64 bit support

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@76 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2003-04-07 21:32:22 +00:00
parent 43d4145a98
commit ce11fedc6e

269
dyngen.c
View file

@ -22,25 +22,62 @@
#include <string.h>
#include <stdarg.h>
#include <inttypes.h>
#include <elf.h>
#include <unistd.h>
#include <fcntl.h>
#include "thunk.h"
#include "config.h"
/* temporary fix to make it compile with old elf headers (XXX: use
included elf.h in all cases) */
#ifndef EM_390
#define EM_S390 22 /* IBM S390 */
#define R_390_8 1 /* Direct 8 bit. */
#define R_390_16 3 /* Direct 16 bit. */
#define R_390_32 4 /* Direct 32 bit. */
/* elf format definitions. We use these macros to test the CPU to
allow cross compilation (this tool must be ran on the build
platform) */
#if defined(HOST_I386)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_386
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
#undef ELF_USES_RELOCA
#elif defined(HOST_PPC)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_PPC
#define elf_check_arch(x) ((x) == EM_PPC)
#define ELF_USES_RELOCA
#elif defined(HOST_S390)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_S390
#define elf_check_arch(x) ((x) == EM_S390)
#define ELF_USES_RELOCA
#elif defined(HOST_ALPHA)
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_ALPHA
#define elf_check_arch(x) ((x) == EM_ALPHA)
#define ELF_USES_RELOCA
#else
#error unsupported CPU - please update the code
#endif
#if ELF_CLASS == ELFCLASS32
typedef int32_t host_long;
typedef uint32_t host_ulong;
#else
typedef int64_t host_long;
typedef uint64_t host_ulong;
#endif
#include "elf.h"
#include "thunk.h"
/* all dynamically generated functions begin with this code */
#define OP_PREFIX "op_"
int elf_must_swap(Elf32_Ehdr *h)
int elf_must_swap(struct elfhdr *h)
{
union {
uint32_t i;
@ -62,19 +99,25 @@ void swab32s(uint32_t *p)
*p = bswap32(*p);
}
void swab64s(uint32_t *p)
void swab64s(uint64_t *p)
{
*p = bswap64(*p);
}
void elf_swap_ehdr(Elf32_Ehdr *h)
#if ELF_CLASS == ELFCLASS32
#define swabls(x) swab32s(x)
#else
#define swabls(x) swab64s(x)
#endif
void elf_swap_ehdr(struct elfhdr *h)
{
swab16s(&h->e_type); /* Object file type */
swab16s(&h-> e_machine); /* Architecture */
swab32s(&h-> e_version); /* Object file version */
swab32s(&h-> e_entry); /* Entry point virtual address */
swab32s(&h-> e_phoff); /* Program header table file offset */
swab32s(&h-> e_shoff); /* Section header table file offset */
swabls(&h-> e_entry); /* Entry point virtual address */
swabls(&h-> e_phoff); /* Program header table file offset */
swabls(&h-> e_shoff); /* Section header table file offset */
swab32s(&h-> e_flags); /* Processor-specific flags */
swab16s(&h-> e_ehsize); /* ELF header size in bytes */
swab16s(&h-> e_phentsize); /* Program header table entry size */
@ -84,34 +127,33 @@ void elf_swap_ehdr(Elf32_Ehdr *h)
swab16s(&h-> e_shstrndx); /* Section header string table index */
}
void elf_swap_shdr(Elf32_Shdr *h)
void elf_swap_shdr(struct elf_shdr *h)
{
swab32s(&h-> sh_name); /* Section name (string tbl index) */
swab32s(&h-> sh_type); /* Section type */
swab32s(&h-> sh_flags); /* Section flags */
swab32s(&h-> sh_addr); /* Section virtual addr at execution */
swab32s(&h-> sh_offset); /* Section file offset */
swab32s(&h-> sh_size); /* Section size in bytes */
swabls(&h-> sh_flags); /* Section flags */
swabls(&h-> sh_addr); /* Section virtual addr at execution */
swabls(&h-> sh_offset); /* Section file offset */
swabls(&h-> sh_size); /* Section size in bytes */
swab32s(&h-> sh_link); /* Link to another section */
swab32s(&h-> sh_info); /* Additional section information */
swab32s(&h-> sh_addralign); /* Section alignment */
swab32s(&h-> sh_entsize); /* Entry size if section holds table */
swabls(&h-> sh_addralign); /* Section alignment */
swabls(&h-> sh_entsize); /* Entry size if section holds table */
}
void elf_swap_phdr(Elf32_Phdr *h)
void elf_swap_phdr(struct elf_phdr *h)
{
swab32s(&h->p_type); /* Segment type */
swab32s(&h->p_offset); /* Segment file offset */
swab32s(&h->p_vaddr); /* Segment virtual address */
swab32s(&h->p_paddr); /* Segment physical address */
swab32s(&h->p_filesz); /* Segment size in file */
swab32s(&h->p_memsz); /* Segment size in memory */
swabls(&h->p_offset); /* Segment file offset */
swabls(&h->p_vaddr); /* Segment virtual address */
swabls(&h->p_paddr); /* Segment physical address */
swabls(&h->p_filesz); /* Segment size in file */
swabls(&h->p_memsz); /* Segment size in memory */
swab32s(&h->p_flags); /* Segment flags */
swab32s(&h->p_align); /* Segment alignment */
swabls(&h->p_align); /* Segment alignment */
}
int do_swap;
int e_machine;
uint16_t get16(uint16_t *p)
{
@ -157,12 +199,12 @@ void __attribute__((noreturn)) error(const char *fmt, ...)
