
"clk0-freq", &error_abort);
object_property_add_alias(obj, "clk1-freq", OBJECT(&s->timer),
"clk1-freq", &error_abort);
sysbus_init_child_obj(obj, "ccu", &s->ccu, sizeof(s->ccu),
TYPE_AW_H3_CCU);
sysbus_init_child_obj(obj, "sysctrl", &s->sysctrl, sizeof(s->sysctrl),
TYPE_AW_H3_SYSCTRL);
sysbus_init_child_obj(obj, "cpucfg", &s->cpucfg, sizeof(s->cpucfg),
TYPE_AW_CPUCFG);
sysbus_init_child_obj(obj, "sid", &s->sid, sizeof(s->sid),
TYPE_AW_SID);
object_property_add_alias(obj, "identifier", OBJECT(&s->sid),
"identifier", &error_abort);
sysbus_init_child_obj(obj, "mmc0", &s->mmc0, sizeof(s->mmc0),
TYPE_AW_SDHOST_SUN5I);
sysbus_init_child_obj(obj, "emac", &s->emac, sizeof(s->emac),
TYPE_AW_SUN8I_EMAC);
sysbus_init_child_obj(obj, "dramc", &s->dramc, sizeof(s->dramc),
TYPE_AW_H3_DRAMC);
object_property_add_alias(obj, "ram-addr", OBJECT(&s->dramc),
"ram-addr", &error_abort);
object_property_add_alias(obj, "ram-size", OBJECT(&s->dramc),
"ram-size", &error_abort);
sysbus_init_child_obj(obj, "rtc", &s->rtc, sizeof(s->rtc),
TYPE_AW_RTC_SUN6I);
}
static void allwinner_h3_realize(DeviceState *dev, Error **errp)
{
AwH3State *s = AW_H3(dev);
unsigned i;
/* CPUs */
for (i = 0; i < AW_H3_NUM_CPUS; i++) {
/* Provide Power State Coordination Interface */
qdev_prop_set_int32(DEVICE(&s->cpus[i]), "psci-conduit",
QEMU_PSCI_CONDUIT_HVC);
/* Disable secondary CPUs */
qdev_prop_set_bit(DEVICE(&s->cpus[i]), "start-powered-off",
i > 0);
/* All exception levels required */
qdev_prop_set_bit(DEVICE(&s->cpus[i]), "has_el3", true);
qdev_prop_set_bit(DEVICE(&s->cpus[i]), "has_el2", true);
/* Mark realized */
qdev_init_nofail(DEVICE(&s->cpus[i]));
}
/* Generic Interrupt Controller */
qdev_prop_set_uint32(DEVICE(&s->gic), "num-irq", AW_H3_GIC_NUM_SPI +
GIC_INTERNAL);
qdev_prop_set_uint32(DEVICE(&s->gic), "revision", 2);
qdev_prop_set_uint32(DEVICE(&s->gic), "num-cpu", AW_H3_NUM_CPUS);
qdev_prop_set_bit(DEVICE(&s->gic), "has-security-extensions", false);
qdev_prop_set_bit(DEVICE(&s->gic), "has-virtualization-extensions", true);
qdev_init_nofail(DEVICE(&s->gic));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 0, s->memmap[AW_H3_GIC_DIST]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 1, s->memmap[AW_H3_GIC_CPU]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 2, s->memmap[AW_H3_GIC_HYP]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 3, s->memmap[AW_H3_GIC_VCPU]);
/*
* Wire the outputs from each CPU's generic timer and the GICv3
* maintenance interrupt signal to the appropriate GIC PPI inputs,
* and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
*/
for (i = 0; i < AW_H3_NUM_CPUS; i++) {
DeviceState *cpudev = DEVICE(&s->cpus[i]);
int ppibase = AW_H3_GIC_NUM_SPI + i * GIC_INTERNAL + GIC_NR_SGIS;
int irq;
/*
* Mapping from the output timer irq lines from the CPU to the
* GIC PPI inputs used for this board.
*/
const int timer_irq[] = {
[GTIMER_PHYS] = AW_H3_GIC_PPI_PHYSTIMER,
[GTIMER_VIRT] = AW_H3_GIC_PPI_VIRTTIMER,
[GTIMER_HYP] = AW_H3_GIC_PPI_HYPTIMER,
[GTIMER_SEC] = AW_H3_GIC_PPI_SECTIMER,
};
/* Connect CPU timer outputs to GIC PPI inputs */
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
qdev_connect_gpio_out(cpudev, irq,
qdev_get_gpio_in(DEVICE(&s->gic),
ppibase + timer_irq[irq]));
}
/* Connect GIC outputs to CPU interrupt inputs */
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i,
qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + AW_H3_NUM_CPUS,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (2 * AW_H3_NUM_CPUS),
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (3 * AW_H3_NUM_CPUS),
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
/* GIC maintenance signal */
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (4 * AW_H3_NUM_CPUS),
qdev_get_gpio_in(DEVICE(&s->gic),
ppibase + AW_H3_GIC_PPI_MAINT));
}
/* Timer */
qdev_init_nofail(DEVICE(&s->timer));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->timer), 0, s->memmap[AW_H3_PIT]);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer), 0,
qdev_get_gpio_in(DEVICE(&s->gic), AW_H3_GIC_SPI_TIMER0));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer), 1,
qdev_get_gpio_in(DEVICE(&s->gic), AW_H3_GIC_SPI_TIMER1));
/* SRAM */
memory_region_init_ram(&s->sram_a1, OBJECT(dev), "sram A1",
64 * KiB, &error_abort);
memory_region_init_ram(&s->sram_a2, OBJECT(dev), "sram A2",
32 * KiB, &error_abort);
memory_region_init_ram(&s->sram_c, OBJECT(dev), "sram C",
44 * KiB, &error_abort);
memory_region_add_subregion(get_system_memory(), s->memmap[AW_H3_SRAM_A1],
&s->sram_a1);
memory_region_add_subregion(get_system_memory(), s->memmap[AW_H3_SRAM_A2],
&s->sram_a2);
memory_region_add_subregion(get_system_memory(), s->memmap[AW_H3_SRAM_C],
&s->sram_c);
/* Clock Control Unit */
qdev_init_nofail(DEVICE(&s->ccu));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ccu), 0, s->memmap[AW_H3_CCU]);
/* System Control */
qdev_init_nofail(DEVICE(&s->sysctrl));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctrl), 0, s->memmap[AW_H3_SYSCTRL]);
/* CPU Configuration */
qdev_init_nofail(DEVICE(&s->cpucfg));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->cpucfg), 0, s->memmap[AW_H3_CPUCFG]);
/* Security Identifier */
qdev_init_nofail(DEVICE(&s->sid));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sid), 0, s->memmap[AW_H3_SID]);
/* SD/MMC */
qdev_init_nofail(DEVICE(&s->mmc0));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->mmc0), 0, s->memmap[AW_H3_MMC0]);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->mmc0), 0,
qdev_get_gpio_in(DEVICE(&s->gic), AW_H3_GIC_SPI_MMC0));
object_property_add_alias(OBJECT(s), "sd-bus", OBJECT(&s->mmc0),
"sd-bus", &error_abort);
/* EMAC */
if (nd_table[0].used) {
qemu_check_nic_model(&nd_table[0], TYPE_AW_SUN8I_EMAC);
qdev_set_nic_properties(DEVICE(&s->emac), &nd_table[0]);
}
qdev_init_nofail(DEVICE(&s->emac));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->emac), 0, s->memmap[AW_H3_EMAC]);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->emac), 0,
qdev_get_gpio_in(DEVICE(&s->gic), AW_H3_GIC_SPI_EMAC));
/* Universal Serial Bus */
sysbus_create_simple(TYPE_AW_H3_EHCI, s->memmap[AW_H3_EHCI0],
qdev_get_gpio_in(DEVICE(&s->gic),
AW_H3_GIC_SPI_EHCI0));
sysbus_create_simple(TYPE_AW_H3_EHCI, s->memmap[AW_H3_EHCI1],
qdev_get_gpio_in(DEVICE(&s->gic),
AW_H3_GIC_SPI_EHCI1));
sysbus_create_simple(TYPE_AW_H3_EHCI, s->memmap[AW_H3_EHCI2],
qdev_get_gpio_in(DEVICE(&s->gic),
AW_H3_GIC_SPI_EHCI2));
sysbus_create_simple(TYPE_AW_H3_EHCI, s->memmap[AW_H3_EHCI3],
qdev_get_gpio_in(DEVICE(&s->gic),
AW_H3_GIC_SPI_EHCI3));
sysbus_create_simple("sysbus-ohci", s->memmap[AW_H3_OHCI0],
qdev_get_gpio_in(DEVICE(&s->gic),
AW_H3_GIC_SPI_OHCI0));
sysbus_create_simple("sysbus-ohci", s->memmap[AW_H3_OHCI1],
qdev_get_gpio_in(DEVICE(&s->gic),
AW_H3_GIC_SPI_OHCI1));
sysbus_create_simple("sysbus-ohci", s->memmap[AW_H3_OHCI2],
qdev_get_gpio_in(DEVICE(&s->gic),
AW_H3_GIC_SPI_OHCI2));
sysbus_create_simple("sysbus-ohci", s->memmap[AW_H3_OHCI3],
qdev_get_gpio_in(DEVICE(&s->gic),
AW_H3_GIC_SPI_OHCI3));
/* UART0. For future clocktree API: All UARTS are connected to APB2_CLK. */
serial_mm_init(get_system_memory(), s->memmap[AW_H3_UART0], 2,
qdev_get_gpio_in(DEVICE(&s->gic), AW_H3_GIC_SPI_UART0),
115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
/* UART1 */
serial_mm_init(get_system_memory(), s->memmap[AW_H3_UART1], 2,
qdev_get_gpio_in(DEVICE(&s->gic), AW_H3_GIC_SPI_UART1),
115200, serial_hd(1), DEVICE_NATIVE_ENDIAN);
/* UART2 */
serial_mm_init(get_system_memory(), s->memmap[AW_H3_UART2], 2,
qdev_get_gpio_in(DEVICE(&s->gic), AW_H3_GIC_SPI_UART2),
115200, serial_hd(2), DEVICE_NATIVE_ENDIAN);
/* UART3 */
serial_mm_init(get_system_memory(), s->memmap[AW_H3_UART3], 2,
qdev_get_gpio_in(DEVICE(&s->gic), AW_H3_GIC_SPI_UART3),
115200, serial_hd(3), DEVICE_NATIVE_ENDIAN);
/* DRAMC */
qdev_init_nofail(DEVICE(&s->dramc));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dramc), 0, s->memmap[AW_H3_DRAMCOM]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dramc), 1, s->memmap[AW_H3_DRAMCTL]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dramc), 2, s->memmap[AW_H3_DRAMPHY]);
/* RTC */
qdev_init_nofail(DEVICE(&s->rtc));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->rtc), 0, s->memmap[AW_H3_RTC]);
/* Unimplemented devices */
for (i = 0; i < ARRAY_SIZE(unimplemented); i++) {
create_unimplemented_device(unimplemented[i].device_name,
unimplemented[i].base,
unimplemented[i].size);
}
}
static void allwinner_h3_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = allwinner_h3_realize;
/* Reason: uses serial_hd() in realize function */
dc->user_creatable = false;
}
static const TypeInfo allwinner_h3_type_info = {
.name = TYPE_AW_H3,
.parent = TYPE_DEVICE,
.instance_size = sizeof(AwH3State),
.instance_init = allwinner_h3_init,
.class_init = allwinner_h3_class_init,
};
static void allwinner_h3_register_types(void)
{
type_register_static(&allwinner_h3_type_info);
}
type_init(allwinner_h3_register_types)

View file

@ -22,6 +22,7 @@
#include "sysemu/sysemu.h"
#include "hw/sysbus.h"
#include "hw/boards.h"
#include "hw/qdev-properties.h"
#include "hw/arm/allwinner-a10.h"
static struct arm_boot_info cubieboard_binfo = {
@ -33,6 +34,10 @@ static void cubieboard_init(MachineState *machine)
{
AwA10State *a10;
Error *err = NULL;
DriveInfo *di;
BlockBackend *blk;
BusState *bus;
DeviceState *carddev;
/* BIOS is not supported by this board */
if (bios_name) {
@ -54,6 +59,9 @@ static void cubieboard_init(MachineState *machine)
}
a10 = AW_A10(object_new(TYPE_AW_A10));
object_property_add_child(OBJECT(machine), "soc", OBJECT(a10),
&error_abort);
object_unref(OBJECT(a10));
object_property_set_int(OBJECT(&a10->emac), 1, "phy-addr", &err);
if (err != NULL) {
@ -79,6 +87,16 @@ static void cubieboard_init(MachineState *machine)
exit(1);
}
/* Retrieve SD bus */
di = drive_get_next(IF_SD);
blk = di ? blk_by_legacy_dinfo(di) : NULL;
bus = qdev_get_child_bus(DEVICE(a10), "sd-bus");
/* Plug in SD card */
carddev = qdev_create(bus, TYPE_SD_CARD);
qdev_prop_set_drive(carddev, "drive", blk, &error_fatal);
object_property_set_bool(OBJECT(carddev), true, "realized", &error_fatal);
memory_region_add_subregion(get_system_memory(), AW_A10_SDRAM_BASE,
machine->ram);

View file

@ -31,6 +31,8 @@
#include "hw/qdev-properties.h"
#include "chardev/char.h"
#define IMX25_ESDHC_CAPABILITIES 0x07e20000
static void fsl_imx25_init(Object *obj)
{
FslIMX25State *s = FSL_IMX25(obj);
@ -74,6 +76,17 @@ static void fsl_imx25_init(Object *obj)
sysbus_init_child_obj(obj, "gpio[*]", &s->gpio[i], sizeof(s->gpio[i]),
TYPE_IMX_GPIO);
}
for (i = 0; i < FSL_IMX25_NUM_ESDHCS; i++) {
sysbus_init_child_obj(obj, "sdhc[*]", &s->esdhc[i], sizeof(s->esdhc[i]),
TYPE_IMX_USDHC);
}
for (i = 0; i < FSL_IMX25_NUM_USBS; i++) {
sysbus_init_child_obj(obj, "usb[*]", &s->usb[i], sizeof(s->usb[i]),
TYPE_CHIPIDEA);
}
}
static void fsl_imx25_realize(DeviceState *dev, Error **errp)
@ -246,6 +259,49 @@ static void fsl_imx25_realize(DeviceState *dev, Error **errp)
gpio_table[i].irq));
}
/* Initialize all SDHC */
for (i = 0; i < FSL_IMX25_NUM_ESDHCS; i++) {
static const struct {
hwaddr addr;
unsigned int irq;
} esdhc_table[FSL_IMX25_NUM_ESDHCS] = {
{ FSL_IMX25_ESDHC1_ADDR, FSL_IMX25_ESDHC1_IRQ },
{ FSL_IMX25_ESDHC2_ADDR, FSL_IMX25_ESDHC2_IRQ },
};
object_property_set_uint(OBJECT(&s->esdhc[i]), 2, "sd-spec-version",
&err);
object_property_set_uint(OBJECT(&s->esdhc[i]), IMX25_ESDHC_CAPABILITIES,
"capareg", &err);
object_property_set_bool(OBJECT(&s->esdhc[i]), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->esdhc[i]), 0, esdhc_table[i].addr);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->esdhc[i]), 0,
qdev_get_gpio_in(DEVICE(&s->avic),
esdhc_table[i].irq));
}
/* USB */
for (i = 0; i < FSL_IMX25_NUM_USBS; i++) {
static const struct {
hwaddr addr;
unsigned int irq;
} usb_table[FSL_IMX25_NUM_USBS] = {
{ FSL_IMX25_USB1_ADDR, FSL_IMX25_USB1_IRQ },
{ FSL_IMX25_USB2_ADDR, FSL_IMX25_USB2_IRQ },
};
object_property_set_bool(OBJECT(&s->usb[i]), true, "realized",
&error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->usb[i]), 0, usb_table[i].addr);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->usb[i]), 0,
qdev_get_gpio_in(DEVICE(&s->avic),
usb_table[i].irq));
}
/* initialize 2 x 16 KB ROM */
memory_region_init_rom(&s->rom[0], NULL,
"imx25.rom0", FSL_IMX25_ROM0_SIZE, &err);

View file

@ -26,6 +26,7 @@
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "hw/qdev-properties.h"
#include "hw/arm/fsl-imx25.h"
#include "hw/boards.h"
#include "qemu/error-report.h"
@ -120,6 +121,21 @@ static void imx25_pdk_init(MachineState *machine)
imx25_pdk_binfo.board_id = 1771,
imx25_pdk_binfo.nb_cpus = 1;
for (i = 0; i < FSL_IMX25_NUM_ESDHCS; i++) {
BusState *bus;
DeviceState *carddev;
DriveInfo *di;
BlockBackend *blk;
di = drive_get_next(IF_SD);
blk = di ? blk_by_legacy_dinfo(di) : NULL;
bus = qdev_get_child_bus(DEVICE(&s->soc.esdhc[i]), "sd-bus");
carddev = qdev_create(bus, TYPE_SD_CARD);
qdev_prop_set_drive(carddev, "drive", blk, &error_fatal);
object_property_set_bool(OBJECT(carddev), true,
"realized", &error_fatal);
}
/*
* We test explicitly for qtest here as it is not done (yet?) in
* arm_load_kernel(). Without this the "make check" command would

130
hw/arm/orangepi.c Normal file
View file

@ -0,0 +1,130 @@
/*
* Orange Pi emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "exec/address-spaces.h"
#include "qapi/error.h"
#include "cpu.h"
#include "hw/sysbus.h"
#include "hw/boards.h"
#include "hw/qdev-properties.h"
#include "hw/arm/allwinner-h3.h"
#include "sysemu/sysemu.h"
static struct arm_boot_info orangepi_binfo = {
.nb_cpus = AW_H3_NUM_CPUS,
};
static void orangepi_init(MachineState *machine)
{
AwH3State *h3;
DriveInfo *di;
BlockBackend *blk;
BusState *bus;
DeviceState *carddev;
/* BIOS is not supported by this board */
if (bios_name) {
error_report("BIOS not supported for this machine");
exit(1);
}
/* This board has fixed size RAM */
if (machine->ram_size != 1 * GiB) {
error_report("This machine can only be used with 1GiB of RAM");
exit(1);
}
/* Only allow Cortex-A7 for this board */
if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a7")) != 0) {
error_report("This board can only be used with cortex-a7 CPU");
exit(1);
}
h3 = AW_H3(object_new(TYPE_AW_H3));
object_property_add_child(OBJECT(machine), "soc", OBJECT(h3),
&error_abort);
object_unref(OBJECT(h3));
/* Setup timer properties */
object_property_set_int(OBJECT(h3), 32768, "clk0-freq",
&error_abort);
object_property_set_int(OBJECT(h3), 24 * 1000 * 1000, "clk1-freq",
&error_abort);
/* Setup SID properties. Currently using a default fixed SID identifier. */
if (qemu_uuid_is_null(&h3->sid.identifier)) {
qdev_prop_set_string(DEVICE(h3), "identifier",
"02c00081-1111-2222-3333-000044556677");
} else if (ldl_be_p(&h3->sid.identifier.data[0]) != 0x02c00081) {
warn_report("Security Identifier value does not include H3 prefix");
}
/* Setup EMAC properties */
object_property_set_int(OBJECT(&h3->emac), 1, "phy-addr", &error_abort);
/* DRAMC */
object_property_set_uint(OBJECT(h3), h3->memmap[AW_H3_SDRAM],
"ram-addr", &error_abort);
object_property_set_int(OBJECT(h3), machine->ram_size / MiB, "ram-size",
&error_abort);
/* Mark H3 object realized */
object_property_set_bool(OBJECT(h3), true, "realized", &error_abort);
/* Retrieve SD bus */
di = drive_get_next(IF_SD);
blk = di ? blk_by_legacy_dinfo(di) : NULL;
bus = qdev_get_child_bus(DEVICE(h3), "sd-bus");
/* Plug in SD card */
carddev = qdev_create(bus, TYPE_SD_CARD);
qdev_prop_set_drive(carddev, "drive", blk, &error_fatal);
object_property_set_bool(OBJECT(carddev), true, "realized", &error_fatal);
/* SDRAM */
memory_region_add_subregion(get_system_memory(), h3->memmap[AW_H3_SDRAM],
machine->ram);
/* Load target kernel or start using BootROM */
if (!machine->kernel_filename && blk_is_available(blk)) {
/* Use Boot ROM to copy data from SD card to SRAM */
allwinner_h3_bootrom_setup(h3, blk);
}
orangepi_binfo.loader_start = h3->memmap[AW_H3_SDRAM];
orangepi_binfo.ram_size = machine->ram_size;
arm_load_kernel(ARM_CPU(first_cpu), machine, &orangepi_binfo);
}
static void orangepi_machine_init(MachineClass *mc)
{
mc->desc = "Orange Pi PC";
mc->init = orangepi_init;
mc->block_default_type = IF_SD;
mc->units_per_default_bus = 1;
mc->min_cpus = AW_H3_NUM_CPUS;
mc->max_cpus = AW_H3_NUM_CPUS;
mc->default_cpus = AW_H3_NUM_CPUS;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a7");
mc->default_ram_size = 1 * GiB;
mc->default_ram_id = "orangepi.ram";
}
DEFINE_MACHINE("orangepi-pc", orangepi_machine_init)

View file

@ -299,7 +299,7 @@ static void fdt_add_timer_nodes(const VirtMachineState *vms)
irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
}
if (vms->gic_version == 2) {
if (vms->gic_version == VIRT_GIC_VERSION_2) {
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH,
(1 << vms->smp_cpus) - 1);
@ -440,7 +440,7 @@ static void fdt_add_gic_node(VirtMachineState *vms)
qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
if (vms->gic_version == 3) {
if (vms->gic_version == VIRT_GIC_VERSION_3) {
int nb_redist_regions = virt_gicv3_redist_region_count(vms);
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
@ -519,7 +519,7 @@ static void fdt_add_pmu_nodes(const VirtMachineState *vms)
}
}
if (vms->gic_version == 2) {
if (vms->gic_version == VIRT_GIC_VERSION_2) {
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH,
(1 << vms->smp_cpus) - 1);
@ -1470,7 +1470,7 @@ static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
* purposes are to make TCG consistent (with 64-bit KVM hosts)
* and to improve SGI efficiency.
*/
if (vms->gic_version == 3) {
if (vms->gic_version == VIRT_GIC_VERSION_3) {
clustersz = GICV3_TARGETLIST_BITS;
} else {
clustersz = GIC_TARGETLIST_BITS;
@ -1535,6 +1535,105 @@ static void virt_set_memmap(VirtMachineState *vms)
}
}
/*
* finalize_gic_version - Determines the final gic_version
* according to the gic-version property
*
* Default GIC type is v2
*/
static void finalize_gic_version(VirtMachineState *vms)
{
unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
if (kvm_enabled()) {
int probe_bitmap;
if (!kvm_irqchip_in_kernel()) {
switch (vms->gic_version) {
case VIRT_GIC_VERSION_HOST:
warn_report(
"gic-version=host not relevant with kernel-irqchip=off "
"as only userspace GICv2 is supported. Using v2 ...");
return;
case VIRT_GIC_VERSION_MAX:
case VIRT_GIC_VERSION_NOSEL:
vms->gic_version = VIRT_GIC_VERSION_2;
return;
case VIRT_GIC_VERSION_2:
return;
case VIRT_GIC_VERSION_3:
error_report(
"gic-version=3 is not supported with kernel-irqchip=off");
exit(1);
}
}
probe_bitmap = kvm_arm_vgic_probe();
if (!probe_bitmap) {
error_report("Unable to determine GIC version supported by host");
exit(1);
}
switch (vms->gic_version) {
case VIRT_GIC_VERSION_HOST:
case VIRT_GIC_VERSION_MAX:
if (probe_bitmap & KVM_ARM_VGIC_V3) {
vms->gic_version = VIRT_GIC_VERSION_3;
} else {
vms->gic_version = VIRT_GIC_VERSION_2;
}
return;
case VIRT_GIC_VERSION_NOSEL:
if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
vms->gic_version = VIRT_GIC_VERSION_2;
} else if (probe_bitmap & KVM_ARM_VGIC_V3) {
/*
* in case the host does not support v2 in-kernel emulation or
* the end-user requested more than 8 VCPUs we now default
* to v3. In any case defaulting to v2 would be broken.
*/
vms->gic_version = VIRT_GIC_VERSION_3;
} else if (max_cpus > GIC_NCPU) {
error_report("host only supports in-kernel GICv2 emulation "
"but more than 8 vcpus are requested");
exit(1);
}
break;
case VIRT_GIC_VERSION_2:
case VIRT_GIC_VERSION_3:
break;
}
/* Check chosen version is effectively supported by the host */
if (vms->gic_version == VIRT_GIC_VERSION_2 &&
!(probe_bitmap & KVM_ARM_VGIC_V2)) {
error_report("host does not support in-kernel GICv2 emulation");
exit(1);
} else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
!(probe_bitmap & KVM_ARM_VGIC_V3)) {
error_report("host does not support in-kernel GICv3 emulation");
exit(1);
}
return;
}
/* TCG mode */
switch (vms->gic_version) {
case VIRT_GIC_VERSION_NOSEL:
vms->gic_version = VIRT_GIC_VERSION_2;
break;
case VIRT_GIC_VERSION_MAX:
vms->gic_version = VIRT_GIC_VERSION_3;
break;
case VIRT_GIC_VERSION_HOST:
error_report("gic-version=host requires KVM");
exit(1);
case VIRT_GIC_VERSION_2:
case VIRT_GIC_VERSION_3:
break;
}
}
static void machvirt_init(MachineState *machine)
{
VirtMachineState *vms = VIRT_MACHINE(machine);
@ -1561,25 +1660,7 @@ static void machvirt_init(MachineState *machine)
/* We can probe only here because during property set
* KVM is not available yet
*/
if (vms->gic_version <= 0) {
/* "host" or "max" */
if (!kvm_enabled()) {
if (vms->gic_version == 0) {
error_report("gic-version=host requires KVM");
exit(1);
} else {
/* "max": currently means 3 for TCG */
vms->gic_version = 3;
}
} else {
vms->gic_version = kvm_arm_vgic_probe();
if (!vms->gic_version) {
error_report(
"Unable to determine GIC version supported by host");
exit(1);
}
}
}
finalize_gic_version(vms);
if (!cpu_type_valid(machine->cpu_type)) {
error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
@ -1628,7 +1709,7 @@ static void machvirt_init(MachineState *machine)
/* The maximum number of CPUs depends on the GIC version, or on how
* many redistributors we can fit into the memory map.
*/
if (vms->gic_version == 3) {
if (vms->gic_version == VIRT_GIC_VERSION_3) {
virt_max_cpus =
vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
virt_max_cpus +=
@ -1856,7 +1937,7 @@ static void virt_set_its(Object *obj, bool value, Error **errp)
static char *virt_get_gic_version(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
const char *val = vms->gic_version == 3 ? "3" : "2";
const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
return g_strdup(val);
}
@ -1866,13 +1947,13 @@ static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
VirtMachineState *vms = VIRT_MACHINE(obj);
if (!strcmp(value, "3")) {
vms->gic_version = 3;
vms->gic_version = VIRT_GIC_VERSION_3;
} else if (!strcmp(value, "2")) {
vms->gic_version = 2;
vms->gic_version = VIRT_GIC_VERSION_2;
} else if (!strcmp(value, "host")) {
vms->gic_version = 0; /* Will probe later */
vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
} else if (!strcmp(value, "max")) {
vms->gic_version = -1; /* Will probe later */
vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
} else {
error_setg(errp, "Invalid gic-version value");
error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
@ -2140,13 +2221,13 @@ static void virt_instance_init(Object *obj)
"Set on/off to enable/disable using "
"physical address space above 32 bits",
NULL);
/* Default GIC type is v2 */
vms->gic_version = 2;
vms->gic_version = VIRT_GIC_VERSION_NOSEL;
object_property_add_str(obj, "gic-version", virt_get_gic_version,
virt_set_gic_version, NULL);
object_property_set_description(obj, "gic-version",
"Set GIC version. "
"Valid values are 2, 3 and host", NULL);
"Valid values are 2, 3, host and max",
NULL);
vms->highmem_ecam = !vmc->no_highmem_ecam;

View file

@ -2593,6 +2593,12 @@ static void armv7m_nvic_reset(DeviceState *dev)
s->itns[i] = true;
}
}
/*
* We updated state that affects the CPU's MMUidx and thus its hflags;
* and we can't guarantee that we run before the CPU reset function.
*/
arm_rebuild_hflags(&s->cpu->env);
}
static void nvic_systick_trigger(void *opaque, int n, int level)

View file

@ -28,6 +28,11 @@ common-obj-$(CONFIG_MACIO) += macio/
common-obj-$(CONFIG_IVSHMEM_DEVICE) += ivshmem.o
common-obj-$(CONFIG_ALLWINNER_H3) += allwinner-h3-ccu.o
obj-$(CONFIG_ALLWINNER_H3) += allwinner-cpucfg.o
common-obj-$(CONFIG_ALLWINNER_H3) += allwinner-h3-dramc.o
common-obj-$(CONFIG_ALLWINNER_H3) += allwinner-h3-sysctrl.o
common-obj-$(CONFIG_ALLWINNER_H3) += allwinner-sid.o
common-obj-$(CONFIG_REALVIEW) += arm_sysctl.o
common-obj-$(CONFIG_NSERIES) += cbus.o
common-obj-$(CONFIG_ECCMEMCTL) += eccmemctl.o

282
hw/misc/allwinner-cpucfg.c Normal file
View file

@ -0,0 +1,282 @@
/*
* Allwinner CPU Configuration Module emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "hw/core/cpu.h"
#include "target/arm/arm-powerctl.h"
#include "target/arm/cpu.h"
#include "hw/misc/allwinner-cpucfg.h"
#include "trace.h"
/* CPUCFG register offsets */
enum {
REG_CPUS_RST_CTRL = 0x0000, /* CPUs Reset Control */
REG_CPU0_RST_CTRL = 0x0040, /* CPU#0 Reset Control */
REG_CPU0_CTRL = 0x0044, /* CPU#0 Control */
REG_CPU0_STATUS = 0x0048, /* CPU#0 Status */
REG_CPU1_RST_CTRL = 0x0080, /* CPU#1 Reset Control */
REG_CPU1_CTRL = 0x0084, /* CPU#1 Control */
REG_CPU1_STATUS = 0x0088, /* CPU#1 Status */
REG_CPU2_RST_CTRL = 0x00C0, /* CPU#2 Reset Control */
REG_CPU2_CTRL = 0x00C4, /* CPU#2 Control */
REG_CPU2_STATUS = 0x00C8, /* CPU#2 Status */
REG_CPU3_RST_CTRL = 0x0100, /* CPU#3 Reset Control */
REG_CPU3_CTRL = 0x0104, /* CPU#3 Control */
REG_CPU3_STATUS = 0x0108, /* CPU#3 Status */
REG_CPU_SYS_RST = 0x0140, /* CPU System Reset */
REG_CLK_GATING = 0x0144, /* CPU Clock Gating */
REG_GEN_CTRL = 0x0184, /* General Control */
REG_SUPER_STANDBY = 0x01A0, /* Super Standby Flag */
REG_ENTRY_ADDR = 0x01A4, /* Reset Entry Address */
REG_DBG_EXTERN = 0x01E4, /* Debug External */
REG_CNT64_CTRL = 0x0280, /* 64-bit Counter Control */
REG_CNT64_LOW = 0x0284, /* 64-bit Counter Low */
REG_CNT64_HIGH = 0x0288, /* 64-bit Counter High */
};
/* CPUCFG register flags */
enum {
CPUX_RESET_RELEASED = ((1 << 1) | (1 << 0)),
CPUX_STATUS_SMP = (1 << 0),
CPU_SYS_RESET_RELEASED = (1 << 0),
CLK_GATING_ENABLE = ((1 << 8) | 0xF),
};
/* CPUCFG register reset values */
enum {
REG_CLK_GATING_RST = 0x0000010F,
REG_GEN_CTRL_RST = 0x00000020,
REG_SUPER_STANDBY_RST = 0x0,
REG_CNT64_CTRL_RST = 0x0,
};
/* CPUCFG constants */
enum {
CPU_EXCEPTION_LEVEL_ON_RESET = 3, /* EL3 */
};
static void allwinner_cpucfg_cpu_reset(AwCpuCfgState *s, uint8_t cpu_id)
{
int ret;
trace_allwinner_cpucfg_cpu_reset(cpu_id, s->entry_addr);
ARMCPU *target_cpu = ARM_CPU(arm_get_cpu_by_id(cpu_id));
if (!target_cpu) {
/*
* Called with a bogus value for cpu_id. Guest error will
* already have been logged, we can simply return here.
*/
return;
}
bool target_aa64 = arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64);
ret = arm_set_cpu_on(cpu_id, s->entry_addr, 0,
CPU_EXCEPTION_LEVEL_ON_RESET, target_aa64);
if (ret != QEMU_ARM_POWERCTL_RET_SUCCESS) {
error_report("%s: failed to bring up CPU %d: err %d",
__func__, cpu_id, ret);
return;
}
}
static uint64_t allwinner_cpucfg_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwCpuCfgState *s = AW_CPUCFG(opaque);
uint64_t val = 0;
switch (offset) {
case REG_CPUS_RST_CTRL: /* CPUs Reset Control */
case REG_CPU_SYS_RST: /* CPU System Reset */
val = CPU_SYS_RESET_RELEASED;
break;
case REG_CPU0_RST_CTRL: /* CPU#0 Reset Control */
case REG_CPU1_RST_CTRL: /* CPU#1 Reset Control */
case REG_CPU2_RST_CTRL: /* CPU#2 Reset Control */
case REG_CPU3_RST_CTRL: /* CPU#3 Reset Control */
val = CPUX_RESET_RELEASED;
break;
case REG_CPU0_CTRL: /* CPU#0 Control */
case REG_CPU1_CTRL: /* CPU#1 Control */
case REG_CPU2_CTRL: /* CPU#2 Control */
case REG_CPU3_CTRL: /* CPU#3 Control */
val = 0;
break;
case REG_CPU0_STATUS: /* CPU#0 Status */
case REG_CPU1_STATUS: /* CPU#1 Status */
case REG_CPU2_STATUS: /* CPU#2 Status */
case REG_CPU3_STATUS: /* CPU#3 Status */
val = CPUX_STATUS_SMP;
break;
case REG_CLK_GATING: /* CPU Clock Gating */
val = CLK_GATING_ENABLE;
break;
case REG_GEN_CTRL: /* General Control */
val = s->gen_ctrl;
break;
case REG_SUPER_STANDBY: /* Super Standby Flag */
val = s->super_standby;
break;
case REG_ENTRY_ADDR: /* Reset Entry Address */
val = s->entry_addr;
break;
case REG_DBG_EXTERN: /* Debug External */
case REG_CNT64_CTRL: /* 64-bit Counter Control */
case REG_CNT64_LOW: /* 64-bit Counter Low */
case REG_CNT64_HIGH: /* 64-bit Counter High */
qemu_log_mask(LOG_UNIMP, "%s: unimplemented register at 0x%04x\n",
__func__, (uint32_t)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
break;
}
trace_allwinner_cpucfg_read(offset, val, size);
return val;
}
static void allwinner_cpucfg_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwCpuCfgState *s = AW_CPUCFG(opaque);
trace_allwinner_cpucfg_write(offset, val, size);
switch (offset) {
case REG_CPUS_RST_CTRL: /* CPUs Reset Control */
case REG_CPU_SYS_RST: /* CPU System Reset */
break;
case REG_CPU0_RST_CTRL: /* CPU#0 Reset Control */
case REG_CPU1_RST_CTRL: /* CPU#1 Reset Control */
case REG_CPU2_RST_CTRL: /* CPU#2 Reset Control */
case REG_CPU3_RST_CTRL: /* CPU#3 Reset Control */
if (val) {
allwinner_cpucfg_cpu_reset(s, (offset - REG_CPU0_RST_CTRL) >> 6);
}
break;
case REG_CPU0_CTRL: /* CPU#0 Control */
case REG_CPU1_CTRL: /* CPU#1 Control */
case REG_CPU2_CTRL: /* CPU#2 Control */
case REG_CPU3_CTRL: /* CPU#3 Control */
case REG_CPU0_STATUS: /* CPU#0 Status */
case REG_CPU1_STATUS: /* CPU#1 Status */
case REG_CPU2_STATUS: /* CPU#2 Status */
case REG_CPU3_STATUS: /* CPU#3 Status */
case REG_CLK_GATING: /* CPU Clock Gating */
break;
case REG_GEN_CTRL: /* General Control */
s->gen_ctrl = val;
break;
case REG_SUPER_STANDBY: /* Super Standby Flag */
s->super_standby = val;
break;
case REG_ENTRY_ADDR: /* Reset Entry Address */
s->entry_addr = val;
break;
case REG_DBG_EXTERN: /* Debug External */
case REG_CNT64_CTRL: /* 64-bit Counter Control */
case REG_CNT64_LOW: /* 64-bit Counter Low */
case REG_CNT64_HIGH: /* 64-bit Counter High */
qemu_log_mask(LOG_UNIMP, "%s: unimplemented register at 0x%04x\n",
__func__, (uint32_t)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
break;
}
}
static const MemoryRegionOps allwinner_cpucfg_ops = {
.read = allwinner_cpucfg_read,
.write = allwinner_cpucfg_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static void allwinner_cpucfg_reset(DeviceState *dev)
{
AwCpuCfgState *s = AW_CPUCFG(dev);
/* Set default values for registers */
s->gen_ctrl = REG_GEN_CTRL_RST;
s->super_standby = REG_SUPER_STANDBY_RST;
s->entry_addr = 0;
}
static void allwinner_cpucfg_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwCpuCfgState *s = AW_CPUCFG(obj);
/* Memory mapping */
memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_cpucfg_ops, s,
TYPE_AW_CPUCFG, 1 * KiB);
sysbus_init_mmio(sbd, &s->iomem);
}
static const VMStateDescription allwinner_cpucfg_vmstate = {
.name = "allwinner-cpucfg",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(gen_ctrl, AwCpuCfgState),
VMSTATE_UINT32(super_standby, AwCpuCfgState),
VMSTATE_UINT32(entry_addr, AwCpuCfgState),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_cpucfg_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_cpucfg_reset;
dc->vmsd = &allwinner_cpucfg_vmstate;
}
static const TypeInfo allwinner_cpucfg_info = {
.name = TYPE_AW_CPUCFG,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_cpucfg_init,
.instance_size = sizeof(AwCpuCfgState),
.class_init = allwinner_cpucfg_class_init,
};
static void allwinner_cpucfg_register(void)
{
type_register_static(&allwinner_cpucfg_info);
}
type_init(allwinner_cpucfg_register)

242
hw/misc/allwinner-h3-ccu.c Normal file
View file

@ -0,0 +1,242 @@
/*
* Allwinner H3 Clock Control Unit emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/misc/allwinner-h3-ccu.h"
/* CCU register offsets */
enum {
REG_PLL_CPUX = 0x0000, /* PLL CPUX Control */
REG_PLL_AUDIO = 0x0008, /* PLL Audio Control */
REG_PLL_VIDEO = 0x0010, /* PLL Video Control */
REG_PLL_VE = 0x0018, /* PLL VE Control */
REG_PLL_DDR = 0x0020, /* PLL DDR Control */
REG_PLL_PERIPH0 = 0x0028, /* PLL Peripherals 0 Control */
REG_PLL_GPU = 0x0038, /* PLL GPU Control */
REG_PLL_PERIPH1 = 0x0044, /* PLL Peripherals 1 Control */
REG_PLL_DE = 0x0048, /* PLL Display Engine Control */
REG_CPUX_AXI = 0x0050, /* CPUX/AXI Configuration */
REG_APB1 = 0x0054, /* ARM Peripheral Bus 1 Config */
REG_APB2 = 0x0058, /* ARM Peripheral Bus 2 Config */
REG_DRAM_CFG = 0x00F4, /* DRAM Configuration */
REG_MBUS = 0x00FC, /* MBUS Reset */
REG_PLL_TIME0 = 0x0200, /* PLL Stable Time 0 */
REG_PLL_TIME1 = 0x0204, /* PLL Stable Time 1 */
REG_PLL_CPUX_BIAS = 0x0220, /* PLL CPUX Bias */
REG_PLL_AUDIO_BIAS = 0x0224, /* PLL Audio Bias */
REG_PLL_VIDEO_BIAS = 0x0228, /* PLL Video Bias */
REG_PLL_VE_BIAS = 0x022C, /* PLL VE Bias */
REG_PLL_DDR_BIAS = 0x0230, /* PLL DDR Bias */
REG_PLL_PERIPH0_BIAS = 0x0234, /* PLL Peripherals 0 Bias */
REG_PLL_GPU_BIAS = 0x023C, /* PLL GPU Bias */
REG_PLL_PERIPH1_BIAS = 0x0244, /* PLL Peripherals 1 Bias */
REG_PLL_DE_BIAS = 0x0248, /* PLL Display Engine Bias */
REG_PLL_CPUX_TUNING = 0x0250, /* PLL CPUX Tuning */
REG_PLL_DDR_TUNING = 0x0260, /* PLL DDR Tuning */
};
#define REG_INDEX(offset) (offset / sizeof(uint32_t))
/* CCU register flags */
enum {
REG_DRAM_CFG_UPDATE = (1 << 16),
};
enum {
REG_PLL_ENABLE = (1 << 31),
REG_PLL_LOCK = (1 << 28),
};
/* CCU register reset values */
enum {
REG_PLL_CPUX_RST = 0x00001000,
REG_PLL_AUDIO_RST = 0x00035514,
REG_PLL_VIDEO_RST = 0x03006207,
REG_PLL_VE_RST = 0x03006207,
REG_PLL_DDR_RST = 0x00001000,
REG_PLL_PERIPH0_RST = 0x00041811,
REG_PLL_GPU_RST = 0x03006207,
REG_PLL_PERIPH1_RST = 0x00041811,
REG_PLL_DE_RST = 0x03006207,
REG_CPUX_AXI_RST = 0x00010000,
REG_APB1_RST = 0x00001010,
REG_APB2_RST = 0x01000000,
REG_DRAM_CFG_RST = 0x00000000,
REG_MBUS_RST = 0x80000000,
REG_PLL_TIME0_RST = 0x000000FF,
REG_PLL_TIME1_RST = 0x000000FF,
REG_PLL_CPUX_BIAS_RST = 0x08100200,
REG_PLL_AUDIO_BIAS_RST = 0x10100000,
REG_PLL_VIDEO_BIAS_RST = 0x10100000,
REG_PLL_VE_BIAS_RST = 0x10100000,
REG_PLL_DDR_BIAS_RST = 0x81104000,
REG_PLL_PERIPH0_BIAS_RST = 0x10100010,
REG_PLL_GPU_BIAS_RST = 0x10100000,
REG_PLL_PERIPH1_BIAS_RST = 0x10100010,
REG_PLL_DE_BIAS_RST = 0x10100000,
REG_PLL_CPUX_TUNING_RST = 0x0A101000,
REG_PLL_DDR_TUNING_RST = 0x14880000,
};
static uint64_t allwinner_h3_ccu_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwH3ClockCtlState *s = AW_H3_CCU(opaque);
const uint32_t idx = REG_INDEX(offset);
switch (offset) {
case 0x308 ... AW_H3_CCU_IOSIZE:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
return s->regs[idx];
}
static void allwinner_h3_ccu_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwH3ClockCtlState *s = AW_H3_CCU(opaque);
const uint32_t idx = REG_INDEX(offset);
switch (offset) {
case REG_DRAM_CFG: /* DRAM Configuration */
val &= ~REG_DRAM_CFG_UPDATE;
break;
case REG_PLL_CPUX: /* PLL CPUX Control */
case REG_PLL_AUDIO: /* PLL Audio Control */
case REG_PLL_VIDEO: /* PLL Video Control */
case REG_PLL_VE: /* PLL VE Control */
case REG_PLL_DDR: /* PLL DDR Control */
case REG_PLL_PERIPH0: /* PLL Peripherals 0 Control */
case REG_PLL_GPU: /* PLL GPU Control */
case REG_PLL_PERIPH1: /* PLL Peripherals 1 Control */
case REG_PLL_DE: /* PLL Display Engine Control */
if (val & REG_PLL_ENABLE) {
val |= REG_PLL_LOCK;
}
break;
case 0x308 ... AW_H3_CCU_IOSIZE:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimplemented write offset 0x%04x\n",
__func__, (uint32_t)offset);
break;
}
s->regs[idx] = (uint32_t) val;
}
static const MemoryRegionOps allwinner_h3_ccu_ops = {
.read = allwinner_h3_ccu_read,
.write = allwinner_h3_ccu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static void allwinner_h3_ccu_reset(DeviceState *dev)
{
AwH3ClockCtlState *s = AW_H3_CCU(dev);
/* Set default values for registers */
s->regs[REG_INDEX(REG_PLL_CPUX)] = REG_PLL_CPUX_RST;
s->regs[REG_INDEX(REG_PLL_AUDIO)] = REG_PLL_AUDIO_RST;
s->regs[REG_INDEX(REG_PLL_VIDEO)] = REG_PLL_VIDEO_RST;
s->regs[REG_INDEX(REG_PLL_VE)] = REG_PLL_VE_RST;
s->regs[REG_INDEX(REG_PLL_DDR)] = REG_PLL_DDR_RST;
s->regs[REG_INDEX(REG_PLL_PERIPH0)] = REG_PLL_PERIPH0_RST;
s->regs[REG_INDEX(REG_PLL_GPU)] = REG_PLL_GPU_RST;
s->regs[REG_INDEX(REG_PLL_PERIPH1)] = REG_PLL_PERIPH1_RST;
s->regs[REG_INDEX(REG_PLL_DE)] = REG_PLL_DE_RST;
s->regs[REG_INDEX(REG_CPUX_AXI)] = REG_CPUX_AXI_RST;
s->regs[REG_INDEX(REG_APB1)] = REG_APB1_RST;
s->regs[REG_INDEX(REG_APB2)] = REG_APB2_RST;
s->regs[REG_INDEX(REG_DRAM_CFG)] = REG_DRAM_CFG_RST;
s->regs[REG_INDEX(REG_MBUS)] = REG_MBUS_RST;
s->regs[REG_INDEX(REG_PLL_TIME0)] = REG_PLL_TIME0_RST;
s->regs[REG_INDEX(REG_PLL_TIME1)] = REG_PLL_TIME1_RST;
s->regs[REG_INDEX(REG_PLL_CPUX_BIAS)] = REG_PLL_CPUX_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_AUDIO_BIAS)] = REG_PLL_AUDIO_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_VIDEO_BIAS)] = REG_PLL_VIDEO_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_VE_BIAS)] = REG_PLL_VE_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_DDR_BIAS)] = REG_PLL_DDR_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_PERIPH0_BIAS)] = REG_PLL_PERIPH0_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_GPU_BIAS)] = REG_PLL_GPU_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_PERIPH1_BIAS)] = REG_PLL_PERIPH1_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_DE_BIAS)] = REG_PLL_DE_BIAS_RST;
s->regs[REG_INDEX(REG_PLL_CPUX_TUNING)] = REG_PLL_CPUX_TUNING_RST;
s->regs[REG_INDEX(REG_PLL_DDR_TUNING)] = REG_PLL_DDR_TUNING_RST;
}
static void allwinner_h3_ccu_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwH3ClockCtlState *s = AW_H3_CCU(obj);
/* Memory mapping */
memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_h3_ccu_ops, s,
TYPE_AW_H3_CCU, AW_H3_CCU_IOSIZE);
sysbus_init_mmio(sbd, &s->iomem);
}
static const VMStateDescription allwinner_h3_ccu_vmstate = {
.name = "allwinner-h3-ccu",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AwH3ClockCtlState, AW_H3_CCU_REGS_NUM),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_h3_ccu_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_h3_ccu_reset;
dc->vmsd = &allwinner_h3_ccu_vmstate;
}
static const TypeInfo allwinner_h3_ccu_info = {
.name = TYPE_AW_H3_CCU,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_h3_ccu_init,
.instance_size = sizeof(AwH3ClockCtlState),
.class_init = allwinner_h3_ccu_class_init,
};
static void allwinner_h3_ccu_register(void)
{
type_register_static(&allwinner_h3_ccu_info);
}
type_init(allwinner_h3_ccu_register)