}
Elf32_Shdr *find_elf_section(Elf32_Shdr *shdr, int shnum, const char *shstr,
const char *name)
struct elf_shdr *find_elf_section(struct elf_shdr *shdr, int shnum, const char *shstr,
const char *name)
{
int i;
const char *shname;
Elf32_Shdr *sec;
struct elf_shdr *sec;
for(i = 0; i < shnum; i++) {
sec = &shdr[i];
@ -209,20 +251,21 @@ int strstart(const char *str, const char *val, const char **ptr)
#define MAX_ARGS 3
/* generate op code */
void gen_code(const char *name, unsigned long offset, unsigned long size,
FILE *outfile, uint8_t *text, void *relocs, int nb_relocs, int reloc_sh_type,
Elf32_Sym *symtab, char *strtab, int gen_switch)
void gen_code(const char *name, host_ulong offset, host_ulong size,
FILE *outfile, uint8_t *text, ELF_RELOC *relocs, int nb_relocs, int reloc_sh_type,
ElfW(Sym) *symtab, char *strtab, int gen_switch)
{
int copy_size = 0;
uint8_t *p_start, *p_end;
int nb_args, i;
int nb_args, i, n;
uint8_t args_present[MAX_ARGS];
const char *sym_name, *p;
ELF_RELOC *rel;
/* compute exact size excluding return instruction */
p_start = text + offset;
p_end = p_start + size;
switch(e_machine) {
switch(ELF_ARCH) {
case EM_386:
{
uint8_t *p;
@ -256,40 +299,20 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
copy_size = p - p_start;
}
break;
default:
error("unsupported CPU (%d)", e_machine);
}
/* compute the number of arguments by looking at the relocations */
for(i = 0;i < MAX_ARGS; i++)
args_present[i] = 0;
if (reloc_sh_type == SHT_REL) {
Elf32_Rel *rel;
int n;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (strstart(sym_name, "__op_param", &p)) {
n = strtoul(p, NULL, 10);
if (n >= MAX_ARGS)
error("too many arguments in %s", name);
args_present[n - 1] = 1;
}
}
}
} else {
Elf32_Rela *rel;
int n;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (strstart(sym_name, "__op_param", &p)) {
n = strtoul(p, NULL, 10);
if (n >= MAX_ARGS)
error("too many arguments in %s", name);
args_present[n - 1] = 1;
}
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name;
if (strstart(sym_name, "__op_param", &p)) {
n = strtoul(p, NULL, 10);
if (n >= MAX_ARGS)
error("too many arguments in %s", name);
args_present[n - 1] = 1;
}
}
}
@ -319,24 +342,11 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
}
fprintf(outfile, " extern void %s();\n", name);
if (reloc_sh_type == SHT_REL) {
Elf32_Rel *rel;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (!strstart(sym_name, "__op_param", &p)) {
fprintf(outfile, "extern char %s;\n", sym_name);
}
}
}
} else {
Elf32_Rela *rel;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (!strstart(sym_name, "__op_param", &p)) {
fprintf(outfile, "extern char %s;\n", sym_name);
}
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (!strstart(sym_name, "__op_param", &p)) {
fprintf(outfile, "extern char %s;\n", sym_name);
}
}
}
@ -347,13 +357,11 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
}
/* patch relocations */
switch(e_machine) {
case EM_386:
#if defined(HOST_I386)
{
Elf32_Rel *rel;
char name[256];
int type;
long addend;
int addend;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
@ -366,11 +374,11 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
addend = get32((uint32_t *)(text + rel->r_offset));
switch(type) {
case R_386_32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s + %ld;\n",
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
rel->r_offset - offset, name, addend);
break;
case R_386_PC32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s - (long)(gen_code_ptr + %ld) + %ld;\n",
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %d) + %d;\n",
rel->r_offset - offset, name, rel->r_offset - offset, addend);
break;
default:
@ -379,13 +387,11 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
}
}
}
break;
case EM_PPC:
#elif defined(HOST_PPC)
{
Elf32_Rela *rel;
char name[256];
int type;
long addend;
int addend;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
@ -398,24 +404,24 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
addend = rel->r_addend;