View file

@ -0,0 +1,358 @@
/*
* Allwinner H3 SDRAM Controller emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "exec/address-spaces.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "hw/misc/allwinner-h3-dramc.h"
#include "trace.h"
#define REG_INDEX(offset) (offset / sizeof(uint32_t))
/* DRAMCOM register offsets */
enum {
REG_DRAMCOM_CR = 0x0000, /* Control Register */
};
/* DRAMCTL register offsets */
enum {
REG_DRAMCTL_PIR = 0x0000, /* PHY Initialization Register */
REG_DRAMCTL_PGSR = 0x0010, /* PHY General Status Register */
REG_DRAMCTL_STATR = 0x0018, /* Status Register */
};
/* DRAMCTL register flags */
enum {
REG_DRAMCTL_PGSR_INITDONE = (1 << 0),
};
enum {
REG_DRAMCTL_STATR_ACTIVE = (1 << 0),
};
static void allwinner_h3_dramc_map_rows(AwH3DramCtlState *s, uint8_t row_bits,
uint8_t bank_bits, uint16_t page_size)
{
/*
* This function simulates row addressing behavior when bootloader
* software attempts to detect the amount of available SDRAM. In U-Boot
* the controller is configured with the widest row addressing available.
* Then a pattern is written to RAM at an offset on the row boundary size.
* If the value read back equals the value read back from the
* start of RAM, the bootloader knows the amount of row bits.
*
* This function inserts a mirrored memory region when the configured row
* bits are not matching the actual emulated memory, to simulate the
* same behavior on hardware as expected by the bootloader.
*/
uint8_t row_bits_actual = 0;
/* Calculate the actual row bits using the ram_size property */
for (uint8_t i = 8; i < 12; i++) {
if (1 << i == s->ram_size) {
row_bits_actual = i + 3;
break;
}
}
if (s->ram_size == (1 << (row_bits - 3))) {
/* When row bits is the expected value, remove the mirror */
memory_region_set_enabled(&s->row_mirror_alias, false);
trace_allwinner_h3_dramc_rowmirror_disable();
} else if (row_bits_actual) {
/* Row bits not matching ram_size, install the rows mirror */
hwaddr row_mirror = s->ram_addr + ((1 << (row_bits_actual +
bank_bits)) * page_size);
memory_region_set_enabled(&s->row_mirror_alias, true);
memory_region_set_address(&s->row_mirror_alias, row_mirror);
trace_allwinner_h3_dramc_rowmirror_enable(row_mirror);
}
}
static uint64_t allwinner_h3_dramcom_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
if (idx >= AW_H3_DRAMCOM_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
trace_allwinner_h3_dramcom_read(offset, s->dramcom[idx], size);
return s->dramcom[idx];
}
static void allwinner_h3_dramcom_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
trace_allwinner_h3_dramcom_write(offset, val, size);
if (idx >= AW_H3_DRAMCOM_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
switch (offset) {
case REG_DRAMCOM_CR: /* Control Register */
allwinner_h3_dramc_map_rows(s, ((val >> 4) & 0xf) + 1,
((val >> 2) & 0x1) + 2,
1 << (((val >> 8) & 0xf) + 3));
break;
default:
break;
};
s->dramcom[idx] = (uint32_t) val;
}
static uint64_t allwinner_h3_dramctl_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
if (idx >= AW_H3_DRAMCTL_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
trace_allwinner_h3_dramctl_read(offset, s->dramctl[idx], size);
return s->dramctl[idx];
}
static void allwinner_h3_dramctl_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
trace_allwinner_h3_dramctl_write(offset, val, size);
if (idx >= AW_H3_DRAMCTL_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
switch (offset) {
case REG_DRAMCTL_PIR: /* PHY Initialization Register */
s->dramctl[REG_INDEX(REG_DRAMCTL_PGSR)] |= REG_DRAMCTL_PGSR_INITDONE;
s->dramctl[REG_INDEX(REG_DRAMCTL_STATR)] |= REG_DRAMCTL_STATR_ACTIVE;
break;
default:
break;
}
s->dramctl[idx] = (uint32_t) val;
}
static uint64_t allwinner_h3_dramphy_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
if (idx >= AW_H3_DRAMPHY_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
trace_allwinner_h3_dramphy_read(offset, s->dramphy[idx], size);
return s->dramphy[idx];
}
static void allwinner_h3_dramphy_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
trace_allwinner_h3_dramphy_write(offset, val, size);
if (idx >= AW_H3_DRAMPHY_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
s->dramphy[idx] = (uint32_t) val;
}
static const MemoryRegionOps allwinner_h3_dramcom_ops = {
.read = allwinner_h3_dramcom_read,
.write = allwinner_h3_dramcom_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static const MemoryRegionOps allwinner_h3_dramctl_ops = {
.read = allwinner_h3_dramctl_read,
.write = allwinner_h3_dramctl_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static const MemoryRegionOps allwinner_h3_dramphy_ops = {
.read = allwinner_h3_dramphy_read,
.write = allwinner_h3_dramphy_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static void allwinner_h3_dramc_reset(DeviceState *dev)
{
AwH3DramCtlState *s = AW_H3_DRAMC(dev);
/* Set default values for registers */
memset(&s->dramcom, 0, sizeof(s->dramcom));
memset(&s->dramctl, 0, sizeof(s->dramctl));
memset(&s->dramphy, 0, sizeof(s->dramphy));
}
static void allwinner_h3_dramc_realize(DeviceState *dev, Error **errp)
{
AwH3DramCtlState *s = AW_H3_DRAMC(dev);
/* Only power of 2 RAM sizes from 256MiB up to 2048MiB are supported */
for (uint8_t i = 8; i < 13; i++) {
if (1 << i == s->ram_size) {
break;
} else if (i == 12) {
error_report("%s: ram-size %u MiB is not supported",
__func__, s->ram_size);
exit(1);
}
}
/* Setup row mirror mappings */
memory_region_init_ram(&s->row_mirror, OBJECT(s),
"allwinner-h3-dramc.row-mirror",
4 * KiB, &error_abort);
memory_region_add_subregion_overlap(get_system_memory(), s->ram_addr,
&s->row_mirror, 10);
memory_region_init_alias(&s->row_mirror_alias, OBJECT(s),
"allwinner-h3-dramc.row-mirror-alias",
&s->row_mirror, 0, 4 * KiB);
memory_region_add_subregion_overlap(get_system_memory(),
s->ram_addr + 1 * MiB,
&s->row_mirror_alias, 10);
memory_region_set_enabled(&s->row_mirror_alias, false);
}
static void allwinner_h3_dramc_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwH3DramCtlState *s = AW_H3_DRAMC(obj);
/* DRAMCOM registers */
memory_region_init_io(&s->dramcom_iomem, OBJECT(s),
&allwinner_h3_dramcom_ops, s,
TYPE_AW_H3_DRAMC, 4 * KiB);
sysbus_init_mmio(sbd, &s->dramcom_iomem);
/* DRAMCTL registers */
memory_region_init_io(&s->dramctl_iomem, OBJECT(s),
&allwinner_h3_dramctl_ops, s,
TYPE_AW_H3_DRAMC, 4 * KiB);
sysbus_init_mmio(sbd, &s->dramctl_iomem);
/* DRAMPHY registers */
memory_region_init_io(&s->dramphy_iomem, OBJECT(s),
&allwinner_h3_dramphy_ops, s,
TYPE_AW_H3_DRAMC, 4 * KiB);
sysbus_init_mmio(sbd, &s->dramphy_iomem);
}
static Property allwinner_h3_dramc_properties[] = {
DEFINE_PROP_UINT64("ram-addr", AwH3DramCtlState, ram_addr, 0x0),
DEFINE_PROP_UINT32("ram-size", AwH3DramCtlState, ram_size, 256 * MiB),
DEFINE_PROP_END_OF_LIST()
};
static const VMStateDescription allwinner_h3_dramc_vmstate = {
.name = "allwinner-h3-dramc",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(dramcom, AwH3DramCtlState, AW_H3_DRAMCOM_REGS_NUM),
VMSTATE_UINT32_ARRAY(dramctl, AwH3DramCtlState, AW_H3_DRAMCTL_REGS_NUM),
VMSTATE_UINT32_ARRAY(dramphy, AwH3DramCtlState, AW_H3_DRAMPHY_REGS_NUM),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_h3_dramc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_h3_dramc_reset;
dc->vmsd = &allwinner_h3_dramc_vmstate;
dc->realize = allwinner_h3_dramc_realize;
device_class_set_props(dc, allwinner_h3_dramc_properties);
}
static const TypeInfo allwinner_h3_dramc_info = {
.name = TYPE_AW_H3_DRAMC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_h3_dramc_init,
.instance_size = sizeof(AwH3DramCtlState),
.class_init = allwinner_h3_dramc_class_init,
};
static void allwinner_h3_dramc_register(void)
{
type_register_static(&allwinner_h3_dramc_info);
}
type_init(allwinner_h3_dramc_register)

View file

@ -0,0 +1,140 @@
/*
* Allwinner H3 System Control emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/misc/allwinner-h3-sysctrl.h"
/* System Control register offsets */
enum {
REG_VER = 0x24, /* Version */
REG_EMAC_PHY_CLK = 0x30, /* EMAC PHY Clock */
};
#define REG_INDEX(offset) (offset / sizeof(uint32_t))
/* System Control register reset values */
enum {
REG_VER_RST = 0x0,
REG_EMAC_PHY_CLK_RST = 0x58000,
};
static uint64_t allwinner_h3_sysctrl_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwH3SysCtrlState *s = AW_H3_SYSCTRL(opaque);
const uint32_t idx = REG_INDEX(offset);
if (idx >= AW_H3_SYSCTRL_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
return s->regs[idx];
}
static void allwinner_h3_sysctrl_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwH3SysCtrlState *s = AW_H3_SYSCTRL(opaque);
const uint32_t idx = REG_INDEX(offset);
if (idx >= AW_H3_SYSCTRL_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
switch (offset) {
case REG_VER: /* Version */
break;
default:
s->regs[idx] = (uint32_t) val;
break;
}
}
static const MemoryRegionOps allwinner_h3_sysctrl_ops = {
.read = allwinner_h3_sysctrl_read,
.write = allwinner_h3_sysctrl_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static void allwinner_h3_sysctrl_reset(DeviceState *dev)
{
AwH3SysCtrlState *s = AW_H3_SYSCTRL(dev);
/* Set default values for registers */
s->regs[REG_INDEX(REG_VER)] = REG_VER_RST;
s->regs[REG_INDEX(REG_EMAC_PHY_CLK)] = REG_EMAC_PHY_CLK_RST;
}
static void allwinner_h3_sysctrl_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwH3SysCtrlState *s = AW_H3_SYSCTRL(obj);
/* Memory mapping */
memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_h3_sysctrl_ops, s,
TYPE_AW_H3_SYSCTRL, 4 * KiB);
sysbus_init_mmio(sbd, &s->iomem);
}
static const VMStateDescription allwinner_h3_sysctrl_vmstate = {
.name = "allwinner-h3-sysctrl",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AwH3SysCtrlState, AW_H3_SYSCTRL_REGS_NUM),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_h3_sysctrl_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_h3_sysctrl_reset;
dc->vmsd = &allwinner_h3_sysctrl_vmstate;
}
static const TypeInfo allwinner_h3_sysctrl_info = {
.name = TYPE_AW_H3_SYSCTRL,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_h3_sysctrl_init,
.instance_size = sizeof(AwH3SysCtrlState),
.class_init = allwinner_h3_sysctrl_class_init,
};
static void allwinner_h3_sysctrl_register(void)
{
type_register_static(&allwinner_h3_sysctrl_info);
}
type_init(allwinner_h3_sysctrl_register)

168
hw/misc/allwinner-sid.c Normal file
View file

@ -0,0 +1,168 @@
/*
* Allwinner Security ID emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/guest-random.h"
#include "qapi/error.h"
#include "hw/qdev-properties.h"
#include "hw/misc/allwinner-sid.h"
#include "trace.h"
/* SID register offsets */
enum {
REG_PRCTL = 0x40, /* Control */
REG_RDKEY = 0x60, /* Read Key */
};
/* SID register flags */
enum {
REG_PRCTL_WRITE = 0x0002, /* Unknown write flag */
REG_PRCTL_OP_LOCK = 0xAC00, /* Lock operation */
};
static uint64_t allwinner_sid_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwSidState *s = AW_SID(opaque);
uint64_t val = 0;
switch (offset) {
case REG_PRCTL: /* Control */
val = s->control;
break;
case REG_RDKEY: /* Read Key */
val = s->rdkey;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
trace_allwinner_sid_read(offset, val, size);
return val;
}
static void allwinner_sid_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwSidState *s = AW_SID(opaque);
trace_allwinner_sid_write(offset, val, size);
switch (offset) {
case REG_PRCTL: /* Control */
s->control = val;
if ((s->control & REG_PRCTL_OP_LOCK) &&
(s->control & REG_PRCTL_WRITE)) {
uint32_t id = s->control >> 16;
if (id <= sizeof(QemuUUID) - sizeof(s->rdkey)) {
s->rdkey = ldl_be_p(&s->identifier.data[id]);
}
}
s->control &= ~REG_PRCTL_WRITE;
break;
case REG_RDKEY: /* Read Key */
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
break;
}
}
static const MemoryRegionOps allwinner_sid_ops = {
.read = allwinner_sid_read,
.write = allwinner_sid_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static void allwinner_sid_reset(DeviceState *dev)
{
AwSidState *s = AW_SID(dev);
/* Set default values for registers */
s->control = 0;
s->rdkey = 0;
}
static void allwinner_sid_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwSidState *s = AW_SID(obj);
/* Memory mapping */
memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_sid_ops, s,
TYPE_AW_SID, 1 * KiB);
sysbus_init_mmio(sbd, &s->iomem);
}
static Property allwinner_sid_properties[] = {
DEFINE_PROP_UUID_NODEFAULT("identifier", AwSidState, identifier),
DEFINE_PROP_END_OF_LIST()
};
static const VMStateDescription allwinner_sid_vmstate = {
.name = "allwinner-sid",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(control, AwSidState),
VMSTATE_UINT32(rdkey, AwSidState),
VMSTATE_UINT8_ARRAY_V(identifier.data, AwSidState, sizeof(QemuUUID), 1),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_sid_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_sid_reset;
dc->vmsd = &allwinner_sid_vmstate;
device_class_set_props(dc, allwinner_sid_properties);
}
static const TypeInfo allwinner_sid_info = {
.name = TYPE_AW_SID,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_sid_init,
.instance_size = sizeof(AwSidState),
.class_init = allwinner_sid_class_init,
};
static void allwinner_sid_register(void)
{
type_register_static(&allwinner_sid_info);
}
type_init(allwinner_sid_register)

View file

@ -1,5 +1,24 @@
# See docs/devel/tracing.txt for syntax documentation.
# allwinner-cpucfg.c
allwinner_cpucfg_cpu_reset(uint8_t cpu_id, uint32_t reset_addr) "id %u, reset_addr 0x%" PRIu32
allwinner_cpucfg_read(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_cpucfg_write(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
# allwinner-h3-dramc.c
allwinner_h3_dramc_rowmirror_disable(void) "Disable row mirror"
allwinner_h3_dramc_rowmirror_enable(uint64_t addr) "Enable row mirror: addr 0x%" PRIx64
allwinner_h3_dramcom_read(uint64_t offset, uint64_t data, unsigned size) "Read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_h3_dramcom_write(uint64_t offset, uint64_t data, unsigned size) "Write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_h3_dramctl_read(uint64_t offset, uint64_t data, unsigned size) "Read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_h3_dramctl_write(uint64_t offset, uint64_t data, unsigned size) "Write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_h3_dramphy_read(uint64_t offset, uint64_t data, unsigned size) "Read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_h3_dramphy_write(uint64_t offset, uint64_t data, unsigned size) "write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
# allwinner-sid.c
allwinner_sid_read(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_sid_write(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
# eccmemctl.c
ecc_mem_writel_mer(uint32_t val) "Write memory enable 0x%08x"
ecc_mem_writel_mdr(uint32_t val) "Write memory delay 0x%08x"

View file

@ -79,6 +79,9 @@ config MIPSNET
config ALLWINNER_EMAC
bool
config ALLWINNER_SUN8I_EMAC
bool
config IMX_FEC
bool

View file

@ -23,6 +23,7 @@ common-obj-$(CONFIG_XGMAC) += xgmac.o
common-obj-$(CONFIG_MIPSNET) += mipsnet.o
common-obj-$(CONFIG_XILINX_AXI) += xilinx_axienet.o
common-obj-$(CONFIG_ALLWINNER_EMAC) += allwinner_emac.o
common-obj-$(CONFIG_ALLWINNER_SUN8I_EMAC) += allwinner-sun8i-emac.o
common-obj-$(CONFIG_IMX_FEC) += imx_fec.o
common-obj-$(CONFIG_CADENCE) += cadence_gem.o

View file

@ -0,0 +1,871 @@
/*
* Allwinner Sun8i Ethernet MAC emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "net/net.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "qemu/log.h"
#include "trace.h"
#include "net/checksum.h"
#include "qemu/module.h"
#include "exec/cpu-common.h"
#include "hw/net/allwinner-sun8i-emac.h"
/* EMAC register offsets */
enum {
REG_BASIC_CTL_0 = 0x0000, /* Basic Control 0 */
REG_BASIC_CTL_1 = 0x0004, /* Basic Control 1 */
REG_INT_STA = 0x0008, /* Interrupt Status */
REG_INT_EN = 0x000C, /* Interrupt Enable */
REG_TX_CTL_0 = 0x0010, /* Transmit Control 0 */
REG_TX_CTL_1 = 0x0014, /* Transmit Control 1 */
REG_TX_FLOW_CTL = 0x001C, /* Transmit Flow Control */
REG_TX_DMA_DESC_LIST = 0x0020, /* Transmit Descriptor List Address */
REG_RX_CTL_0 = 0x0024, /* Receive Control 0 */
REG_RX_CTL_1 = 0x0028, /* Receive Control 1 */
REG_RX_DMA_DESC_LIST = 0x0034, /* Receive Descriptor List Address */
REG_FRM_FLT = 0x0038, /* Receive Frame Filter */
REG_RX_HASH_0 = 0x0040, /* Receive Hash Table 0 */
REG_RX_HASH_1 = 0x0044, /* Receive Hash Table 1 */
REG_MII_CMD = 0x0048, /* Management Interface Command */
REG_MII_DATA = 0x004C, /* Management Interface Data */
REG_ADDR_HIGH = 0x0050, /* MAC Address High */
REG_ADDR_LOW = 0x0054, /* MAC Address Low */
REG_TX_DMA_STA = 0x00B0, /* Transmit DMA Status */
REG_TX_CUR_DESC = 0x00B4, /* Transmit Current Descriptor */
REG_TX_CUR_BUF = 0x00B8, /* Transmit Current Buffer */
REG_RX_DMA_STA = 0x00C0, /* Receive DMA Status */
REG_RX_CUR_DESC = 0x00C4, /* Receive Current Descriptor */
REG_RX_CUR_BUF = 0x00C8, /* Receive Current Buffer */
REG_RGMII_STA = 0x00D0, /* RGMII Status */
};
/* EMAC register flags */
enum {
BASIC_CTL0_100Mbps = (0b11 << 2),
BASIC_CTL0_FD = (1 << 0),
BASIC_CTL1_SOFTRST = (1 << 0),
};
enum {
INT_STA_RGMII_LINK = (1 << 16),
INT_STA_RX_EARLY = (1 << 13),
INT_STA_RX_OVERFLOW = (1 << 12),
INT_STA_RX_TIMEOUT = (1 << 11),
INT_STA_RX_DMA_STOP = (1 << 10),
INT_STA_RX_BUF_UA = (1 << 9),
INT_STA_RX = (1 << 8),
INT_STA_TX_EARLY = (1 << 5),
INT_STA_TX_UNDERFLOW = (1 << 4),
INT_STA_TX_TIMEOUT = (1 << 3),
INT_STA_TX_BUF_UA = (1 << 2),
INT_STA_TX_DMA_STOP = (1 << 1),
INT_STA_TX = (1 << 0),
};
enum {
INT_EN_RX_EARLY = (1 << 13),
INT_EN_RX_OVERFLOW = (1 << 12),
INT_EN_RX_TIMEOUT = (1 << 11),
INT_EN_RX_DMA_STOP = (1 << 10),
INT_EN_RX_BUF_UA = (1 << 9),
INT_EN_RX = (1 << 8),
INT_EN_TX_EARLY = (1 << 5),
INT_EN_TX_UNDERFLOW = (1 << 4),
INT_EN_TX_TIMEOUT = (1 << 3),
INT_EN_TX_BUF_UA = (1 << 2),
INT_EN_TX_DMA_STOP = (1 << 1),
INT_EN_TX = (1 << 0),
};
enum {
TX_CTL0_TX_EN = (1 << 31),
TX_CTL1_TX_DMA_START = (1 << 31),
TX_CTL1_TX_DMA_EN = (1 << 30),
TX_CTL1_TX_FLUSH = (1 << 0),
};
enum {
RX_CTL0_RX_EN = (1 << 31),
RX_CTL0_STRIP_FCS = (1 << 28),
RX_CTL0_CRC_IPV4 = (1 << 27),
};
enum {
RX_CTL1_RX_DMA_START = (1 << 31),
RX_CTL1_RX_DMA_EN = (1 << 30),
RX_CTL1_RX_MD = (1 << 1),
};
enum {
RX_FRM_FLT_DIS_ADDR = (1 << 31),
};
enum {
MII_CMD_PHY_ADDR_SHIFT = (12),
MII_CMD_PHY_ADDR_MASK = (0xf000),
MII_CMD_PHY_REG_SHIFT = (4),
MII_CMD_PHY_REG_MASK = (0xf0),
MII_CMD_PHY_RW = (1 << 1),
MII_CMD_PHY_BUSY = (1 << 0),
};
enum {
TX_DMA_STA_STOP = (0b000),
TX_DMA_STA_RUN_FETCH = (0b001),
TX_DMA_STA_WAIT_STA = (0b010),
};
enum {
RX_DMA_STA_STOP = (0b000),
RX_DMA_STA_RUN_FETCH = (0b001),
RX_DMA_STA_WAIT_FRM = (0b011),
};
/* EMAC register reset values */
enum {
REG_BASIC_CTL_1_RST = 0x08000000,
};
/* EMAC constants */
enum {
AW_SUN8I_EMAC_MIN_PKT_SZ = 64
};
/* Transmit/receive frame descriptor */
typedef struct FrameDescriptor {
uint32_t status;
uint32_t status2;
uint32_t addr;
uint32_t next;
} FrameDescriptor;
/* Frame descriptor flags */
enum {
DESC_STATUS_CTL = (1 << 31),
DESC_STATUS2_BUF_SIZE_MASK = (0x7ff),
};
/* Transmit frame descriptor flags */
enum {
TX_DESC_STATUS_LENGTH_ERR = (1 << 14),
TX_DESC_STATUS2_FIRST_DESC = (1 << 29),
TX_DESC_STATUS2_LAST_DESC = (1 << 30),
TX_DESC_STATUS2_CHECKSUM_MASK = (0x3 << 27),
};
/* Receive frame descriptor flags */
enum {
RX_DESC_STATUS_FIRST_DESC = (1 << 9),
RX_DESC_STATUS_LAST_DESC = (1 << 8),
RX_DESC_STATUS_FRM_LEN_MASK = (0x3fff0000),
RX_DESC_STATUS_FRM_LEN_SHIFT = (16),
RX_DESC_STATUS_NO_BUF = (1 << 14),
RX_DESC_STATUS_HEADER_ERR = (1 << 7),
RX_DESC_STATUS_LENGTH_ERR = (1 << 4),
RX_DESC_STATUS_CRC_ERR = (1 << 1),
RX_DESC_STATUS_PAYLOAD_ERR = (1 << 0),
RX_DESC_STATUS2_RX_INT_CTL = (1 << 31),
};
/* MII register offsets */
enum {
MII_REG_CR = (0x0), /* Control */
MII_REG_ST = (0x1), /* Status */
MII_REG_ID_HIGH = (0x2), /* Identifier High */
MII_REG_ID_LOW = (0x3), /* Identifier Low */
MII_REG_ADV = (0x4), /* Advertised abilities */
MII_REG_LPA = (0x5), /* Link partner abilities */
};
/* MII register flags */
enum {
MII_REG_CR_RESET = (1 << 15),
MII_REG_CR_POWERDOWN = (1 << 11),
MII_REG_CR_10Mbit = (0),
MII_REG_CR_100Mbit = (1 << 13),
MII_REG_CR_1000Mbit = (1 << 6),
MII_REG_CR_AUTO_NEG = (1 << 12),
MII_REG_CR_AUTO_NEG_RESTART = (1 << 9),
MII_REG_CR_FULLDUPLEX = (1 << 8),
};
enum {
MII_REG_ST_100BASE_T4 = (1 << 15),
MII_REG_ST_100BASE_X_FD = (1 << 14),
MII_REG_ST_100BASE_X_HD = (1 << 13),
MII_REG_ST_10_FD = (1 << 12),
MII_REG_ST_10_HD = (1 << 11),
MII_REG_ST_100BASE_T2_FD = (1 << 10),
MII_REG_ST_100BASE_T2_HD = (1 << 9),
MII_REG_ST_AUTONEG_COMPLETE = (1 << 5),
MII_REG_ST_AUTONEG_AVAIL = (1 << 3),
MII_REG_ST_LINK_UP = (1 << 2),
};
enum {
MII_REG_LPA_10_HD = (1 << 5),
MII_REG_LPA_10_FD = (1 << 6),
MII_REG_LPA_100_HD = (1 << 7),
MII_REG_LPA_100_FD = (1 << 8),
MII_REG_LPA_PAUSE = (1 << 10),
MII_REG_LPA_ASYMPAUSE = (1 << 11),
};
/* MII constants */
enum {
MII_PHY_ID_HIGH = 0x0044,
MII_PHY_ID_LOW = 0x1400,
};
static void allwinner_sun8i_emac_mii_set_link(AwSun8iEmacState *s,
bool link_active)
{
if (link_active) {
s->mii_st |= MII_REG_ST_LINK_UP;
} else {
s->mii_st &= ~MII_REG_ST_LINK_UP;
}
}
static void allwinner_sun8i_emac_mii_reset(AwSun8iEmacState *s,
bool link_active)
{
s->mii_cr = MII_REG_CR_100Mbit | MII_REG_CR_AUTO_NEG |
MII_REG_CR_FULLDUPLEX;
s->mii_st = MII_REG_ST_100BASE_T4 | MII_REG_ST_100BASE_X_FD |
MII_REG_ST_100BASE_X_HD | MII_REG_ST_10_FD | MII_REG_ST_10_HD |
MII_REG_ST_100BASE_T2_FD | MII_REG_ST_100BASE_T2_HD |
MII_REG_ST_AUTONEG_COMPLETE | MII_REG_ST_AUTONEG_AVAIL;
s->mii_adv = 0;
allwinner_sun8i_emac_mii_set_link(s, link_active);
}
static void allwinner_sun8i_emac_mii_cmd(AwSun8iEmacState *s)
{
uint8_t addr, reg;
addr = (s->mii_cmd & MII_CMD_PHY_ADDR_MASK) >> MII_CMD_PHY_ADDR_SHIFT;
reg = (s->mii_cmd & MII_CMD_PHY_REG_MASK) >> MII_CMD_PHY_REG_SHIFT;
if (addr != s->mii_phy_addr) {
return;
}
/* Read or write a PHY register? */
if (s->mii_cmd & MII_CMD_PHY_RW) {
trace_allwinner_sun8i_emac_mii_write_reg(reg, s->mii_data);
switch (reg) {
case MII_REG_CR:
if (s->mii_data & MII_REG_CR_RESET) {
allwinner_sun8i_emac_mii_reset(s, s->mii_st &
MII_REG_ST_LINK_UP);
} else {
s->mii_cr = s->mii_data & ~(MII_REG_CR_RESET |
MII_REG_CR_AUTO_NEG_RESTART);
}
break;
case MII_REG_ADV:
s->mii_adv = s->mii_data;
break;
case MII_REG_ID_HIGH:
case MII_REG_ID_LOW:
case MII_REG_LPA:
break;
default:
qemu_log_mask(LOG_UNIMP, "allwinner-h3-emac: write access to "
"unknown MII register 0x%x\n", reg);
break;
}
} else {
switch (reg) {
case MII_REG_CR:
s->mii_data = s->mii_cr;
break;
case MII_REG_ST:
s->mii_data = s->mii_st;
break;
case MII_REG_ID_HIGH:
s->mii_data = MII_PHY_ID_HIGH;
break;
case MII_REG_ID_LOW:
s->mii_data = MII_PHY_ID_LOW;
break;
case MII_REG_ADV:
s->mii_data = s->mii_adv;
break;
case MII_REG_LPA:
s->mii_data = MII_REG_LPA_10_HD | MII_REG_LPA_10_FD |
MII_REG_LPA_100_HD | MII_REG_LPA_100_FD |
MII_REG_LPA_PAUSE | MII_REG_LPA_ASYMPAUSE;
break;
default:
qemu_log_mask(LOG_UNIMP, "allwinner-h3-emac: read access to "
"unknown MII register 0x%x\n", reg);
s->mii_data = 0;
break;
}
trace_allwinner_sun8i_emac_mii_read_reg(reg, s->mii_data);
}
}
static void allwinner_sun8i_emac_update_irq(AwSun8iEmacState *s)
{
qemu_set_irq(s->irq, (s->int_sta & s->int_en) != 0);
}
static uint32_t allwinner_sun8i_emac_next_desc(FrameDescriptor *desc,
size_t min_size)
{
uint32_t paddr = desc->next;
cpu_physical_memory_read(paddr, desc, sizeof(*desc));
if ((desc->status & DESC_STATUS_CTL) &&
(desc->status2 & DESC_STATUS2_BUF_SIZE_MASK) >= min_size) {
return paddr;
} else {
return 0;
}
}
static uint32_t allwinner_sun8i_emac_get_desc(FrameDescriptor *desc,
uint32_t start_addr,
size_t min_size)
{
uint32_t desc_addr = start_addr;
/* Note that the list is a cycle. Last entry points back to the head. */
while (desc_addr != 0) {
cpu_physical_memory_read(desc_addr, desc, sizeof(*desc));
if ((desc->status & DESC_STATUS_CTL) &&
(desc->status2 & DESC_STATUS2_BUF_SIZE_MASK) >= min_size) {
return desc_addr;
} else if (desc->next == start_addr) {
break;
} else {
desc_addr = desc->next;
}
}
return 0;
}
static uint32_t allwinner_sun8i_emac_rx_desc(AwSun8iEmacState *s,
FrameDescriptor *desc,
size_t min_size)
{
return allwinner_sun8i_emac_get_desc(desc, s->rx_desc_curr, min_size);
}
static uint32_t allwinner_sun8i_emac_tx_desc(AwSun8iEmacState *s,
FrameDescriptor *desc,
size_t min_size)
{
return allwinner_sun8i_emac_get_desc(desc, s->tx_desc_head, min_size);
}
static void allwinner_sun8i_emac_flush_desc(FrameDescriptor *desc,
uint32_t phys_addr)
{
cpu_physical_memory_write(phys_addr, desc, sizeof(*desc));
}
static int allwinner_sun8i_emac_can_receive(NetClientState *nc)
{
AwSun8iEmacState *s = qemu_get_nic_opaque(nc);
FrameDescriptor desc;
return (s->rx_ctl0 & RX_CTL0_RX_EN) &&
(allwinner_sun8i_emac_rx_desc(s, &desc, 0) != 0);
}
static ssize_t allwinner_sun8i_emac_receive(NetClientState *nc,
const uint8_t *buf,
size_t size)
{
AwSun8iEmacState *s = qemu_get_nic_opaque(nc);
FrameDescriptor desc;
size_t bytes_left = size;
size_t desc_bytes = 0;
size_t pad_fcs_size = 4;
size_t padding = 0;
if (!(s->rx_ctl0 & RX_CTL0_RX_EN)) {
return -1;
}
s->rx_desc_curr = allwinner_sun8i_emac_rx_desc(s, &desc,
AW_SUN8I_EMAC_MIN_PKT_SZ);
if (!s->rx_desc_curr) {
s->int_sta |= INT_STA_RX_BUF_UA;
}
/* Keep filling RX descriptors until the whole frame is written */
while (s->rx_desc_curr && bytes_left > 0) {
desc.status &= ~DESC_STATUS_CTL;
desc.status &= ~RX_DESC_STATUS_FRM_LEN_MASK;
if (bytes_left == size) {
desc.status |= RX_DESC_STATUS_FIRST_DESC;
}
if ((desc.status2 & DESC_STATUS2_BUF_SIZE_MASK) <
(bytes_left + pad_fcs_size)) {
desc_bytes = desc.status2 & DESC_STATUS2_BUF_SIZE_MASK;
desc.status |= desc_bytes << RX_DESC_STATUS_FRM_LEN_SHIFT;
} else {
padding = pad_fcs_size;
if (bytes_left < AW_SUN8I_EMAC_MIN_PKT_SZ) {
padding += (AW_SUN8I_EMAC_MIN_PKT_SZ - bytes_left);
}
desc_bytes = (bytes_left);
desc.status |= RX_DESC_STATUS_LAST_DESC;
desc.status |= (bytes_left + padding)
<< RX_DESC_STATUS_FRM_LEN_SHIFT;
}
cpu_physical_memory_write(desc.addr, buf, desc_bytes);
allwinner_sun8i_emac_flush_desc(&desc, s->rx_desc_curr);
trace_allwinner_sun8i_emac_receive(s->rx_desc_curr, desc.addr,
desc_bytes);
/* Check if frame needs to raise the receive interrupt */
if (!(desc.status2 & RX_DESC_STATUS2_RX_INT_CTL)) {
s->int_sta |= INT_STA_RX;
}
/* Increment variables */
buf += desc_bytes;
bytes_left -= desc_bytes;
/* Move to the next descriptor */
s->rx_desc_curr = allwinner_sun8i_emac_next_desc(&desc, 64);
if (!s->rx_desc_curr) {
/* Not enough buffer space available */
s->int_sta |= INT_STA_RX_BUF_UA;
s->rx_desc_curr = s->rx_desc_head;
break;
}
}
/* Report receive DMA is finished */
s->rx_ctl1 &= ~RX_CTL1_RX_DMA_START;
allwinner_sun8i_emac_update_irq(s);
return size;
}
static void allwinner_sun8i_emac_transmit(AwSun8iEmacState *s)
{
NetClientState *nc = qemu_get_queue(s->nic);
FrameDescriptor desc;
size_t bytes = 0;
size_t packet_bytes = 0;
size_t transmitted = 0;
static uint8_t packet_buf[2048];
s->tx_desc_curr = allwinner_sun8i_emac_tx_desc(s, &desc, 0);
/* Read all transmit descriptors */
while (s->tx_desc_curr != 0) {
/* Read from physical memory into packet buffer */
bytes = desc.status2 & DESC_STATUS2_BUF_SIZE_MASK;
if (bytes + packet_bytes > sizeof(packet_buf)) {
desc.status |= TX_DESC_STATUS_LENGTH_ERR;
break;
}
cpu_physical_memory_read(desc.addr, packet_buf + packet_bytes, bytes);
packet_bytes += bytes;
desc.status &= ~DESC_STATUS_CTL;
allwinner_sun8i_emac_flush_desc(&desc, s->tx_desc_curr);
/* After the last descriptor, send the packet */
if (desc.status2 & TX_DESC_STATUS2_LAST_DESC) {
if (desc.status2 & TX_DESC_STATUS2_CHECKSUM_MASK) {
net_checksum_calculate(packet_buf, packet_bytes);
}
qemu_send_packet(nc, packet_buf, packet_bytes);
trace_allwinner_sun8i_emac_transmit(s->tx_desc_curr, desc.addr,
bytes);
packet_bytes = 0;
transmitted++;
}
s->tx_desc_curr = allwinner_sun8i_emac_next_desc(&desc, 0);
}
/* Raise transmit completed interrupt */
if (transmitted > 0) {
s->int_sta |= INT_STA_TX;
s->tx_ctl1 &= ~TX_CTL1_TX_DMA_START;
allwinner_sun8i_emac_update_irq(s);
}
}
static void allwinner_sun8i_emac_reset(DeviceState *dev)
{
AwSun8iEmacState *s = AW_SUN8I_EMAC(dev);
NetClientState *nc = qemu_get_queue(s->nic);
trace_allwinner_sun8i_emac_reset();
s->mii_cmd = 0;
s->mii_data = 0;
s->basic_ctl0 = 0;
s->basic_ctl1 = REG_BASIC_CTL_1_RST;
s->int_en = 0;
s->int_sta = 0;
s->frm_flt = 0;
s->rx_ctl0 = 0;
s->rx_ctl1 = RX_CTL1_RX_MD;
s->rx_desc_head = 0;
s->rx_desc_curr = 0;
s->tx_ctl0 = 0;
s->tx_ctl1 = 0;
s->tx_desc_head = 0;
s->tx_desc_curr = 0;
s->tx_flowctl = 0;
allwinner_sun8i_emac_mii_reset(s, !nc->link_down);
}
static uint64_t allwinner_sun8i_emac_read(void *opaque, hwaddr offset,
unsigned size)
{
AwSun8iEmacState *s = AW_SUN8I_EMAC(opaque);
uint64_t value = 0;
FrameDescriptor desc;
switch (offset) {
case REG_BASIC_CTL_0: /* Basic Control 0 */
value = s->basic_ctl0;
break;
case REG_BASIC_CTL_1: /* Basic Control 1 */
value = s->basic_ctl1;
break;
case REG_INT_STA: /* Interrupt Status */
value = s->int_sta;
break;
case REG_INT_EN: /* Interupt Enable */
value = s->int_en;
break;
case REG_TX_CTL_0: /* Transmit Control 0 */
value = s->tx_ctl0;
break;
case REG_TX_CTL_1: /* Transmit Control 1 */
value = s->tx_ctl1;
break;
case REG_TX_FLOW_CTL: /* Transmit Flow Control */
value = s->tx_flowctl;
break;
case REG_TX_DMA_DESC_LIST: /* Transmit Descriptor List Address */
value = s->tx_desc_head;
break;
case REG_RX_CTL_0: /* Receive Control 0 */
value = s->rx_ctl0;
break;
case REG_RX_CTL_1: /* Receive Control 1 */
value = s->rx_ctl1;
break;
case REG_RX_DMA_DESC_LIST: /* Receive Descriptor List Address */
value = s->rx_desc_head;
break;
case REG_FRM_FLT: /* Receive Frame Filter */
value = s->frm_flt;
break;
case REG_RX_HASH_0: /* Receive Hash Table 0 */
case REG_RX_HASH_1: /* Receive Hash Table 1 */
break;
case REG_MII_CMD: /* Management Interface Command */
value = s->mii_cmd;
break;
case REG_MII_DATA: /* Management Interface Data */
value = s->mii_data;
break;
case REG_ADDR_HIGH: /* MAC Address High */
value = *(((uint32_t *) (s->conf.macaddr.a)) + 1);
break;
case REG_ADDR_LOW: /* MAC Address Low */
value = *(uint32_t *) (s->conf.macaddr.a);
break;
case REG_TX_DMA_STA: /* Transmit DMA Status */
break;
case REG_TX_CUR_DESC: /* Transmit Current Descriptor */
value = s->tx_desc_curr;
break;
case REG_TX_CUR_BUF: /* Transmit Current Buffer */
if (s->tx_desc_curr != 0) {
cpu_physical_memory_read(s->tx_desc_curr, &desc, sizeof(desc));
value = desc.addr;
} else {
value = 0;
}
break;
case REG_RX_DMA_STA: /* Receive DMA Status */
break;
case REG_RX_CUR_DESC: /* Receive Current Descriptor */
value = s->rx_desc_curr;
break;
case REG_RX_CUR_BUF: /* Receive Current Buffer */
if (s->rx_desc_curr != 0) {
cpu_physical_memory_read(s->rx_desc_curr, &desc, sizeof(desc));
value = desc.addr;
} else {
value = 0;
}
break;
case REG_RGMII_STA: /* RGMII Status */
break;
default:
qemu_log_mask(LOG_UNIMP, "allwinner-h3-emac: read access to unknown "
"EMAC register 0x" TARGET_FMT_plx "\n",
offset);
}
trace_allwinner_sun8i_emac_read(offset, value);
return value;
}
static void allwinner_sun8i_emac_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
AwSun8iEmacState *s = AW_SUN8I_EMAC(opaque);
NetClientState *nc = qemu_get_queue(s->nic);
trace_allwinner_sun8i_emac_write(offset, value);
switch (offset) {
case REG_BASIC_CTL_0: /* Basic Control 0 */
s->basic_ctl0 = value;
break;
case REG_BASIC_CTL_1: /* Basic Control 1 */
if (value & BASIC_CTL1_SOFTRST) {
allwinner_sun8i_emac_reset(DEVICE(s));
value &= ~BASIC_CTL1_SOFTRST;
}
s->basic_ctl1 = value;
if (allwinner_sun8i_emac_can_receive(nc)) {
qemu_flush_queued_packets(nc);
}
break;
case REG_INT_STA: /* Interrupt Status */
s->int_sta &= ~value;
allwinner_sun8i_emac_update_irq(s);
break;
case REG_INT_EN: /* Interrupt Enable */
s->int_en = value;
allwinner_sun8i_emac_update_irq(s);
break;
case REG_TX_CTL_0: /* Transmit Control 0 */
s->tx_ctl0 = value;
break;
case REG_TX_CTL_1: /* Transmit Control 1 */
s->tx_ctl1 = value;
if (value & TX_CTL1_TX_DMA_EN) {
allwinner_sun8i_emac_transmit(s);
}
break;
case REG_TX_FLOW_CTL: /* Transmit Flow Control */
s->tx_flowctl = value;
break;
case REG_TX_DMA_DESC_LIST: /* Transmit Descriptor List Address */
s->tx_desc_head = value;
s->tx_desc_curr = value;
break;
case REG_RX_CTL_0: /* Receive Control 0 */
s->rx_ctl0 = value;
break;
case REG_RX_CTL_1: /* Receive Control 1 */
s->rx_ctl1 = value | RX_CTL1_RX_MD;
if ((value & RX_CTL1_RX_DMA_EN) &&
allwinner_sun8i_emac_can_receive(nc)) {
qemu_flush_queued_packets(nc);
}
break;
case REG_RX_DMA_DESC_LIST: /* Receive Descriptor List Address */
s->rx_desc_head = value;
s->rx_desc_curr = value;
break;
case REG_FRM_FLT: /* Receive Frame Filter */
s->frm_flt = value;
break;
case REG_RX_HASH_0: /* Receive Hash Table 0 */
case REG_RX_HASH_1: /* Receive Hash Table 1 */
break;
case REG_MII_CMD: /* Management Interface Command */
s->mii_cmd = value & ~MII_CMD_PHY_BUSY;
allwinner_sun8i_emac_mii_cmd(s);
break;
case REG_MII_DATA: /* Management Interface Data */
s->mii_data = value;
break;
case REG_ADDR_HIGH: /* MAC Address High */
s->conf.macaddr.a[4] = (value & 0xff);
s->conf.macaddr.a[5] = (value & 0xff00) >> 8;
break;
case REG_ADDR_LOW: /* MAC Address Low */
s->conf.macaddr.a[0] = (value & 0xff);
s->conf.macaddr.a[1] = (value & 0xff00) >> 8;
s->conf.macaddr.a[2] = (value & 0xff0000) >> 16;
s->conf.macaddr.a[3] = (value & 0xff000000) >> 24;
break;
case REG_TX_DMA_STA: /* Transmit DMA Status */
case REG_TX_CUR_DESC: /* Transmit Current Descriptor */
case REG_TX_CUR_BUF: /* Transmit Current Buffer */
case REG_RX_DMA_STA: /* Receive DMA Status */
case REG_RX_CUR_DESC: /* Receive Current Descriptor */
case REG_RX_CUR_BUF: /* Receive Current Buffer */
case REG_RGMII_STA: /* RGMII Status */
break;
default:
qemu_log_mask(LOG_UNIMP, "allwinner-h3-emac: write access to unknown "
"EMAC register 0x" TARGET_FMT_plx "\n",
offset);
}
}
static void allwinner_sun8i_emac_set_link(NetClientState *nc)
{
AwSun8iEmacState *s = qemu_get_nic_opaque(nc);
trace_allwinner_sun8i_emac_set_link(!nc->link_down);
allwinner_sun8i_emac_mii_set_link(s, !nc->link_down);
}
static const MemoryRegionOps allwinner_sun8i_emac_mem_ops = {
.read = allwinner_sun8i_emac_read,
.write = allwinner_sun8i_emac_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static NetClientInfo net_allwinner_sun8i_emac_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = allwinner_sun8i_emac_can_receive,
.receive = allwinner_sun8i_emac_receive,
.link_status_changed = allwinner_sun8i_emac_set_link,
};
static void allwinner_sun8i_emac_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwSun8iEmacState *s = AW_SUN8I_EMAC(obj);
memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_sun8i_emac_mem_ops,
s, TYPE_AW_SUN8I_EMAC, 64 * KiB);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
}
static void allwinner_sun8i_emac_realize(DeviceState *dev, Error **errp)
{
AwSun8iEmacState *s = AW_SUN8I_EMAC(dev);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_allwinner_sun8i_emac_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static Property allwinner_sun8i_emac_properties[] = {
DEFINE_NIC_PROPERTIES(AwSun8iEmacState, conf),
DEFINE_PROP_UINT8("phy-addr", AwSun8iEmacState, mii_phy_addr, 0),
DEFINE_PROP_END_OF_LIST(),
};
static int allwinner_sun8i_emac_post_load(void *opaque, int version_id)
{
AwSun8iEmacState *s = opaque;
allwinner_sun8i_emac_set_link(qemu_get_queue(s->nic));
return 0;
}
static const VMStateDescription vmstate_aw_emac = {
.name = "allwinner-sun8i-emac",
.version_id = 1,
.minimum_version_id = 1,
.post_load = allwinner_sun8i_emac_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(mii_phy_addr, AwSun8iEmacState),
VMSTATE_UINT32(mii_cmd, AwSun8iEmacState),
VMSTATE_UINT32(mii_data, AwSun8iEmacState),
VMSTATE_UINT32(mii_cr, AwSun8iEmacState),
VMSTATE_UINT32(mii_st, AwSun8iEmacState),
VMSTATE_UINT32(mii_adv, AwSun8iEmacState),
VMSTATE_UINT32(basic_ctl0, AwSun8iEmacState),
VMSTATE_UINT32(basic_ctl1, AwSun8iEmacState),
VMSTATE_UINT32(int_en, AwSun8iEmacState),
VMSTATE_UINT32(int_sta, AwSun8iEmacState),
VMSTATE_UINT32(frm_flt, AwSun8iEmacState),
VMSTATE_UINT32(rx_ctl0, AwSun8iEmacState),
VMSTATE_UINT32(rx_ctl1, AwSun8iEmacState),
VMSTATE_UINT32(rx_desc_head, AwSun8iEmacState),
VMSTATE_UINT32(rx_desc_curr, AwSun8iEmacState),
VMSTATE_UINT32(tx_ctl0, AwSun8iEmacState),
VMSTATE_UINT32(tx_ctl1, AwSun8iEmacState),
VMSTATE_UINT32(tx_desc_head, AwSun8iEmacState),
VMSTATE_UINT32(tx_desc_curr, AwSun8iEmacState),
VMSTATE_UINT32(tx_flowctl, AwSun8iEmacState),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_sun8i_emac_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = allwinner_sun8i_emac_realize;
dc->reset = allwinner_sun8i_emac_reset;
dc->vmsd = &vmstate_aw_emac;
device_class_set_props(dc, allwinner_sun8i_emac_properties);
}
static const TypeInfo allwinner_sun8i_emac_info = {
.name = TYPE_AW_SUN8I_EMAC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AwSun8iEmacState),
.instance_init = allwinner_sun8i_emac_init,
.class_init = allwinner_sun8i_emac_class_init,
};
static void allwinner_sun8i_emac_register_types(void)
{
type_register_static(&allwinner_sun8i_emac_info);
}
type_init(allwinner_sun8i_emac_register_types)

View file

@ -1,5 +1,15 @@
# See docs/devel/tracing.txt for syntax documentation.
# allwinner-sun8i-emac.c
allwinner_sun8i_emac_mii_write_reg(uint32_t reg, uint32_t value) "MII write: reg=0x%" PRIx32 " value=0x%" PRIx32
allwinner_sun8i_emac_mii_read_reg(uint32_t reg, uint32_t value) "MII read: reg=0x%" PRIx32 " value=0x%" PRIx32
allwinner_sun8i_emac_receive(uint32_t desc, uint32_t paddr, uint32_t bytes) "RX packet: desc=0x%" PRIx32 " paddr=0x%" PRIx32 " bytes=%" PRIu32
allwinner_sun8i_emac_transmit(uint32_t desc, uint32_t paddr, uint32_t bytes) "TX packet: desc=0x%" PRIx32 " paddr=0x%" PRIx32 " bytes=%" PRIu32
allwinner_sun8i_emac_reset(void) "HW reset"
allwinner_sun8i_emac_set_link(bool active) "Set link: active=%u"
allwinner_sun8i_emac_read(uint64_t offset, uint64_t val) "MMIO read: offset=0x%" PRIx64 " value=0x%" PRIx64
allwinner_sun8i_emac_write(uint64_t offset, uint64_t val) "MMIO write: offset=0x%" PRIx64 " value=0x%" PRIx64
# etraxfs_eth.c
mdio_phy_read(int regnum, uint16_t value) "read phy_reg:%d value:0x%04x"
mdio_phy_write(int regnum, uint16_t value) "write phy_reg:%d value:0x%04x"

View file

@ -12,3 +12,4 @@ obj-$(CONFIG_MC146818RTC) += mc146818rtc.o
common-obj-$(CONFIG_SUN4V_RTC) += sun4v-rtc.o
common-obj-$(CONFIG_ASPEED_SOC) += aspeed_rtc.o
common-obj-$(CONFIG_GOLDFISH_RTC) += goldfish_rtc.o
common-obj-$(CONFIG_ALLWINNER_H3) += allwinner-rtc.o

411
hw/rtc/allwinner-rtc.c Normal file
View file

@ -0,0 +1,411 @@
/*
* Allwinner Real Time Clock emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu-common.h"
#include "hw/qdev-properties.h"
#include "hw/rtc/allwinner-rtc.h"
#include "trace.h"
/* RTC registers */
enum {
REG_LOSC = 1, /* Low Oscillator Control */
REG_YYMMDD, /* RTC Year-Month-Day */
REG_HHMMSS, /* RTC Hour-Minute-Second */
REG_ALARM1_WKHHMMSS, /* Alarm1 Week Hour-Minute-Second */
REG_ALARM1_EN, /* Alarm1 Enable */
REG_ALARM1_IRQ_EN, /* Alarm1 IRQ Enable */
REG_ALARM1_IRQ_STA, /* Alarm1 IRQ Status */
REG_GP0, /* General Purpose Register 0 */
REG_GP1, /* General Purpose Register 1 */
REG_GP2, /* General Purpose Register 2 */
REG_GP3, /* General Purpose Register 3 */
/* sun4i registers */
REG_ALARM1_DDHHMMSS, /* Alarm1 Day Hour-Minute-Second */
REG_CPUCFG, /* CPU Configuration Register */
/* sun6i registers */
REG_LOSC_AUTOSTA, /* LOSC Auto Switch Status */
REG_INT_OSC_PRE, /* Internal OSC Clock Prescaler */
REG_ALARM0_COUNTER, /* Alarm0 Counter */
REG_ALARM0_CUR_VLU, /* Alarm0 Counter Current Value */
REG_ALARM0_ENABLE, /* Alarm0 Enable */
REG_ALARM0_IRQ_EN, /* Alarm0 IRQ Enable */
REG_ALARM0_IRQ_STA, /* Alarm0 IRQ Status */
REG_ALARM_CONFIG, /* Alarm Config */
REG_LOSC_OUT_GATING, /* LOSC Output Gating Register */
REG_GP4, /* General Purpose Register 4 */
REG_GP5, /* General Purpose Register 5 */
REG_GP6, /* General Purpose Register 6 */
REG_GP7, /* General Purpose Register 7 */
REG_RTC_DBG, /* RTC Debug Register */
REG_GPL_HOLD_OUT, /* GPL Hold Output Register */
REG_VDD_RTC, /* VDD RTC Regulate Register */
REG_IC_CHARA, /* IC Characteristics Register */
};
/* RTC register flags */
enum {
REG_LOSC_YMD = (1 << 7),
REG_LOSC_HMS = (1 << 8),
};
/* RTC sun4i register map (offset to name) */
const uint8_t allwinner_rtc_sun4i_regmap[] = {
[0x0000] = REG_LOSC,
[0x0004] = REG_YYMMDD,
[0x0008] = REG_HHMMSS,
[0x000C] = REG_ALARM1_DDHHMMSS,
[0x0010] = REG_ALARM1_WKHHMMSS,
[0x0014] = REG_ALARM1_EN,
[0x0018] = REG_ALARM1_IRQ_EN,
[0x001C] = REG_ALARM1_IRQ_STA,
[0x0020] = REG_GP0,
[0x0024] = REG_GP1,
[0x0028] = REG_GP2,
[0x002C] = REG_GP3,
[0x003C] = REG_CPUCFG,
};
/* RTC sun6i register map (offset to name) */
const uint8_t allwinner_rtc_sun6i_regmap[] = {
[0x0000] = REG_LOSC,
[0x0004] = REG_LOSC_AUTOSTA,
[0x0008] = REG_INT_OSC_PRE,
[0x0010] = REG_YYMMDD,
[0x0014] = REG_HHMMSS,
[0x0020] = REG_ALARM0_COUNTER,
[0x0024] = REG_ALARM0_CUR_VLU,
[0x0028] = REG_ALARM0_ENABLE,
[0x002C] = REG_ALARM0_IRQ_EN,
[0x0030] = REG_ALARM0_IRQ_STA,
[0x0040] = REG_ALARM1_WKHHMMSS,
[0x0044] = REG_ALARM1_EN,
[0x0048] = REG_ALARM1_IRQ_EN,
[0x004C] = REG_ALARM1_IRQ_STA,
[0x0050] = REG_ALARM_CONFIG,
[0x0060] = REG_LOSC_OUT_GATING,
[0x0100] = REG_GP0,
[0x0104] = REG_GP1,
[0x0108] = REG_GP2,
[0x010C] = REG_GP3,
[0x0110] = REG_GP4,
[0x0114] = REG_GP5,
[0x0118] = REG_GP6,
[0x011C] = REG_GP7,
[0x0170] = REG_RTC_DBG,
[0x0180] = REG_GPL_HOLD_OUT,
[0x0190] = REG_VDD_RTC,
[0x01F0] = REG_IC_CHARA,
};
static bool allwinner_rtc_sun4i_read(AwRtcState *s, uint32_t offset)
{
/* no sun4i specific registers currently implemented */
return false;
}
static bool allwinner_rtc_sun4i_write(AwRtcState *s, uint32_t offset,
uint32_t data)
{
/* no sun4i specific registers currently implemented */
return false;
}
static bool allwinner_rtc_sun6i_read(AwRtcState *s, uint32_t offset)
{
const AwRtcClass *c = AW_RTC_GET_CLASS(s);
switch (c->regmap[offset]) {
case REG_GP4: /* General Purpose Register 4 */
case REG_GP5: /* General Purpose Register 5 */
case REG_GP6: /* General Purpose Register 6 */
case REG_GP7: /* General Purpose Register 7 */
return true;
default:
break;
}
return false;
}
static bool allwinner_rtc_sun6i_write(AwRtcState *s, uint32_t offset,
uint32_t data)
{
const AwRtcClass *c = AW_RTC_GET_CLASS(s);
switch (c->regmap[offset]) {
case REG_GP4: /* General Purpose Register 4 */
case REG_GP5: /* General Purpose Register 5 */
case REG_GP6: /* General Purpose Register 6 */
case REG_GP7: /* General Purpose Register 7 */
return true;
default:
break;
}
return false;
}
static uint64_t allwinner_rtc_read(void *opaque, hwaddr offset,
unsigned size)
{
AwRtcState *s = AW_RTC(opaque);
const AwRtcClass *c = AW_RTC_GET_CLASS(s);
uint64_t val = 0;
if (offset >= c->regmap_size) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
if (!c->regmap[offset]) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid register 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
switch (c->regmap[offset]) {
case REG_LOSC: /* Low Oscillator Control */
val = s->regs[REG_LOSC];
s->regs[REG_LOSC] &= ~(REG_LOSC_YMD | REG_LOSC_HMS);
break;
case REG_YYMMDD: /* RTC Year-Month-Day */
case REG_HHMMSS: /* RTC Hour-Minute-Second */
case REG_GP0: /* General Purpose Register 0 */
case REG_GP1: /* General Purpose Register 1 */
case REG_GP2: /* General Purpose Register 2 */
case REG_GP3: /* General Purpose Register 3 */
val = s->regs[c->regmap[offset]];
break;
default:
if (!c->read(s, offset)) {
qemu_log_mask(LOG_UNIMP, "%s: unimplemented register 0x%04x\n",
__func__, (uint32_t)offset);
}
val = s->regs[c->regmap[offset]];
break;
}
trace_allwinner_rtc_read(offset, val);
return val;
}
static void allwinner_rtc_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwRtcState *s = AW_RTC(opaque);
const AwRtcClass *c = AW_RTC_GET_CLASS(s);
if (offset >= c->regmap_size) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
if (!c->regmap[offset]) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid register 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
trace_allwinner_rtc_write(offset, val);
switch (c->regmap[offset]) {
case REG_YYMMDD: /* RTC Year-Month-Day */
s->regs[REG_YYMMDD] = val;
s->regs[REG_LOSC] |= REG_LOSC_YMD;
break;
case REG_HHMMSS: /* RTC Hour-Minute-Second */
s->regs[REG_HHMMSS] = val;
s->regs[REG_LOSC] |= REG_LOSC_HMS;
break;
case REG_GP0: /* General Purpose Register 0 */
case REG_GP1: /* General Purpose Register 1 */
case REG_GP2: /* General Purpose Register 2 */
case REG_GP3: /* General Purpose Register 3 */
s->regs[c->regmap[offset]] = val;
break;
default:
if (!c->write(s, offset, val)) {
qemu_log_mask(LOG_UNIMP, "%s: unimplemented register 0x%04x\n",
__func__, (uint32_t)offset);
}
break;
}
}
static const MemoryRegionOps allwinner_rtc_ops = {
.read = allwinner_rtc_read,
.write = allwinner_rtc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static void allwinner_rtc_reset(DeviceState *dev)
{
AwRtcState *s = AW_RTC(dev);
struct tm now;
/* Clear registers */
memset(s->regs, 0, sizeof(s->regs));
/* Get current datetime */
qemu_get_timedate(&now, 0);
/* Set RTC with current datetime */
if (s->base_year > 1900) {
s->regs[REG_YYMMDD] = ((now.tm_year + 1900 - s->base_year) << 16) |
((now.tm_mon + 1) << 8) |
now.tm_mday;
s->regs[REG_HHMMSS] = (((now.tm_wday + 6) % 7) << 29) |
(now.tm_hour << 16) |
(now.tm_min << 8) |
now.tm_sec;
}
}
static void allwinner_rtc_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwRtcState *s = AW_RTC(obj);
/* Memory mapping */
memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_rtc_ops, s,
TYPE_AW_RTC, 1 * KiB);
sysbus_init_mmio(sbd, &s->iomem);
}
static const VMStateDescription allwinner_rtc_vmstate = {
.name = "allwinner-rtc",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AwRtcState, AW_RTC_REGS_NUM),
VMSTATE_END_OF_LIST()
}
};
static Property allwinner_rtc_properties[] = {
DEFINE_PROP_INT32("base-year", AwRtcState, base_year, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void allwinner_rtc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_rtc_reset;
dc->vmsd = &allwinner_rtc_vmstate;
device_class_set_props(dc, allwinner_rtc_properties);
}
static void allwinner_rtc_sun4i_init(Object *obj)
{
AwRtcState *s = AW_RTC(obj);
s->base_year = 2010;
}
static void allwinner_rtc_sun4i_class_init(ObjectClass *klass, void *data)
{
AwRtcClass *arc = AW_RTC_CLASS(klass);
arc->regmap = allwinner_rtc_sun4i_regmap;
arc->regmap_size = sizeof(allwinner_rtc_sun4i_regmap);
arc->read = allwinner_rtc_sun4i_read;
arc->write = allwinner_rtc_sun4i_write;
}
static void allwinner_rtc_sun6i_init(Object *obj)
{
AwRtcState *s = AW_RTC(obj);
s->base_year = 1970;
}
static void allwinner_rtc_sun6i_class_init(ObjectClass *klass, void *data)
{
AwRtcClass *arc = AW_RTC_CLASS(klass);
arc->regmap = allwinner_rtc_sun6i_regmap;
arc->regmap_size = sizeof(allwinner_rtc_sun6i_regmap);
arc->read = allwinner_rtc_sun6i_read;
arc->write = allwinner_rtc_sun6i_write;
}
static void allwinner_rtc_sun7i_init(Object *obj)
{
AwRtcState *s = AW_RTC(obj);
s->base_year = 1970;
}
static void allwinner_rtc_sun7i_class_init(ObjectClass *klass, void *data)
{
AwRtcClass *arc = AW_RTC_CLASS(klass);
allwinner_rtc_sun4i_class_init(klass, arc);
}
static const TypeInfo allwinner_rtc_info = {
.name = TYPE_AW_RTC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_rtc_init,
.instance_size = sizeof(AwRtcState),
.class_init = allwinner_rtc_class_init,
.class_size = sizeof(AwRtcClass),
.abstract = true,
};
static const TypeInfo allwinner_rtc_sun4i_info = {
.name = TYPE_AW_RTC_SUN4I,
.parent = TYPE_AW_RTC,
.class_init = allwinner_rtc_sun4i_class_init,
.instance_init = allwinner_rtc_sun4i_init,
};
static const TypeInfo allwinner_rtc_sun6i_info = {
.name = TYPE_AW_RTC_SUN6I,
.parent = TYPE_AW_RTC,
.class_init = allwinner_rtc_sun6i_class_init,
.instance_init = allwinner_rtc_sun6i_init,
};
static const TypeInfo allwinner_rtc_sun7i_info = {
.name = TYPE_AW_RTC_SUN7I,
.parent = TYPE_AW_RTC,
.class_init = allwinner_rtc_sun7i_class_init,
.instance_init = allwinner_rtc_sun7i_init,
};
static void allwinner_rtc_register(void)
{
type_register_static(&allwinner_rtc_info);
type_register_static(&allwinner_rtc_sun4i_info);
type_register_static(&allwinner_rtc_sun6i_info);
type_register_static(&allwinner_rtc_sun7i_info);
}
type_init(allwinner_rtc_register)

View file

@ -1,5 +1,9 @@
# See docs/devel/tracing.txt for syntax documentation.
# allwinner-rtc.c
allwinner_rtc_read(uint64_t addr, uint64_t value) "addr 0x%" PRIx64 " value 0x%" PRIx64
allwinner_rtc_write(uint64_t addr, uint64_t value) "addr 0x%" PRIx64 " value 0x%" PRIx64
# sun4v-rtc.c
sun4v_rtc_read(uint64_t addr, uint64_t value) "read: addr 0x%" PRIx64 " value 0x%" PRIx64
sun4v_rtc_write(uint64_t addr, uint64_t value) "write: addr 0x%" PRIx64 " value 0x%" PRIx64

View file

@ -4,6 +4,7 @@ common-obj-$(CONFIG_SD) += sd.o core.o sdmmc-internal.o
common-obj-$(CONFIG_SDHCI) += sdhci.o
common-obj-$(CONFIG_SDHCI_PCI) += sdhci-pci.o
common-obj-$(CONFIG_ALLWINNER_H3) += allwinner-sdhost.o
common-obj-$(CONFIG_MILKYMIST) += milkymist-memcard.o
common-obj-$(CONFIG_OMAP) += omap_mmc.o
common-obj-$(CONFIG_PXA2XX) += pxa2xx_mmci.o

854
hw/sd/allwinner-sdhost.c Normal file
View file

@ -0,0 +1,854 @@
/*
* Allwinner (sun4i and above) SD Host Controller emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/units.h"
#include "sysemu/blockdev.h"
#include "hw/irq.h"
#include "hw/sd/allwinner-sdhost.h"
#include "migration/vmstate.h"
#include "trace.h"
#define TYPE_AW_SDHOST_BUS "allwinner-sdhost-bus"
#define AW_SDHOST_BUS(obj) \
OBJECT_CHECK(SDBus, (obj), TYPE_AW_SDHOST_BUS)
/* SD Host register offsets */
enum {
REG_SD_GCTL = 0x00, /* Global Control */
REG_SD_CKCR = 0x04, /* Clock Control */
REG_SD_TMOR = 0x08, /* Timeout */
REG_SD_BWDR = 0x0C, /* Bus Width */
REG_SD_BKSR = 0x10, /* Block Size */
REG_SD_BYCR = 0x14, /* Byte Count */
REG_SD_CMDR = 0x18, /* Command */
REG_SD_CAGR = 0x1C, /* Command Argument */
REG_SD_RESP0 = 0x20, /* Response Zero */
REG_SD_RESP1 = 0x24, /* Response One */
REG_SD_RESP2 = 0x28, /* Response Two */
REG_SD_RESP3 = 0x2C, /* Response Three */
REG_SD_IMKR = 0x30, /* Interrupt Mask */
REG_SD_MISR = 0x34, /* Masked Interrupt Status */
REG_SD_RISR = 0x38, /* Raw Interrupt Status */
REG_SD_STAR = 0x3C, /* Status */
REG_SD_FWLR = 0x40, /* FIFO Water Level */
REG_SD_FUNS = 0x44, /* FIFO Function Select */
REG_SD_DBGC = 0x50, /* Debug Enable */
REG_SD_A12A = 0x58, /* Auto command 12 argument */
REG_SD_NTSR = 0x5C, /* SD NewTiming Set */
REG_SD_SDBG = 0x60, /* SD newTiming Set Debug */
REG_SD_HWRST = 0x78, /* Hardware Reset Register */
REG_SD_DMAC = 0x80, /* Internal DMA Controller Control */
REG_SD_DLBA = 0x84, /* Descriptor List Base Address */
REG_SD_IDST = 0x88, /* Internal DMA Controller Status */
REG_SD_IDIE = 0x8C, /* Internal DMA Controller IRQ Enable */
REG_SD_THLDC = 0x100, /* Card Threshold Control */
REG_SD_DSBD = 0x10C, /* eMMC DDR Start Bit Detection Control */
REG_SD_RES_CRC = 0x110, /* Response CRC from card/eMMC */
REG_SD_DATA7_CRC = 0x114, /* CRC Data 7 from card/eMMC */
REG_SD_DATA6_CRC = 0x118, /* CRC Data 6 from card/eMMC */
REG_SD_DATA5_CRC = 0x11C, /* CRC Data 5 from card/eMMC */
REG_SD_DATA4_CRC = 0x120, /* CRC Data 4 from card/eMMC */
REG_SD_DATA3_CRC = 0x124, /* CRC Data 3 from card/eMMC */
REG_SD_DATA2_CRC = 0x128, /* CRC Data 2 from card/eMMC */
REG_SD_DATA1_CRC = 0x12C, /* CRC Data 1 from card/eMMC */
REG_SD_DATA0_CRC = 0x130, /* CRC Data 0 from card/eMMC */
REG_SD_CRC_STA = 0x134, /* CRC status from card/eMMC during write */
REG_SD_FIFO = 0x200, /* Read/Write FIFO */
};
/* SD Host register flags */
enum {
SD_GCTL_FIFO_AC_MOD = (1 << 31),
SD_GCTL_DDR_MOD_SEL = (1 << 10),
SD_GCTL_CD_DBC_ENB = (1 << 8),
SD_GCTL_DMA_ENB = (1 << 5),
SD_GCTL_INT_ENB = (1 << 4),
SD_GCTL_DMA_RST = (1 << 2),
SD_GCTL_FIFO_RST = (1 << 1),
SD_GCTL_SOFT_RST = (1 << 0),
};
enum {
SD_CMDR_LOAD = (1 << 31),
SD_CMDR_CLKCHANGE = (1 << 21),
SD_CMDR_WRITE = (1 << 10),
SD_CMDR_AUTOSTOP = (1 << 12),
SD_CMDR_DATA = (1 << 9),
SD_CMDR_RESPONSE_LONG = (1 << 7),
SD_CMDR_RESPONSE = (1 << 6),
SD_CMDR_CMDID_MASK = (0x3f),
};
enum {
SD_RISR_CARD_REMOVE = (1 << 31),
SD_RISR_CARD_INSERT = (1 << 30),
SD_RISR_SDIO_INTR = (1 << 16),
SD_RISR_AUTOCMD_DONE = (1 << 14),
SD_RISR_DATA_COMPLETE = (1 << 3),
SD_RISR_CMD_COMPLETE = (1 << 2),
SD_RISR_NO_RESPONSE = (1 << 1),
};
enum {
SD_STAR_CARD_PRESENT = (1 << 8),
};
enum {
SD_IDST_INT_SUMMARY = (1 << 8),
SD_IDST_RECEIVE_IRQ = (1 << 1),
SD_IDST_TRANSMIT_IRQ = (1 << 0),
SD_IDST_IRQ_MASK = (1 << 1) | (1 << 0) | (1 << 8),
SD_IDST_WR_MASK = (0x3ff),
};
/* SD Host register reset values */
enum {
REG_SD_GCTL_RST = 0x00000300,
REG_SD_CKCR_RST = 0x0,
REG_SD_TMOR_RST = 0xFFFFFF40,
REG_SD_BWDR_RST = 0x0,
REG_SD_BKSR_RST = 0x00000200,
REG_SD_BYCR_RST = 0x00000200,
REG_SD_CMDR_RST = 0x0,
REG_SD_CAGR_RST = 0x0,
REG_SD_RESP_RST = 0x0,
REG_SD_IMKR_RST = 0x0,
REG_SD_MISR_RST = 0x0,
REG_SD_RISR_RST = 0x0,
REG_SD_STAR_RST = 0x00000100,
REG_SD_FWLR_RST = 0x000F0000,
REG_SD_FUNS_RST = 0x0,
REG_SD_DBGC_RST = 0x0,
REG_SD_A12A_RST = 0x0000FFFF,
REG_SD_NTSR_RST = 0x00000001,
REG_SD_SDBG_RST = 0x0,
REG_SD_HWRST_RST = 0x00000001,
REG_SD_DMAC_RST = 0x0,
REG_SD_DLBA_RST = 0x0,
REG_SD_IDST_RST = 0x0,
REG_SD_IDIE_RST = 0x0,
REG_SD_THLDC_RST = 0x0,
REG_SD_DSBD_RST = 0x0,
REG_SD_RES_CRC_RST = 0x0,
REG_SD_DATA_CRC_RST = 0x0,
REG_SD_CRC_STA_RST = 0x0,
REG_SD_FIFO_RST = 0x0,
};
/* Data transfer descriptor for DMA */
typedef struct TransferDescriptor {
uint32_t status; /* Status flags */
uint32_t size; /* Data buffer size */
uint32_t addr; /* Data buffer address */
uint32_t next; /* Physical address of next descriptor */
} TransferDescriptor;
/* Data transfer descriptor flags */
enum {
DESC_STATUS_HOLD = (1 << 31), /* Set when descriptor is in use by DMA */
DESC_STATUS_ERROR = (1 << 30), /* Set when DMA transfer error occurred */
DESC_STATUS_CHAIN = (1 << 4), /* Indicates chained descriptor. */
DESC_STATUS_FIRST = (1 << 3), /* Set on the first descriptor */
DESC_STATUS_LAST = (1 << 2), /* Set on the last descriptor */
DESC_STATUS_NOIRQ = (1 << 1), /* Skip raising interrupt after transfer */
DESC_SIZE_MASK = (0xfffffffc)
};
static void allwinner_sdhost_update_irq(AwSdHostState *s)
{
uint32_t irq;
if (s->global_ctl & SD_GCTL_INT_ENB) {
irq = s->irq_status & s->irq_mask;
} else {
irq = 0;
}
trace_allwinner_sdhost_update_irq(irq);
qemu_set_irq(s->irq, irq);
}
static void allwinner_sdhost_update_transfer_cnt(AwSdHostState *s,
uint32_t bytes)
{
if (s->transfer_cnt > bytes) {
s->transfer_cnt -= bytes;
} else {
s->transfer_cnt = 0;
}
if (!s->transfer_cnt) {
s->irq_status |= SD_RISR_DATA_COMPLETE;
}
}
static void allwinner_sdhost_set_inserted(DeviceState *dev, bool inserted)
{
AwSdHostState *s = AW_SDHOST(dev);
trace_allwinner_sdhost_set_inserted(inserted);
if (inserted) {
s->irq_status |= SD_RISR_CARD_INSERT;
s->irq_status &= ~SD_RISR_CARD_REMOVE;
s->status |= SD_STAR_CARD_PRESENT;
} else {
s->irq_status &= ~SD_RISR_CARD_INSERT;
s->irq_status |= SD_RISR_CARD_REMOVE;
s->status &= ~SD_STAR_CARD_PRESENT;
}
allwinner_sdhost_update_irq(s);
}
static void allwinner_sdhost_send_command(AwSdHostState *s)
{
SDRequest request;
uint8_t resp[16];
int rlen;
/* Auto clear load flag */
s->command &= ~SD_CMDR_LOAD;
/* Clock change does not actually interact with the SD bus */
if (!(s->command & SD_CMDR_CLKCHANGE)) {
/* Prepare request */
request.cmd = s->command & SD_CMDR_CMDID_MASK;
request.arg = s->command_arg;
/* Send request to SD bus */
rlen = sdbus_do_command(&s->sdbus, &request, resp);
if (rlen < 0) {
goto error;
}
/* If the command has a response, store it in the response registers */
if ((s->command & SD_CMDR_RESPONSE)) {
if (rlen == 4 && !(s->command & SD_CMDR_RESPONSE_LONG)) {
s->response[0] = ldl_be_p(&resp[0]);
s->response[1] = s->response[2] = s->response[3] = 0;
} else if (rlen == 16 && (s->command & SD_CMDR_RESPONSE_LONG)) {
s->response[0] = ldl_be_p(&resp[12]);
s->response[1] = ldl_be_p(&resp[8]);
s->response[2] = ldl_be_p(&resp[4]);
s->response[3] = ldl_be_p(&resp[0]);
} else {
goto error;
}
}
}
/* Set interrupt status bits */
s->irq_status |= SD_RISR_CMD_COMPLETE;
return;
error:
s->irq_status |= SD_RISR_NO_RESPONSE;
}
static void allwinner_sdhost_auto_stop(AwSdHostState *s)
{
/*
* The stop command (CMD12) ensures the SD bus
* returns to the transfer state.
*/
if ((s->command & SD_CMDR_AUTOSTOP) && (s->transfer_cnt == 0)) {
/* First save current command registers */
uint32_t saved_cmd = s->command;
uint32_t saved_arg = s->command_arg;
/* Prepare stop command (CMD12) */
s->command &= ~SD_CMDR_CMDID_MASK;
s->command |= 12; /* CMD12 */
s->command_arg = 0;
/* Put the command on SD bus */
allwinner_sdhost_send_command(s);
/* Restore command values */
s->command = saved_cmd;
s->command_arg = saved_arg;
/* Set IRQ status bit for automatic stop done */
s->irq_status |= SD_RISR_AUTOCMD_DONE;
}
}
static uint32_t allwinner_sdhost_process_desc(AwSdHostState *s,
hwaddr desc_addr,
TransferDescriptor *desc,
bool is_write, uint32_t max_bytes)
{
AwSdHostClass *klass = AW_SDHOST_GET_CLASS(s);
uint32_t num_done = 0;
uint32_t num_bytes = max_bytes;
uint8_t buf[1024];
/* Read descriptor */
cpu_physical_memory_read(desc_addr, desc, sizeof(*desc));
if (desc->size == 0) {
desc->size = klass->max_desc_size;
} else if (desc->size > klass->max_desc_size) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA descriptor buffer size "
" is out-of-bounds: %" PRIu32 " > %zu",
__func__, desc->size, klass->max_desc_size);
desc->size = klass->max_desc_size;
}
if (desc->size < num_bytes) {
num_bytes = desc->size;
}
trace_allwinner_sdhost_process_desc(desc_addr, desc->size,
is_write, max_bytes);
while (num_done < num_bytes) {
/* Try to completely fill the local buffer */
uint32_t buf_bytes = num_bytes - num_done;
if (buf_bytes > sizeof(buf)) {
buf_bytes = sizeof(buf);
}
/* Write to SD bus */
if (is_write) {
cpu_physical_memory_read((desc->addr & DESC_SIZE_MASK) + num_done,
buf, buf_bytes);
for (uint32_t i = 0; i < buf_bytes; i++) {
sdbus_write_data(&s->sdbus, buf[i]);
}
/* Read from SD bus */
} else {
for (uint32_t i = 0; i < buf_bytes; i++) {
buf[i] = sdbus_read_data(&s->sdbus);
}
cpu_physical_memory_write((desc->addr & DESC_SIZE_MASK) + num_done,
buf, buf_bytes);
}
num_done += buf_bytes;
}
/* Clear hold flag and flush descriptor */
desc->status &= ~DESC_STATUS_HOLD;
cpu_physical_memory_write(desc_addr, desc, sizeof(*desc));
return num_done;
}
static void allwinner_sdhost_dma(AwSdHostState *s)
{
TransferDescriptor desc;
hwaddr desc_addr = s->desc_base;
bool is_write = (s->command & SD_CMDR_WRITE);
uint32_t bytes_done = 0;
/* Check if DMA can be performed */
if (s->byte_count == 0 || s->block_size == 0 ||
!(s->global_ctl & SD_GCTL_DMA_ENB)) {
return;
}
/*
* For read operations, data must be available on the SD bus
* If not, it is an error and we should not act at all
*/
if (!is_write && !sdbus_data_ready(&s->sdbus)) {
return;
}
/* Process the DMA descriptors until all data is copied */
while (s->byte_count > 0) {
bytes_done = allwinner_sdhost_process_desc(s, desc_addr, &desc,
is_write, s->byte_count);
allwinner_sdhost_update_transfer_cnt(s, bytes_done);
if (bytes_done <= s->byte_count) {
s->byte_count -= bytes_done;
} else {
s->byte_count = 0;
}
if (desc.status & DESC_STATUS_LAST) {
break;
} else {
desc_addr = desc.next;
}
}
/* Raise IRQ to signal DMA is completed */
s->irq_status |= SD_RISR_DATA_COMPLETE | SD_RISR_SDIO_INTR;
/* Update DMAC bits */
s->dmac_status |= SD_IDST_INT_SUMMARY;
if (is_write) {
s->dmac_status |= SD_IDST_TRANSMIT_IRQ;
} else {
s->dmac_status |= SD_IDST_RECEIVE_IRQ;
}
}
static uint64_t allwinner_sdhost_read(void *opaque, hwaddr offset,
unsigned size)
{
AwSdHostState *s = AW_SDHOST(opaque);
uint32_t res = 0;
switch (offset) {
case REG_SD_GCTL: /* Global Control */
res = s->global_ctl;
break;
case REG_SD_CKCR: /* Clock Control */
res = s->clock_ctl;
break;
case REG_SD_TMOR: /* Timeout */
res = s->timeout;
break;
case REG_SD_BWDR: /* Bus Width */
res = s->bus_width;
break;
case REG_SD_BKSR: /* Block Size */
res = s->block_size;
break;
case REG_SD_BYCR: /* Byte Count */
res = s->byte_count;
break;
case REG_SD_CMDR: /* Command */
res = s->command;
break;
case REG_SD_CAGR: /* Command Argument */
res = s->command_arg;
break;
case REG_SD_RESP0: /* Response Zero */
res = s->response[0];
break;
case REG_SD_RESP1: /* Response One */
res = s->response[1];
break;
case REG_SD_RESP2: /* Response Two */
res = s->response[2];
break;
case REG_SD_RESP3: /* Response Three */
res = s->response[3];
break;
case REG_SD_IMKR: /* Interrupt Mask */
res = s->irq_mask;
break;
case REG_SD_MISR: /* Masked Interrupt Status */
res = s->irq_status & s->irq_mask;
break;
case REG_SD_RISR: /* Raw Interrupt Status */
res = s->irq_status;
break;
case REG_SD_STAR: /* Status */
res = s->status;
break;
case REG_SD_FWLR: /* FIFO Water Level */
res = s->fifo_wlevel;
break;
case REG_SD_FUNS: /* FIFO Function Select */
res = s->fifo_func_sel;
break;
case REG_SD_DBGC: /* Debug Enable */
res = s->debug_enable;
break;
case REG_SD_A12A: /* Auto command 12 argument */
res = s->auto12_arg;
break;
case REG_SD_NTSR: /* SD NewTiming Set */
res = s->newtiming_set;
break;
case REG_SD_SDBG: /* SD newTiming Set Debug */
res = s->newtiming_debug;
break;
case REG_SD_HWRST: /* Hardware Reset Register */
res = s->hardware_rst;
break;
case REG_SD_DMAC: /* Internal DMA Controller Control */
res = s->dmac;
break;
case REG_SD_DLBA: /* Descriptor List Base Address */
res = s->desc_base;
break;
case REG_SD_IDST: /* Internal DMA Controller Status */
res = s->dmac_status;
break;
case REG_SD_IDIE: /* Internal DMA Controller Interrupt Enable */
res = s->dmac_irq;
break;
case REG_SD_THLDC: /* Card Threshold Control */
res = s->card_threshold;
break;
case REG_SD_DSBD: /* eMMC DDR Start Bit Detection Control */
res = s->startbit_detect;
break;
case REG_SD_RES_CRC: /* Response CRC from card/eMMC */
res = s->response_crc;
break;
case REG_SD_DATA7_CRC: /* CRC Data 7 from card/eMMC */
case REG_SD_DATA6_CRC: /* CRC Data 6 from card/eMMC */
case REG_SD_DATA5_CRC: /* CRC Data 5 from card/eMMC */
case REG_SD_DATA4_CRC: /* CRC Data 4 from card/eMMC */
case REG_SD_DATA3_CRC: /* CRC Data 3 from card/eMMC */
case REG_SD_DATA2_CRC: /* CRC Data 2 from card/eMMC */
case REG_SD_DATA1_CRC: /* CRC Data 1 from card/eMMC */
case REG_SD_DATA0_CRC: /* CRC Data 0 from card/eMMC */
res = s->data_crc[((offset - REG_SD_DATA7_CRC) / sizeof(uint32_t))];
break;
case REG_SD_CRC_STA: /* CRC status from card/eMMC in write operation */
res = s->status_crc;
break;
case REG_SD_FIFO: /* Read/Write FIFO */
if (sdbus_data_ready(&s->sdbus)) {
res = sdbus_read_data(&s->sdbus);
res |= sdbus_read_data(&s->sdbus) << 8;
res |= sdbus_read_data(&s->sdbus) << 16;
res |= sdbus_read_data(&s->sdbus) << 24;
allwinner_sdhost_update_transfer_cnt(s, sizeof(uint32_t));
allwinner_sdhost_auto_stop(s);
allwinner_sdhost_update_irq(s);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "%s: no data ready on SD bus\n",
__func__);
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset %"
HWADDR_PRIx"\n", __func__, offset);
res = 0;
break;
}
trace_allwinner_sdhost_read(offset, res, size);
return res;
}
static void allwinner_sdhost_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
AwSdHostState *s = AW_SDHOST(opaque);
trace_allwinner_sdhost_write(offset, value, size);
switch (offset) {
case REG_SD_GCTL: /* Global Control */
s->global_ctl = value;
s->global_ctl &= ~(SD_GCTL_DMA_RST | SD_GCTL_FIFO_RST |
SD_GCTL_SOFT_RST);
allwinner_sdhost_update_irq(s);
break;
case REG_SD_CKCR: /* Clock Control */
s->clock_ctl = value;
break;
case REG_SD_TMOR: /* Timeout */
s->timeout = value;
break;
case REG_SD_BWDR: /* Bus Width */
s->bus_width = value;
break;
case REG_SD_BKSR: /* Block Size */
s->block_size = value;
break;
case REG_SD_BYCR: /* Byte Count */
s->byte_count = value;
s->transfer_cnt = value;
break;
case REG_SD_CMDR: /* Command */
s->command = value;
if (value & SD_CMDR_LOAD) {
allwinner_sdhost_send_command(s);
allwinner_sdhost_dma(s);
allwinner_sdhost_auto_stop(s);
}
allwinner_sdhost_update_irq(s);
break;
case REG_SD_CAGR: /* Command Argument */
s->command_arg = value;
break;
case REG_SD_RESP0: /* Response Zero */
s->response[0] = value;
break;
case REG_SD_RESP1: /* Response One */
s->response[1] = value;
break;
case REG_SD_RESP2: /* Response Two */
s->response[2] = value;
break;
case REG_SD_RESP3: /* Response Three */
s->response[3] = value;
break;
case REG_SD_IMKR: /* Interrupt Mask */
s->irq_mask = value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_MISR: /* Masked Interrupt Status */
case REG_SD_RISR: /* Raw Interrupt Status */
s->irq_status &= ~value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_STAR: /* Status */
s->status &= ~value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_FWLR: /* FIFO Water Level */
s->fifo_wlevel = value;
break;
case REG_SD_FUNS: /* FIFO Function Select */
s->fifo_func_sel = value;
break;
case REG_SD_DBGC: /* Debug Enable */
s->debug_enable = value;
break;
case REG_SD_A12A: /* Auto command 12 argument */
s->auto12_arg = value;
break;
case REG_SD_NTSR: /* SD NewTiming Set */
s->newtiming_set = value;
break;
case REG_SD_SDBG: /* SD newTiming Set Debug */
s->newtiming_debug = value;
break;
case REG_SD_HWRST: /* Hardware Reset Register */
s->hardware_rst = value;
break;
case REG_SD_DMAC: /* Internal DMA Controller Control */
s->dmac = value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_DLBA: /* Descriptor List Base Address */
s->desc_base = value;
break;
case REG_SD_IDST: /* Internal DMA Controller Status */
s->dmac_status &= (~SD_IDST_WR_MASK) | (~value & SD_IDST_WR_MASK);
allwinner_sdhost_update_irq(s);
break;
case REG_SD_IDIE: /* Internal DMA Controller Interrupt Enable */
s->dmac_irq = value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_THLDC: /* Card Threshold Control */
s->card_threshold = value;
break;
case REG_SD_DSBD: /* eMMC DDR Start Bit Detection Control */
s->startbit_detect = value;
break;
case REG_SD_FIFO: /* Read/Write FIFO */
sdbus_write_data(&s->sdbus, value & 0xff);
sdbus_write_data(&s->sdbus, (value >> 8) & 0xff);
sdbus_write_data(&s->sdbus, (value >> 16) & 0xff);
sdbus_write_data(&s->sdbus, (value >> 24) & 0xff);
allwinner_sdhost_update_transfer_cnt(s, sizeof(uint32_t));
allwinner_sdhost_auto_stop(s);
allwinner_sdhost_update_irq(s);
break;
case REG_SD_RES_CRC: /* Response CRC from card/eMMC */
case REG_SD_DATA7_CRC: /* CRC Data 7 from card/eMMC */
case REG_SD_DATA6_CRC: /* CRC Data 6 from card/eMMC */
case REG_SD_DATA5_CRC: /* CRC Data 5 from card/eMMC */
case REG_SD_DATA4_CRC: /* CRC Data 4 from card/eMMC */
case REG_SD_DATA3_CRC: /* CRC Data 3 from card/eMMC */
case REG_SD_DATA2_CRC: /* CRC Data 2 from card/eMMC */
case REG_SD_DATA1_CRC: /* CRC Data 1 from card/eMMC */
case REG_SD_DATA0_CRC: /* CRC Data 0 from card/eMMC */
case REG_SD_CRC_STA: /* CRC status from card/eMMC in write operation */
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset %"
HWADDR_PRIx"\n", __func__, offset);
break;
}
}
static const MemoryRegionOps allwinner_sdhost_ops = {
.read = allwinner_sdhost_read,
.write = allwinner_sdhost_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static const VMStateDescription vmstate_allwinner_sdhost = {
.name = "allwinner-sdhost",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(global_ctl, AwSdHostState),
VMSTATE_UINT32(clock_ctl, AwSdHostState),
VMSTATE_UINT32(timeout, AwSdHostState),
VMSTATE_UINT32(bus_width, AwSdHostState),
VMSTATE_UINT32(block_size, AwSdHostState),
VMSTATE_UINT32(byte_count, AwSdHostState),
VMSTATE_UINT32(transfer_cnt, AwSdHostState),
VMSTATE_UINT32(command, AwSdHostState),
VMSTATE_UINT32(command_arg, AwSdHostState),
VMSTATE_UINT32_ARRAY(response, AwSdHostState, 4),
VMSTATE_UINT32(irq_mask, AwSdHostState),
VMSTATE_UINT32(irq_status, AwSdHostState),
VMSTATE_UINT32(status, AwSdHostState),
VMSTATE_UINT32(fifo_wlevel, AwSdHostState),
VMSTATE_UINT32(fifo_func_sel, AwSdHostState),
VMSTATE_UINT32(debug_enable, AwSdHostState),
VMSTATE_UINT32(auto12_arg, AwSdHostState),
VMSTATE_UINT32(newtiming_set, AwSdHostState),
VMSTATE_UINT32(newtiming_debug, AwSdHostState),
VMSTATE_UINT32(hardware_rst, AwSdHostState),
VMSTATE_UINT32(dmac, AwSdHostState),
VMSTATE_UINT32(desc_base, AwSdHostState),
VMSTATE_UINT32(dmac_status, AwSdHostState),
VMSTATE_UINT32(dmac_irq, AwSdHostState),
VMSTATE_UINT32(card_threshold, AwSdHostState),
VMSTATE_UINT32(startbit_detect, AwSdHostState),
VMSTATE_UINT32(response_crc, AwSdHostState),
VMSTATE_UINT32_ARRAY(data_crc, AwSdHostState, 8),
VMSTATE_UINT32(status_crc, AwSdHostState),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_sdhost_init(Object *obj)
{
AwSdHostState *s = AW_SDHOST(obj);
qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
TYPE_AW_SDHOST_BUS, DEVICE(s), "sd-bus");
memory_region_init_io(&s->iomem, obj, &allwinner_sdhost_ops, s,
TYPE_AW_SDHOST, 4 * KiB);
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->iomem);
sysbus_init_irq(SYS_BUS_DEVICE(s), &s->irq);
}
static void allwinner_sdhost_reset(DeviceState *dev)
{
AwSdHostState *s = AW_SDHOST(dev);
s->global_ctl = REG_SD_GCTL_RST;
s->clock_ctl = REG_SD_CKCR_RST;
s->timeout = REG_SD_TMOR_RST;
s->bus_width = REG_SD_BWDR_RST;
s->block_size = REG_SD_BKSR_RST;
s->byte_count = REG_SD_BYCR_RST;
s->transfer_cnt = 0;
s->command = REG_SD_CMDR_RST;
s->command_arg = REG_SD_CAGR_RST;
for (int i = 0; i < ARRAY_SIZE(s->response); i++) {
s->response[i] = REG_SD_RESP_RST;
}
s->irq_mask = REG_SD_IMKR_RST;
s->irq_status = REG_SD_RISR_RST;
s->status = REG_SD_STAR_RST;
s->fifo_wlevel = REG_SD_FWLR_RST;
s->fifo_func_sel = REG_SD_FUNS_RST;
s->debug_enable = REG_SD_DBGC_RST;
s->auto12_arg = REG_SD_A12A_RST;
s->newtiming_set = REG_SD_NTSR_RST;
s->newtiming_debug = REG_SD_SDBG_RST;
s->hardware_rst = REG_SD_HWRST_RST;
s->dmac = REG_SD_DMAC_RST;
s->desc_base = REG_SD_DLBA_RST;
s->dmac_status = REG_SD_IDST_RST;
s->dmac_irq = REG_SD_IDIE_RST;
s->card_threshold = REG_SD_THLDC_RST;
s->startbit_detect = REG_SD_DSBD_RST;
s->response_crc = REG_SD_RES_CRC_RST;
for (int i = 0; i < ARRAY_SIZE(s->data_crc); i++) {
s->data_crc[i] = REG_SD_DATA_CRC_RST;
}
s->status_crc = REG_SD_CRC_STA_RST;
}
static void allwinner_sdhost_bus_class_init(ObjectClass *klass, void *data)
{
SDBusClass *sbc = SD_BUS_CLASS(klass);
sbc->set_inserted = allwinner_sdhost_set_inserted;
}
static void allwinner_sdhost_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_sdhost_reset;
dc->vmsd = &vmstate_allwinner_sdhost;
}
static void allwinner_sdhost_sun4i_class_init(ObjectClass *klass, void *data)
{
AwSdHostClass *sc = AW_SDHOST_CLASS(klass);
sc->max_desc_size = 8 * KiB;
}
static void allwinner_sdhost_sun5i_class_init(ObjectClass *klass, void *data)
{
AwSdHostClass *sc = AW_SDHOST_CLASS(klass);
sc->max_desc_size = 64 * KiB;
}
static TypeInfo allwinner_sdhost_info = {
.name = TYPE_AW_SDHOST,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_sdhost_init,
.instance_size = sizeof(AwSdHostState),
.class_init = allwinner_sdhost_class_init,
.class_size = sizeof(AwSdHostClass),
.abstract = true,
};
static const TypeInfo allwinner_sdhost_sun4i_info = {
.name = TYPE_AW_SDHOST_SUN4I,
.parent = TYPE_AW_SDHOST,
.class_init = allwinner_sdhost_sun4i_class_init,
};
static const TypeInfo allwinner_sdhost_sun5i_info = {
.name = TYPE_AW_SDHOST_SUN5I,
.parent = TYPE_AW_SDHOST,
.class_init = allwinner_sdhost_sun5i_class_init,
};
static const TypeInfo allwinner_sdhost_bus_info = {
.name = TYPE_AW_SDHOST_BUS,
.parent = TYPE_SD_BUS,
.instance_size = sizeof(SDBus),
.class_init = allwinner_sdhost_bus_class_init,
};
static void allwinner_sdhost_register_types(void)
{
type_register_static(&allwinner_sdhost_info);
type_register_static(&allwinner_sdhost_sun4i_info);
type_register_static(&allwinner_sdhost_sun5i_info);
type_register_static(&allwinner_sdhost_bus_info);
}
type_init(allwinner_sdhost_register_types)

View file

@ -1,5 +1,12 @@
# See docs/devel/tracing.txt for syntax documentation.
# allwinner-sdhost.c
allwinner_sdhost_set_inserted(bool inserted) "inserted %u"
allwinner_sdhost_process_desc(uint64_t desc_addr, uint32_t desc_size, bool is_write, uint32_t max_bytes) "desc_addr 0x%" PRIx64 " desc_size %" PRIu32 " is_write %u max_bytes %" PRIu32
allwinner_sdhost_read(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_sdhost_write(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32
allwinner_sdhost_update_irq(uint32_t irq) "IRQ bits 0x%" PRIx32
# bcm2835_sdhost.c
bcm2835_sdhost_read(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
bcm2835_sdhost_write(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"

View file

@ -31,6 +31,7 @@
#include "qapi/error.h"
#include "exec/address-spaces.h"
#include "qemu/units.h"
#include "trace.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
@ -513,6 +514,8 @@ static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
s->ctrl->reg_to_segment(s, new, &seg);
trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
/* The start address of CS0 is read-only */
if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
qemu_log_mask(LOG_GUEST_ERROR,
@ -636,27 +639,23 @@ static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
}
}
static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
{
const AspeedSMCState *s = fl->controller;
AspeedSMCState *s = fl->controller;
return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
trace_aspeed_smc_flash_select(fl->id, unselect ? "un" : "");
qemu_set_irq(s->cs_lines[fl->id], unselect);
}
static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
{
AspeedSMCState *s = fl->controller;
s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
aspeed_smc_flash_do_select(fl, false);
}
static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
{
AspeedSMCState *s = fl->controller;
s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
aspeed_smc_flash_do_select(fl, true);
}
static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
@ -753,6 +752,8 @@ static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
__func__, aspeed_smc_flash_mode(fl));
}
trace_aspeed_smc_flash_read(fl->id, addr, size, ret,
aspeed_smc_flash_mode(fl));
return ret;
}
@ -808,6 +809,9 @@ static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
AspeedSMCState *s = fl->controller;
uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
trace_aspeed_smc_do_snoop(fl->id, s->snoop_index, s->snoop_dummies,
(uint8_t) data & 0xff);
if (s->snoop_index == SNOOP_OFF) {
return false; /* Do nothing */
@ -858,6 +862,9 @@ static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
AspeedSMCState *s = fl->controller;
int i;
trace_aspeed_smc_flash_write(fl->id, addr, size, data,
aspeed_smc_flash_mode(fl));
if (!aspeed_smc_is_writable(fl)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
HWADDR_PRIx "\n", __func__, addr);
@ -900,13 +907,25 @@ static const MemoryRegionOps aspeed_smc_flash_ops = {
},
};
static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
{
AspeedSMCState *s = fl->controller;
bool unselect;
s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
/* User mode selects the CS, other modes unselect */
unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
/* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
if (!(s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE) &&
value & CTRL_CE_STOP_ACTIVE) {
unselect = true;
}
s->regs[s->r_ctrl0 + fl->id] = value;
s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
aspeed_smc_flash_do_select(fl, unselect);
}
static void aspeed_smc_reset(DeviceState *d)
@ -972,6 +991,9 @@ static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
(s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
(addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
(addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
trace_aspeed_smc_read(addr, size, s->regs[addr]);
return s->regs[addr];
} else {
qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
@ -1091,6 +1113,7 @@ static void aspeed_smc_dma_checksum(AspeedSMCState *s)
__func__, s->regs[R_DMA_FLASH_ADDR]);
return;
}
trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
/*
* When the DMA is on-going, the DMA registers are updated
@ -1225,6 +1248,8 @@ static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
addr >>= 2;
trace_aspeed_smc_write(addr, size, data);
if (addr == s->r_conf ||
(addr >= s->r_timings &&
addr < s->r_timings + s->ctrl->nregs_timings) ||
@ -1232,8 +1257,7 @@ static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
s->regs[addr] = value;
} else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
int cs = addr - s->r_ctrl0;
s->regs[addr] = value;
aspeed_smc_flash_update_cs(&s->flashes[cs]);
aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
} else if (addr >= R_SEG_ADDR0 &&
addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
int cs = addr - R_SEG_ADDR0;

10
hw/ssi/trace-events Normal file
View file

@ -0,0 +1,10 @@
# aspeed_smc.c
aspeed_smc_flash_set_segment(int cs, uint64_t reg, uint64_t start, uint64_t end) "CS%d segreg=0x%"PRIx64" [ 0x%"PRIx64" - 0x%"PRIx64" ]"
aspeed_smc_flash_read(int cs, uint64_t addr, uint32_t size, uint64_t data, int mode) "CS%d @0x%" PRIx64 " size %u: 0x%" PRIx64" mode:%d"
aspeed_smc_do_snoop(int cs, int index, int dummies, int data) "CS%d index:0x%x dummies:%d data:0x%x"
aspeed_smc_flash_write(int cs, uint64_t addr, uint32_t size, uint64_t data, int mode) "CS%d @0x%" PRIx64 " size %u: 0x%" PRIx64" mode:%d"
aspeed_smc_read(uint64_t addr, uint32_t size, uint64_t data) "@0x%" PRIx64 " size %u: 0x%" PRIx64
aspeed_smc_dma_checksum(uint32_t addr, uint32_t data) "0x%08x: 0x%08x"
aspeed_smc_write(uint64_t addr, uint32_t size, uint64_t data) "@0x%" PRIx64 " size %u: 0x%" PRIx64
aspeed_smc_flash_select(int cs, const char *prefix) "CS%d %sselect"

View file

@ -131,6 +131,22 @@ static const TypeInfo ehci_exynos4210_type_info = {
.class_init = ehci_exynos4210_class_init,
};
static void ehci_aw_h3_class_init(ObjectClass *oc, void *data)
{
SysBusEHCIClass *sec = SYS_BUS_EHCI_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
sec->capsbase = 0x0;
sec->opregbase = 0x10;
set_bit(DEVICE_CATEGORY_USB, dc->categories);
}
static const TypeInfo ehci_aw_h3_type_info = {
.name = TYPE_AW_H3_EHCI,
.parent = TYPE_SYS_BUS_EHCI,
.class_init = ehci_aw_h3_class_init,
};
static void ehci_tegra2_class_init(ObjectClass *oc, void *data)
{
SysBusEHCIClass *sec = SYS_BUS_EHCI_CLASS(oc);
@ -252,6 +268,7 @@ static void ehci_sysbus_register_types(void)
type_register_static(&ehci_type_info);
type_register_static(&ehci_platform_type_info);
type_register_static(&ehci_exynos4210_type_info);
type_register_static(&ehci_aw_h3_type_info);
type_register_static(&ehci_tegra2_type_info);
type_register_static(&ehci_ppc4xx_type_info);
type_register_static(&ehci_fusbh200_type_info);

View file

@ -342,6 +342,7 @@ typedef struct EHCIPCIState {
#define TYPE_SYS_BUS_EHCI "sysbus-ehci-usb"
#define TYPE_PLATFORM_EHCI "platform-ehci-usb"
#define TYPE_EXYNOS4210_EHCI "exynos4210-ehci-usb"
#define TYPE_AW_H3_EHCI "aw-h3-ehci-usb"
#define TYPE_TEGRA2_EHCI "tegra2-ehci-usb"
#define TYPE_PPC4xx_EHCI "ppc4xx-ehci-usb"
#define TYPE_FUSBH200_EHCI "fusbh200-ehci-usb"

View file

@ -7,9 +7,11 @@
#include "hw/timer/allwinner-a10-pit.h"
#include "hw/intc/allwinner-a10-pic.h"
#include "hw/net/allwinner_emac.h"
#include "hw/sd/allwinner-sdhost.h"
#include "hw/ide/ahci.h"
#include "hw/usb/hcd-ohci.h"
#include "hw/usb/hcd-ehci.h"
#include "hw/rtc/allwinner-rtc.h"
#include "target/arm/cpu.h"
@ -31,6 +33,8 @@ typedef struct AwA10State {
AwA10PICState intc;
AwEmacState emac;
AllwinnerAHCIState sata;
AwSdHostState mmc0;
AwRtcState rtc;
MemoryRegion sram_a;
EHCISysBusState ehci[AW_A10_NUM_USB];
OHCISysBusState ohci[AW_A10_NUM_USB];

View file

@ -0,0 +1,161 @@
/*
* Allwinner H3 System on Chip emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* The Allwinner H3 is a System on Chip containing four ARM Cortex A7
* processor cores. Features and specifications include DDR2/DDR3 memory,
* SD/MMC storage cards, 10/100/1000Mbit Ethernet, USB 2.0, HDMI and
* various I/O modules.
*
* This implementation is based on the following datasheet:
*
* https://linux-sunxi.org/File:Allwinner_H3_Datasheet_V1.2.pdf
*
* The latest datasheet and more info can be found on the Linux Sunxi wiki:
*
* https://linux-sunxi.org/H3
*/
#ifndef HW_ARM_ALLWINNER_H3_H
#define HW_ARM_ALLWINNER_H3_H
#include "qom/object.h"
#include "hw/arm/boot.h"
#include "hw/timer/allwinner-a10-pit.h"
#include "hw/intc/arm_gic.h"
#include "hw/misc/allwinner-h3-ccu.h"
#include "hw/misc/allwinner-cpucfg.h"
#include "hw/misc/allwinner-h3-dramc.h"
#include "hw/misc/allwinner-h3-sysctrl.h"
#include "hw/misc/allwinner-sid.h"
#include "hw/sd/allwinner-sdhost.h"
#include "hw/net/allwinner-sun8i-emac.h"
#include "hw/rtc/allwinner-rtc.h"
#include "target/arm/cpu.h"
#include "sysemu/block-backend.h"
/**
* Allwinner H3 device list
*
* This enumeration is can be used refer to a particular device in the
* Allwinner H3 SoC. For example, the physical memory base address for
* each device can be found in the AwH3State object in the memmap member
* using the device enum value as index.
*
* @see AwH3State
*/
enum {
AW_H3_SRAM_A1,
AW_H3_SRAM_A2,
AW_H3_SRAM_C,
AW_H3_SYSCTRL,
AW_H3_MMC0,
AW_H3_SID,
AW_H3_EHCI0,
AW_H3_OHCI0,
AW_H3_EHCI1,
AW_H3_OHCI1,
AW_H3_EHCI2,
AW_H3_OHCI2,
AW_H3_EHCI3,
AW_H3_OHCI3,
AW_H3_CCU,
AW_H3_PIT,
AW_H3_UART0,
AW_H3_UART1,
AW_H3_UART2,
AW_H3_UART3,
AW_H3_EMAC,
AW_H3_DRAMCOM,
AW_H3_DRAMCTL,
AW_H3_DRAMPHY,
AW_H3_GIC_DIST,
AW_H3_GIC_CPU,
AW_H3_GIC_HYP,
AW_H3_GIC_VCPU,
AW_H3_RTC,
AW_H3_CPUCFG,
AW_H3_SDRAM
};
/** Total number of CPU cores in the H3 SoC */
#define AW_H3_NUM_CPUS (4)
/**
* Allwinner H3 object model
* @{
*/
/** Object type for the Allwinner H3 SoC */
#define TYPE_AW_H3 "allwinner-h3"
/** Convert input object to Allwinner H3 state object */
#define AW_H3(obj) OBJECT_CHECK(AwH3State, (obj), TYPE_AW_H3)
/** @} */
/**
* Allwinner H3 object
*
* This struct contains the state of all the devices
* which are currently emulated by the H3 SoC code.
*/
typedef struct AwH3State {
/*< private >*/
DeviceState parent_obj;
/*< public >*/
ARMCPU cpus[AW_H3_NUM_CPUS];
const hwaddr *memmap;
AwA10PITState timer;
AwH3ClockCtlState ccu;
AwCpuCfgState cpucfg;
AwH3DramCtlState dramc;
AwH3SysCtrlState sysctrl;
AwSidState sid;
AwSdHostState mmc0;
AwSun8iEmacState emac;
AwRtcState rtc;
GICState gic;
MemoryRegion sram_a1;
MemoryRegion sram_a2;
MemoryRegion sram_c;
} AwH3State;
/**
* Emulate Boot ROM firmware setup functionality.
*
* A real Allwinner H3 SoC contains a Boot ROM
* which is the first code that runs right after
* the SoC is powered on. The Boot ROM is responsible
* for loading user code (e.g. a bootloader) from any
* of the supported external devices and writing the
* downloaded code to internal SRAM. After loading the SoC
* begins executing the code written to SRAM.
*
* This function emulates the Boot ROM by copying 32 KiB
* of data from the given block device and writes it to
* the start of the first internal SRAM memory.
*
* @s: Allwinner H3 state object pointer
* @blk: Block backend device object pointer
*/
void allwinner_h3_bootrom_setup(AwH3State *s, BlockBackend *blk);
#endif /* HW_ARM_ALLWINNER_H3_H */

View file

@ -27,6 +27,8 @@
#include "hw/misc/imx_rngc.h"
#include "hw/i2c/imx_i2c.h"
#include "hw/gpio/imx_gpio.h"
#include "hw/sd/sdhci.h"
#include "hw/usb/chipidea.h"
#include "exec/memory.h"
#include "target/arm/cpu.h"
@ -38,6 +40,8 @@
#define FSL_IMX25_NUM_EPITS 2
#define FSL_IMX25_NUM_I2CS 3
#define FSL_IMX25_NUM_GPIOS 4
#define FSL_IMX25_NUM_ESDHCS 2
#define FSL_IMX25_NUM_USBS 2
typedef struct FslIMX25State {
/*< private >*/
@ -54,6 +58,8 @@ typedef struct FslIMX25State {
IMXRNGCState rngc;
IMXI2CState i2c[FSL_IMX25_NUM_I2CS];
IMXGPIOState gpio[FSL_IMX25_NUM_GPIOS];
SDHCIState esdhc[FSL_IMX25_NUM_ESDHCS];
ChipideaState usb[FSL_IMX25_NUM_USBS];
MemoryRegion rom[2];
MemoryRegion iram;
MemoryRegion iram_alias;
@ -215,10 +221,18 @@ typedef struct FslIMX25State {
#define FSL_IMX25_GPIO3_SIZE 0x4000
#define FSL_IMX25_RNGC_ADDR 0x53FB0000
#define FSL_IMX25_RNGC_SIZE 0x4000
#define FSL_IMX25_ESDHC1_ADDR 0x53FB4000
#define FSL_IMX25_ESDHC1_SIZE 0x4000
#define FSL_IMX25_ESDHC2_ADDR 0x53FB8000
#define FSL_IMX25_ESDHC2_SIZE 0x4000
#define FSL_IMX25_GPIO1_ADDR 0x53FCC000
#define FSL_IMX25_GPIO1_SIZE 0x4000
#define FSL_IMX25_GPIO2_ADDR 0x53FD0000
#define FSL_IMX25_GPIO2_SIZE 0x4000
#define FSL_IMX25_USB1_ADDR 0x53FF4000
#define FSL_IMX25_USB1_SIZE 0x0200
#define FSL_IMX25_USB2_ADDR 0x53FF4400
#define FSL_IMX25_USB2_SIZE 0x0200
#define FSL_IMX25_AVIC_ADDR 0x68000000
#define FSL_IMX25_AVIC_SIZE 0x4000
#define FSL_IMX25_IRAM_ADDR 0x78000000
@ -250,5 +264,9 @@ typedef struct FslIMX25State {
#define FSL_IMX25_GPIO2_IRQ 51
#define FSL_IMX25_GPIO3_IRQ 16
#define FSL_IMX25_GPIO4_IRQ 23
#define FSL_IMX25_ESDHC1_IRQ 9
#define FSL_IMX25_ESDHC2_IRQ 8
#define FSL_IMX25_USB1_IRQ 37
#define FSL_IMX25_USB2_IRQ 35
#endif /* FSL_IMX25_H */

View file

@ -95,6 +95,14 @@ typedef enum VirtIOMMUType {
VIRT_IOMMU_VIRTIO,
} VirtIOMMUType;
typedef enum VirtGICType {
VIRT_GIC_VERSION_MAX,
VIRT_GIC_VERSION_HOST,
VIRT_GIC_VERSION_2,
VIRT_GIC_VERSION_3,
VIRT_GIC_VERSION_NOSEL,
} VirtGICType;
typedef struct MemMapEntry {
hwaddr base;
hwaddr size;
@ -123,7 +131,7 @@ typedef struct {
bool highmem_ecam;
bool its;
bool virt;
int32_t gic_version;
VirtGICType gic_version;
VirtIOMMUType iommu;
uint16_t virtio_iommu_bdf;
struct arm_boot_info bootinfo;
@ -162,7 +170,7 @@ static inline int virt_gicv3_redist_region_count(VirtMachineState *vms)
uint32_t redist0_capacity =
vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
assert(vms->gic_version == 3);
assert(vms->gic_version == VIRT_GIC_VERSION_3);
return vms->smp_cpus > redist0_capacity ? 2 : 1;
}

View file

@ -0,0 +1,52 @@
/*
* Allwinner CPU Configuration Module emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_MISC_ALLWINNER_CPUCFG_H
#define HW_MISC_ALLWINNER_CPUCFG_H
#include "qom/object.h"
#include "hw/sysbus.h"
/**
* Object model
* @{
*/
#define TYPE_AW_CPUCFG "allwinner-cpucfg"
#define AW_CPUCFG(obj) \
OBJECT_CHECK(AwCpuCfgState, (obj), TYPE_AW_CPUCFG)
/** @} */
/**
* Allwinner CPU Configuration Module instance state
*/
typedef struct AwCpuCfgState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
MemoryRegion iomem;
uint32_t gen_ctrl;
uint32_t super_standby;
uint32_t entry_addr;
} AwCpuCfgState;
#endif /* HW_MISC_ALLWINNER_CPUCFG_H */

View file

@ -0,0 +1,66 @@
/*
* Allwinner H3 Clock Control Unit emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_MISC_ALLWINNER_H3_CCU_H
#define HW_MISC_ALLWINNER_H3_CCU_H
#include "qom/object.h"
#include "hw/sysbus.h"
/**
* @name Constants
* @{
*/
/** Size of register I/O address space used by CCU device */
#define AW_H3_CCU_IOSIZE (0x400)
/** Total number of known registers */
#define AW_H3_CCU_REGS_NUM (AW_H3_CCU_IOSIZE / sizeof(uint32_t))
/** @} */
/**
* @name Object model
* @{
*/
#define TYPE_AW_H3_CCU "allwinner-h3-ccu"
#define AW_H3_CCU(obj) \
OBJECT_CHECK(AwH3ClockCtlState, (obj), TYPE_AW_H3_CCU)
/** @} */
/**
* Allwinner H3 CCU object instance state.
*/
typedef struct AwH3ClockCtlState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
/** Maps I/O registers in physical memory */
MemoryRegion iomem;
/** Array of hardware registers */
uint32_t regs[AW_H3_CCU_REGS_NUM];
} AwH3ClockCtlState;
#endif /* HW_MISC_ALLWINNER_H3_CCU_H */

View file

@ -0,0 +1,106 @@
/*
* Allwinner H3 SDRAM Controller emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_MISC_ALLWINNER_H3_DRAMC_H
#define HW_MISC_ALLWINNER_H3_DRAMC_H
#include "qom/object.h"
#include "hw/sysbus.h"
#include "exec/hwaddr.h"
/**
* Constants
* @{
*/
/** Highest register address used by DRAMCOM module */
#define AW_H3_DRAMCOM_REGS_MAXADDR (0x804)
/** Total number of known DRAMCOM registers */
#define AW_H3_DRAMCOM_REGS_NUM (AW_H3_DRAMCOM_REGS_MAXADDR / \
sizeof(uint32_t))
/** Highest register address used by DRAMCTL module */
#define AW_H3_DRAMCTL_REGS_MAXADDR (0x88c)
/** Total number of known DRAMCTL registers */
#define AW_H3_DRAMCTL_REGS_NUM (AW_H3_DRAMCTL_REGS_MAXADDR / \
sizeof(uint32_t))
/** Highest register address used by DRAMPHY module */
#define AW_H3_DRAMPHY_REGS_MAXADDR (0x4)
/** Total number of known DRAMPHY registers */
#define AW_H3_DRAMPHY_REGS_NUM (AW_H3_DRAMPHY_REGS_MAXADDR / \
sizeof(uint32_t))
/** @} */
/**
* Object model
* @{
*/
#define TYPE_AW_H3_DRAMC "allwinner-h3-dramc"
#define AW_H3_DRAMC(obj) \
OBJECT_CHECK(AwH3DramCtlState, (obj), TYPE_AW_H3_DRAMC)
/** @} */
/**
* Allwinner H3 SDRAM Controller object instance state.
*/
typedef struct AwH3DramCtlState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
/** Physical base address for start of RAM */
hwaddr ram_addr;
/** Total RAM size in megabytes */
uint32_t ram_size;
/**
* @name Memory Regions
* @{
*/
MemoryRegion row_mirror; /**< Simulates rows for RAM size detection */
MemoryRegion row_mirror_alias; /**< Alias of the row which is mirrored */
MemoryRegion dramcom_iomem; /**< DRAMCOM module I/O registers */
MemoryRegion dramctl_iomem; /**< DRAMCTL module I/O registers */
MemoryRegion dramphy_iomem; /**< DRAMPHY module I/O registers */
/** @} */
/**
* @name Hardware Registers
* @{
*/
uint32_t dramcom[AW_H3_DRAMCOM_REGS_NUM]; /**< Array of DRAMCOM registers */
uint32_t dramctl[AW_H3_DRAMCTL_REGS_NUM]; /**< Array of DRAMCTL registers */
uint32_t dramphy[AW_H3_DRAMPHY_REGS_NUM] ;/**< Array of DRAMPHY registers */
/** @} */
} AwH3DramCtlState;
#endif /* HW_MISC_ALLWINNER_H3_DRAMC_H */

View file

@ -0,0 +1,67 @@
/*
* Allwinner H3 System Control emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_MISC_ALLWINNER_H3_SYSCTRL_H
#define HW_MISC_ALLWINNER_H3_SYSCTRL_H
#include "qom/object.h"
#include "hw/sysbus.h"
/**
* @name Constants
* @{
*/
/** Highest register address used by System Control device */
#define AW_H3_SYSCTRL_REGS_MAXADDR (0x30)
/** Total number of known registers */
#define AW_H3_SYSCTRL_REGS_NUM ((AW_H3_SYSCTRL_REGS_MAXADDR / \
sizeof(uint32_t)) + 1)
/** @} */
/**
* @name Object model
* @{
*/
#define TYPE_AW_H3_SYSCTRL "allwinner-h3-sysctrl"
#define AW_H3_SYSCTRL(obj) \
OBJECT_CHECK(AwH3SysCtrlState, (obj), TYPE_AW_H3_SYSCTRL)
/** @} */
/**
* Allwinner H3 System Control object instance state
*/
typedef struct AwH3SysCtrlState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
/** Maps I/O registers in physical memory */
MemoryRegion iomem;
/** Array of hardware registers */
uint32_t regs[AW_H3_SYSCTRL_REGS_NUM];
} AwH3SysCtrlState;
#endif /* HW_MISC_ALLWINNER_H3_SYSCTRL_H */

View file

@ -0,0 +1,60 @@
/*
* Allwinner Security ID emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_MISC_ALLWINNER_SID_H
#define HW_MISC_ALLWINNER_SID_H
#include "qom/object.h"
#include "hw/sysbus.h"
#include "qemu/uuid.h"
/**
* Object model
* @{
*/
#define TYPE_AW_SID "allwinner-sid"
#define AW_SID(obj) \
OBJECT_CHECK(AwSidState, (obj), TYPE_AW_SID)
/** @} */
/**
* Allwinner Security ID object instance state
*/
typedef struct AwSidState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
/** Maps I/O registers in physical memory */
MemoryRegion iomem;
/** Control register defines how and what to read */
uint32_t control;
/** RdKey register contains the data retrieved by the device */
uint32_t rdkey;
/** Stores the emulated device identifier */
QemuUUID identifier;
} AwSidState;
#endif /* HW_MISC_ALLWINNER_SID_H */

View file

@ -0,0 +1,99 @@
/*
* Allwinner Sun8i Ethernet MAC emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_NET_ALLWINNER_SUN8I_EMAC_H
#define HW_NET_ALLWINNER_SUN8I_EMAC_H
#include "qom/object.h"
#include "net/net.h"
#include "hw/sysbus.h"
/**
* Object model
* @{
*/
#define TYPE_AW_SUN8I_EMAC "allwinner-sun8i-emac"
#define AW_SUN8I_EMAC(obj) \
OBJECT_CHECK(AwSun8iEmacState, (obj), TYPE_AW_SUN8I_EMAC)
/** @} */
/**
* Allwinner Sun8i EMAC object instance state
*/
typedef struct AwSun8iEmacState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
/** Maps I/O registers in physical memory */
MemoryRegion iomem;
/** Interrupt output signal to notify CPU */
qemu_irq irq;
/** Generic Network Interface Controller (NIC) for networking API */
NICState *nic;
/** Generic Network Interface Controller (NIC) configuration */
NICConf conf;
/**
* @name Media Independent Interface (MII)
* @{
*/
uint8_t mii_phy_addr; /**< PHY address */
uint32_t mii_cr; /**< Control */
uint32_t mii_st; /**< Status */
uint32_t mii_adv; /**< Advertised Abilities */
/** @} */
/**
* @name Hardware Registers
* @{
*/
uint32_t basic_ctl0; /**< Basic Control 0 */
uint32_t basic_ctl1; /**< Basic Control 1 */
uint32_t int_en; /**< Interrupt Enable */
uint32_t int_sta; /**< Interrupt Status */
uint32_t frm_flt; /**< Receive Frame Filter */
uint32_t rx_ctl0; /**< Receive Control 0 */
uint32_t rx_ctl1; /**< Receive Control 1 */
uint32_t rx_desc_head; /**< Receive Descriptor List Address */
uint32_t rx_desc_curr; /**< Current Receive Descriptor Address */
uint32_t tx_ctl0; /**< Transmit Control 0 */
uint32_t tx_ctl1; /**< Transmit Control 1 */
uint32_t tx_desc_head; /**< Transmit Descriptor List Address */
uint32_t tx_desc_curr; /**< Current Transmit Descriptor Address */
uint32_t tx_flowctl; /**< Transmit Flow Control */
uint32_t mii_cmd; /**< Management Interface Command */
uint32_t mii_data; /**< Management Interface Data */
/** @} */
} AwSun8iEmacState;
#endif /* HW_NET_ALLWINNER_SUN8I_H */

View file

@ -0,0 +1,134 @@
/*
* Allwinner Real Time Clock emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_MISC_ALLWINNER_RTC_H
#define HW_MISC_ALLWINNER_RTC_H
#include "qom/object.h"
#include "hw/sysbus.h"
/**
* Constants
* @{
*/
/** Highest register address used by RTC device */
#define AW_RTC_REGS_MAXADDR (0x200)
/** Total number of known registers */
#define AW_RTC_REGS_NUM (AW_RTC_REGS_MAXADDR / sizeof(uint32_t))
/** @} */
/**
* Object model types
* @{
*/
/** Generic Allwinner RTC device (abstract) */
#define TYPE_AW_RTC "allwinner-rtc"
/** Allwinner RTC sun4i family (A10, A12) */
#define TYPE_AW_RTC_SUN4I TYPE_AW_RTC "-sun4i"
/** Allwinner RTC sun6i family and newer (A31, H2+, H3, etc) */
#define TYPE_AW_RTC_SUN6I TYPE_AW_RTC "-sun6i"
/** Allwinner RTC sun7i family (A20) */
#define TYPE_AW_RTC_SUN7I TYPE_AW_RTC "-sun7i"
/** @} */
/**
* Object model macros
* @{
*/
#define AW_RTC(obj) \
OBJECT_CHECK(AwRtcState, (obj), TYPE_AW_RTC)
#define AW_RTC_CLASS(klass) \
OBJECT_CLASS_CHECK(AwRtcClass, (klass), TYPE_AW_RTC)
#define AW_RTC_GET_CLASS(obj) \
OBJECT_GET_CLASS(AwRtcClass, (obj), TYPE_AW_RTC)
/** @} */
/**
* Allwinner RTC per-object instance state.
*/
typedef struct AwRtcState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
/**
* Actual year represented by the device when year counter is zero
*
* Can be overridden by the user using the corresponding 'base-year'
* property. The base year used by the target OS driver can vary, for
* example the Linux driver for sun6i uses 1970 while NetBSD uses 2000.
*/
int base_year;
/** Maps I/O registers in physical memory */
MemoryRegion iomem;
/** Array of hardware registers */
uint32_t regs[AW_RTC_REGS_NUM];
} AwRtcState;
/**
* Allwinner RTC class-level struct.
*
* This struct is filled by each sunxi device specific code
* such that the generic code can use this struct to support
* all devices.
*/
typedef struct AwRtcClass {
/*< private >*/
SysBusDeviceClass parent_class;
/*< public >*/
/** Defines device specific register map */
const uint8_t *regmap;
/** Size of the regmap in bytes */
size_t regmap_size;
/**
* Read device specific register
*
* @offset: register offset to read
* @return true if register read successful, false otherwise
*/
bool (*read)(AwRtcState *s, uint32_t offset);
/**
* Write device specific register
*
* @offset: register offset to write
* @data: value to set in register
* @return true if register write successful, false otherwise
*/
bool (*write)(AwRtcState *s, uint32_t offset, uint32_t data);
} AwRtcClass;
#endif /* HW_MISC_ALLWINNER_RTC_H */

View file

@ -0,0 +1,135 @@
/*
* Allwinner (sun4i and above) SD Host Controller emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_SD_ALLWINNER_SDHOST_H
#define HW_SD_ALLWINNER_SDHOST_H
#include "qom/object.h"
#include "hw/sysbus.h"
#include "hw/sd/sd.h"
/**
* Object model types
* @{
*/
/** Generic Allwinner SD Host Controller (abstract) */
#define TYPE_AW_SDHOST "allwinner-sdhost"
/** Allwinner sun4i family (A10, A12) */
#define TYPE_AW_SDHOST_SUN4I TYPE_AW_SDHOST "-sun4i"
/** Allwinner sun5i family and newer (A13, H2+, H3, etc) */
#define TYPE_AW_SDHOST_SUN5I TYPE_AW_SDHOST "-sun5i"
/** @} */
/**
* Object model macros
* @{
*/
#define AW_SDHOST(obj) \
OBJECT_CHECK(AwSdHostState, (obj), TYPE_AW_SDHOST)
#define AW_SDHOST_CLASS(klass) \
OBJECT_CLASS_CHECK(AwSdHostClass, (klass), TYPE_AW_SDHOST)
#define AW_SDHOST_GET_CLASS(obj) \
OBJECT_GET_CLASS(AwSdHostClass, (obj), TYPE_AW_SDHOST)
/** @} */
/**
* Allwinner SD Host Controller object instance state.
*/
typedef struct AwSdHostState {
/*< private >*/
SysBusDevice busdev;
/*< public >*/
/** Secure Digital (SD) bus, which connects to SD card (if present) */
SDBus sdbus;
/** Maps I/O registers in physical memory */
MemoryRegion iomem;
/** Interrupt output signal to notify CPU */
qemu_irq irq;
/** Number of bytes left in current DMA transfer */
uint32_t transfer_cnt;
/**
* @name Hardware Registers
* @{
*/
uint32_t global_ctl; /**< Global Control */
uint32_t clock_ctl; /**< Clock Control */
uint32_t timeout; /**< Timeout */
uint32_t bus_width; /**< Bus Width */
uint32_t block_size; /**< Block Size */
uint32_t byte_count; /**< Byte Count */
uint32_t command; /**< Command */
uint32_t command_arg; /**< Command Argument */
uint32_t response[4]; /**< Command Response */
uint32_t irq_mask; /**< Interrupt Mask */
uint32_t irq_status; /**< Raw Interrupt Status */
uint32_t status; /**< Status */
uint32_t fifo_wlevel; /**< FIFO Water Level */
uint32_t fifo_func_sel; /**< FIFO Function Select */
uint32_t debug_enable; /**< Debug Enable */
uint32_t auto12_arg; /**< Auto Command 12 Argument */
uint32_t newtiming_set; /**< SD New Timing Set */
uint32_t newtiming_debug; /**< SD New Timing Debug */
uint32_t hardware_rst; /**< Hardware Reset */
uint32_t dmac; /**< Internal DMA Controller Control */
uint32_t desc_base; /**< Descriptor List Base Address */
uint32_t dmac_status; /**< Internal DMA Controller Status */
uint32_t dmac_irq; /**< Internal DMA Controller IRQ Enable */
uint32_t card_threshold; /**< Card Threshold Control */
uint32_t startbit_detect; /**< eMMC DDR Start Bit Detection Control */
uint32_t response_crc; /**< Response CRC */
uint32_t data_crc[8]; /**< Data CRC */
uint32_t status_crc; /**< Status CRC */
/** @} */
} AwSdHostState;
/**
* Allwinner SD Host Controller class-level struct.
*
* This struct is filled by each sunxi device specific code
* such that the generic code can use this struct to support
* all devices.
*/
typedef struct AwSdHostClass {
/*< private >*/
SysBusDeviceClass parent_class;
/*< public >*/
/** Maximum buffer size in bytes per DMA descriptor */
size_t max_desc_size;
} AwSdHostClass;
#endif /* HW_SD_ALLWINNER_SDHOST_H */

View file

@ -11780,7 +11780,40 @@ bool get_phys_addr(CPUARMState *env, target_ulong address,
/* Definitely a real MMU, not an MPU */
if (regime_translation_disabled(env, mmu_idx)) {
/* MMU disabled. */
/*
* MMU disabled. S1 addresses within aa64 translation regimes are
* still checked for bounds -- see AArch64.TranslateAddressS1Off.
*/
if (mmu_idx != ARMMMUIdx_Stage2) {
int r_el = regime_el(env, mmu_idx);
if (arm_el_is_aa64(env, r_el)) {
int pamax = arm_pamax(env_archcpu(env));
uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
int addrtop, tbi;
tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
if (access_type == MMU_INST_FETCH) {
tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
}
tbi = (tbi >> extract64(address, 55, 1)) & 1;
addrtop = (tbi ? 55 : 63);
if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
fi->type = ARMFault_AddressSize;
fi->level = 0;
fi->stage2 = false;
return 1;
}
/*
* When TBI is disabled, we've just validated that all of the
* bits above PAMax are zero, so logically we only need to
* clear the top byte for TBI. But it's clearer to follow
* the pseudocode set of addrdesc.paddress.
*/
address = extract64(address, 0, 52);
}
}
*phys_ptr = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*page_size = TARGET_PAGE_SIZE;
@ -12468,6 +12501,18 @@ void arm_rebuild_hflags(CPUARMState *env)
env->hflags = rebuild_hflags_internal(env);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
@ -12478,7 +12523,7 @@ void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it too us, we need to recompute.
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
{

View file

@ -90,6 +90,7 @@ DEF_HELPER_4(msr_banked, void, env, i32, i32, i32)
DEF_HELPER_2(get_user_reg, i32, env, i32)
DEF_HELPER_3(set_user_reg, void, env, i32, i32)
DEF_HELPER_FLAGS_1(rebuild_hflags_m32_newel, TCG_CALL_NO_RWG, void, env)
DEF_HELPER_FLAGS_2(rebuild_hflags_m32, TCG_CALL_NO_RWG, void, env, int)
DEF_HELPER_FLAGS_1(rebuild_hflags_a32_newel, TCG_CALL_NO_RWG, void, env)
DEF_HELPER_FLAGS_2(rebuild_hflags_a32, TCG_CALL_NO_RWG, void, env, int)

View file

@ -874,15 +874,17 @@ int kvm_arch_irqchip_create(KVMState *s)
int kvm_arm_vgic_probe(void)
{
int val = 0;
if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
return 3;
} else if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
return 2;
} else {
return 0;
val |= KVM_ARM_VGIC_V3;
}
if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
val |= KVM_ARM_VGIC_V2;
}
return val;
}
int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)

View file

@ -409,17 +409,22 @@ int kvm_arch_put_registers(CPUState *cs, int level)
return ret;
}
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
write_cpustate_to_list(cpu, true);
if (!write_list_to_kvmstate(cpu, level)) {
return EINVAL;
}
/*
* Setting VCPU events should be triggered after syncing the registers
* to avoid overwriting potential changes made by KVM upon calling
* KVM_SET_VCPU_EVENTS ioctl
*/
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
kvm_arm_sync_mpstate_to_kvm(cpu);
return ret;

View file

@ -1094,17 +1094,22 @@ int kvm_arch_put_registers(CPUState *cs, int level)
return ret;
}
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
write_cpustate_to_list(cpu, true);
if (!write_list_to_kvmstate(cpu, level)) {
return -EINVAL;
}
/*
* Setting VCPU events should be triggered after syncing the registers
* to avoid overwriting potential changes made by KVM upon calling
* KVM_SET_VCPU_EVENTS ioctl
*/
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
kvm_arm_sync_mpstate_to_kvm(cpu);
return ret;

View file

@ -15,6 +15,9 @@
#include "exec/memory.h"
#include "qemu/error-report.h"
#define KVM_ARM_VGIC_V2 (1 << 0)
#define KVM_ARM_VGIC_V3 (1 << 1)
/**
* kvm_arm_vcpu_init:
* @cs: CPUState

View file

@ -228,7 +228,18 @@ static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
{
TCGv_i64 clean = new_tmp_a64(s);
/*
* In order to get the correct value in the FAR_ELx register,
* we must present the memory subsystem with the "dirty" address
* including the TBI. In system mode we can make this work via
* the TLB, dropping the TBI during translation. But for user-only
* mode we don't have that option, and must remove the top byte now.
*/
#ifdef CONFIG_USER_ONLY
gen_top_byte_ignore(s, clean, addr, s->tbid);
#else
tcg_gen_mov_i64(clean, addr);
#endif
return clean;
}

View file

@ -7296,7 +7296,7 @@ static int disas_coproc_insn(DisasContext *s, uint32_t insn)
if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
/*
* A write to any coprocessor regiser that ends a TB
* A write to any coprocessor register that ends a TB
* must rebuild the hflags for the next TB.
*/
TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
@ -8551,7 +8551,7 @@ static bool trans_MRS_v7m(DisasContext *s, arg_MRS_v7m *a)
static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a)
{
TCGv_i32 addr, reg, el;
TCGv_i32 addr, reg;
if (!arm_dc_feature(s, ARM_FEATURE_M)) {
return false;
@ -8561,9 +8561,8 @@ static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a)
gen_helper_v7m_msr(cpu_env, addr, reg);
tcg_temp_free_i32(addr);
tcg_temp_free_i32(reg);
el = tcg_const_i32(s->current_el);
gen_helper_rebuild_hflags_m32(cpu_env, el);
tcg_temp_free_i32(el);
/* If we wrote to CONTROL, the EL might have changed */
gen_helper_rebuild_hflags_m32_newel(cpu_env);
gen_lookup_tb(s);
return true;
}
@ -10590,7 +10589,7 @@ static bool trans_CPS(DisasContext *s, arg_CPS *a)
static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a)
{
TCGv_i32 tmp, addr;
TCGv_i32 tmp, addr, el;
if (!arm_dc_feature(s, ARM_FEATURE_M)) {
return false;
@ -10613,6 +10612,9 @@ static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a)
gen_helper_v7m_msr(cpu_env, addr, tmp);
tcg_temp_free_i32(addr);
}
el = tcg_const_i32(s->current_el);
gen_helper_rebuild_hflags_m32(cpu_env, el);
tcg_temp_free_i32(el);
tcg_temp_free_i32(tmp);
gen_lookup_tb(s);
return true;

View file

@ -16,10 +16,17 @@
from avocado import skipUnless
from avocado_qemu import Test
from avocado_qemu import exec_command_and_wait_for_pattern
from avocado_qemu import interrupt_interactive_console_until_pattern
from avocado_qemu import wait_for_console_pattern
from avocado.utils import process
from avocado.utils import archive
from avocado.utils.path import find_command, CmdNotFoundError
P7ZIP_AVAILABLE = True
try:
find_command('7z')
except CmdNotFoundError:
P7ZIP_AVAILABLE = False
class BootLinuxConsole(Test):
"""
@ -507,6 +514,229 @@ def test_arm_cubieboard_sata(self):
exec_command_and_wait_for_pattern(self, 'reboot',
'reboot: Restarting system')
def test_arm_orangepi(self):
"""
:avocado: tags=arch:arm
:avocado: tags=machine:orangepi-pc
"""
deb_url = ('https://apt.armbian.com/pool/main/l/'
'linux-4.20.7-sunxi/linux-image-dev-sunxi_5.75_armhf.deb')
deb_hash = '1334c29c44d984ffa05ed10de8c3361f33d78315'
deb_path = self.fetch_asset(deb_url, asset_hash=deb_hash)
kernel_path = self.extract_from_deb(deb_path,
'/boot/vmlinuz-4.20.7-sunxi')
dtb_path = '/usr/lib/linux-image-dev-sunxi/sun8i-h3-orangepi-pc.dtb'
dtb_path = self.extract_from_deb(deb_path, dtb_path)
self.vm.set_console()
kernel_command_line = (self.KERNEL_COMMON_COMMAND_LINE +
'console=ttyS0,115200n8 '
'earlycon=uart,mmio32,0x1c28000')
self.vm.add_args('-kernel', kernel_path,
'-dtb', dtb_path,
'-append', kernel_command_line)
self.vm.launch()
console_pattern = 'Kernel command line: %s' % kernel_command_line
self.wait_for_console_pattern(console_pattern)
def test_arm_orangepi_initrd(self):
"""
:avocado: tags=arch:arm
:avocado: tags=machine:orangepi-pc
"""
deb_url = ('https://apt.armbian.com/pool/main/l/'
'linux-4.20.7-sunxi/linux-image-dev-sunxi_5.75_armhf.deb')
deb_hash = '1334c29c44d984ffa05ed10de8c3361f33d78315'
deb_path = self.fetch_asset(deb_url, asset_hash=deb_hash)
kernel_path = self.extract_from_deb(deb_path,
'/boot/vmlinuz-4.20.7-sunxi')
dtb_path = '/usr/lib/linux-image-dev-sunxi/sun8i-h3-orangepi-pc.dtb'
dtb_path = self.extract_from_deb(deb_path, dtb_path)
initrd_url = ('https://github.com/groeck/linux-build-test/raw/'
'2eb0a73b5d5a28df3170c546ddaaa9757e1e0848/rootfs/'
'arm/rootfs-armv7a.cpio.gz')
initrd_hash = '604b2e45cdf35045846b8bbfbf2129b1891bdc9c'
initrd_path_gz = self.fetch_asset(initrd_url, asset_hash=initrd_hash)
initrd_path = os.path.join(self.workdir, 'rootfs.cpio')
archive.gzip_uncompress(initrd_path_gz, initrd_path)
self.vm.set_console()
kernel_command_line = (self.KERNEL_COMMON_COMMAND_LINE +
'console=ttyS0,115200 '
'panic=-1 noreboot')
self.vm.add_args('-kernel', kernel_path,
'-dtb', dtb_path,
'-initrd', initrd_path,
'-append', kernel_command_line,
'-no-reboot')
self.vm.launch()
self.wait_for_console_pattern('Boot successful.')
exec_command_and_wait_for_pattern(self, 'cat /proc/cpuinfo',
'Allwinner sun8i Family')
exec_command_and_wait_for_pattern(self, 'cat /proc/iomem',
'system-control@1c00000')
exec_command_and_wait_for_pattern(self, 'reboot',
'reboot: Restarting system')
def test_arm_orangepi_sd(self):
"""
:avocado: tags=arch:arm
:avocado: tags=machine:orangepi-pc
"""
deb_url = ('https://apt.armbian.com/pool/main/l/'
'linux-4.20.7-sunxi/linux-image-dev-sunxi_5.75_armhf.deb')
deb_hash = '1334c29c44d984ffa05ed10de8c3361f33d78315'
deb_path = self.fetch_asset(deb_url, asset_hash=deb_hash)
kernel_path = self.extract_from_deb(deb_path,
'/boot/vmlinuz-4.20.7-sunxi')
dtb_path = '/usr/lib/linux-image-dev-sunxi/sun8i-h3-orangepi-pc.dtb'
dtb_path = self.extract_from_deb(deb_path, dtb_path)
rootfs_url = ('http://storage.kernelci.org/images/rootfs/buildroot/'
'kci-2019.02/armel/base/rootfs.ext2.xz')
rootfs_hash = '692510cb625efda31640d1de0a8d60e26040f061'
rootfs_path_xz = self.fetch_asset(rootfs_url, asset_hash=rootfs_hash)
rootfs_path = os.path.join(self.workdir, 'rootfs.cpio')
archive.lzma_uncompress(rootfs_path_xz, rootfs_path)
self.vm.set_console()
kernel_command_line = (self.KERNEL_COMMON_COMMAND_LINE +
'console=ttyS0,115200 '
'root=/dev/mmcblk0 rootwait rw '
'panic=-1 noreboot')
self.vm.add_args('-kernel', kernel_path,
'-dtb', dtb_path,
'-drive', 'file=' + rootfs_path + ',if=sd,format=raw',
'-append', kernel_command_line,
'-no-reboot')
self.vm.launch()
shell_ready = "/bin/sh: can't access tty; job control turned off"
self.wait_for_console_pattern(shell_ready)
exec_command_and_wait_for_pattern(self, 'cat /proc/cpuinfo',
'Allwinner sun8i Family')
exec_command_and_wait_for_pattern(self, 'cat /proc/partitions',
'mmcblk0')
exec_command_and_wait_for_pattern(self, 'ifconfig eth0 up',
'eth0: Link is Up')
exec_command_and_wait_for_pattern(self, 'udhcpc eth0',
'udhcpc: lease of 10.0.2.15 obtained')
exec_command_and_wait_for_pattern(self, 'ping -c 3 10.0.2.2',
'3 packets transmitted, 3 packets received, 0% packet loss')
exec_command_and_wait_for_pattern(self, 'reboot',
'reboot: Restarting system')
@skipUnless(os.getenv('AVOCADO_ALLOW_LARGE_STORAGE'), 'storage limited')
@skipUnless(P7ZIP_AVAILABLE, '7z not installed')
def test_arm_orangepi_bionic(self):
"""
:avocado: tags=arch:arm
:avocado: tags=machine:orangepi-pc
"""
# This test download a 196MB compressed image and expand it to 932MB...
image_url = ('https://dl.armbian.com/orangepipc/archive/'
'Armbian_19.11.3_Orangepipc_bionic_current_5.3.9.7z')
image_hash = '196a8ffb72b0123d92cea4a070894813d305c71e'
image_path_7z = self.fetch_asset(image_url, asset_hash=image_hash)
image_name = 'Armbian_19.11.3_Orangepipc_bionic_current_5.3.9.img'
image_path = os.path.join(self.workdir, image_name)
process.run("7z e -o%s %s" % (self.workdir, image_path_7z))
self.vm.set_console()
self.vm.add_args('-drive', 'file=' + image_path + ',if=sd,format=raw',
'-nic', 'user',
'-no-reboot')
self.vm.launch()
kernel_command_line = (self.KERNEL_COMMON_COMMAND_LINE +
'console=ttyS0,115200 '
'loglevel=7 '
'nosmp '
'systemd.default_timeout_start_sec=9000 '
'systemd.mask=armbian-zram-config.service '
'systemd.mask=armbian-ramlog.service')
self.wait_for_console_pattern('U-Boot SPL')
self.wait_for_console_pattern('Autoboot in ')
exec_command_and_wait_for_pattern(self, ' ', '=>')
exec_command_and_wait_for_pattern(self, "setenv extraargs '" +
kernel_command_line + "'", '=>')
exec_command_and_wait_for_pattern(self, 'boot', 'Starting kernel ...');
self.wait_for_console_pattern('systemd[1]: Set hostname ' +
'to <orangepipc>')
self.wait_for_console_pattern('Starting Load Kernel Modules...')
@skipUnless(os.getenv('AVOCADO_ALLOW_LARGE_STORAGE'), 'storage limited')
def test_arm_orangepi_uboot_netbsd9(self):
"""
:avocado: tags=arch:arm
:avocado: tags=machine:orangepi-pc
"""
# This test download a 304MB compressed image and expand it to 1.3GB...
deb_url = ('http://snapshot.debian.org/archive/debian/'
'20200108T145233Z/pool/main/u/u-boot/'
'u-boot-sunxi_2020.01%2Bdfsg-1_armhf.deb')
deb_hash = 'f67f404a80753ca3d1258f13e38f2b060e13db99'
deb_path = self.fetch_asset(deb_url, asset_hash=deb_hash)
# We use the common OrangePi PC 'plus' build of U-Boot for our secondary
# program loader (SPL). We will then set the path to the more specific
# OrangePi "PC" device tree blob with 'setenv fdtfile' in U-Boot prompt,
# before to boot NetBSD.
uboot_path = '/usr/lib/u-boot/orangepi_plus/u-boot-sunxi-with-spl.bin'
uboot_path = self.extract_from_deb(deb_path, uboot_path)
image_url = ('https://cdn.netbsd.org/pub/NetBSD/NetBSD-9.0/'
'evbarm-earmv7hf/binary/gzimg/armv7.img.gz')
image_hash = '2babb29d36d8360adcb39c09e31060945259917a'
image_path_gz = self.fetch_asset(image_url, asset_hash=image_hash)
image_path = os.path.join(self.workdir, 'armv7.img')
image_drive_args = 'if=sd,format=raw,snapshot=on,file=' + image_path
archive.gzip_uncompress(image_path_gz, image_path)
# dd if=u-boot-sunxi-with-spl.bin of=armv7.img bs=1K seek=8 conv=notrunc
with open(uboot_path, 'rb') as f_in:
with open(image_path, 'r+b') as f_out:
f_out.seek(8 * 1024)
shutil.copyfileobj(f_in, f_out)
# Extend image, to avoid that NetBSD thinks the partition
# inside the image is larger than device size itself
f_out.seek(0, 2)
f_out.seek(64 * 1024 * 1024, 1)
f_out.write(bytearray([0x00]))
self.vm.set_console()
self.vm.add_args('-nic', 'user',
'-drive', image_drive_args,
'-global', 'allwinner-rtc.base-year=2000',
'-no-reboot')
self.vm.launch()
wait_for_console_pattern(self, 'U-Boot 2020.01+dfsg-1')
interrupt_interactive_console_until_pattern(self,
'Hit any key to stop autoboot:',
'switch to partitions #0, OK')
exec_command_and_wait_for_pattern(self, '', '=>')
cmd = 'setenv bootargs root=ld0a'
exec_command_and_wait_for_pattern(self, cmd, '=>')
cmd = 'setenv kernel netbsd-GENERIC.ub'
exec_command_and_wait_for_pattern(self, cmd, '=>')
cmd = 'setenv fdtfile dtb/sun8i-h3-orangepi-pc.dtb'
exec_command_and_wait_for_pattern(self, cmd, '=>')
cmd = ("setenv bootcmd 'fatload mmc 0:1 ${kernel_addr_r} ${kernel}; "
"fatload mmc 0:1 ${fdt_addr_r} ${fdtfile}; "
"fdt addr ${fdt_addr_r}; "
"bootm ${kernel_addr_r} - ${fdt_addr_r}'")
exec_command_and_wait_for_pattern(self, cmd, '=>')
exec_command_and_wait_for_pattern(self, 'boot',
'Booting kernel from Legacy Image')
wait_for_console_pattern(self, 'Starting kernel ...')
wait_for_console_pattern(self, 'NetBSD 9.0 (GENERIC)')
# Wait for user-space
wait_for_console_pattern(self, 'Starting root file system check')
def test_s390x_s390_ccw_virtio(self):
"""
:avocado: tags=arch:s390x