switch(type) {
case R_PPC_ADDR32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s + %ld;\n",
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
rel->r_offset - offset, name, addend);
break;
case R_PPC_ADDR16_LO:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %ld) = (%s + %ld);\n",
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d);\n",
rel->r_offset - offset, name, addend);
break;
case R_PPC_ADDR16_HI:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %ld) = (%s + %ld) >> 16;\n",
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d) >> 16;\n",
rel->r_offset - offset, name, addend);
break;
case R_PPC_ADDR16_HA:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %ld) = (%s + %ld + 0x8000) >> 16;\n",
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d + 0x8000) >> 16;\n",
rel->r_offset - offset, name, addend);
break;
case R_PPC_REL24:
/* warning: must be at 32 MB distancy */
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = (*(uint32_t *)(gen_code_ptr + %ld) & ~0x03fffffc) | ((%s - (long)(gen_code_ptr + %ld) + %ld) & 0x03fffffc);\n",
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (*(uint32_t *)(gen_code_ptr + %d) & ~0x03fffffc) | ((%s - (long)(gen_code_ptr + %d) + %d) & 0x03fffffc);\n",
rel->r_offset - offset, rel->r_offset - offset, name, rel->r_offset - offset, addend);
break;
default:
@ -424,13 +430,11 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
}
}
}
break;
case EM_S390:
#elif defined(HOST_S390)
{
Elf32_Rela *rel;
char name[256];
int type;
long addend;
int addend;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
@ -443,15 +447,15 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
addend = rel->r_addend;
switch(type) {
case R_390_32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s + %ld;\n",
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
rel->r_offset - offset, name, addend);
break;
case R_390_16:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %ld) = %s + %ld;\n",
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = %s + %d;\n",
rel->r_offset - offset, name, addend);
break;
case R_390_8:
fprintf(outfile, " *(uint8_t *)(gen_code_ptr + %ld) = %s + %ld;\n",
fprintf(outfile, " *(uint8_t *)(gen_code_ptr + %d) = %s + %d;\n",
rel->r_offset - offset, name, addend);
break;
default:
@ -460,10 +464,9 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
}
}
}
break;
default:
error("unsupported CPU for relocations (%d)", e_machine);
}
#else
#error unsupported CPU
#endif
fprintf(outfile, " gen_code_ptr += %d;\n", copy_size);
fprintf(outfile, "}\n");
fprintf(outfile, "break;\n\n");
@ -492,11 +495,10 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
int load_elf(const char *filename, FILE *outfile, int do_print_enum)
{
int fd;
Elf32_Ehdr ehdr;
Elf32_Shdr *sec, *shdr, *symtab_sec, *strtab_sec, *text_sec;
struct elfhdr ehdr;
struct elf_shdr *sec, *shdr, *symtab_sec, *strtab_sec, *text_sec;
int i, j, nb_syms;
Elf32_Sym *symtab, *sym;
const char *cpu_name;
ElfW(Sym) *symtab, *sym;
char *shstr, *strtab;
uint8_t *text;
void *relocs;
@ -515,7 +517,6 @@ int load_elf(const char *filename, FILE *outfile, int do_print_enum)
|| ehdr.e_ident[EI_MAG1] != ELFMAG1
|| ehdr.e_ident[EI_MAG2] != ELFMAG2
|| ehdr.e_ident[EI_MAG3] != ELFMAG3
|| ehdr.e_ident[EI_CLASS] != ELFCLASS32
|| ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
error("bad ELF header");
}
@ -523,14 +524,17 @@ int load_elf(const char *filename, FILE *outfile, int do_print_enum)
do_swap = elf_must_swap(&ehdr);
if (do_swap)
elf_swap_ehdr(&ehdr);
if (ehdr.e_ident[EI_CLASS] != ELF_CLASS)
error("Unsupported ELF class");
if (ehdr.e_type != ET_REL)
error("ELF object file expected");
if (ehdr.e_version != EV_CURRENT)
error("Invalid ELF version");
e_machine = ehdr.e_machine;
if (!elf_check_arch(ehdr.e_machine))
error("Unsupported CPU (e_machine=%d)", ehdr.e_machine);
/* read section headers */
shdr = load_data(fd, ehdr.e_shoff, ehdr.e_shnum * sizeof(Elf32_Shdr));
shdr = load_data(fd, ehdr.e_shoff, ehdr.e_shnum * sizeof(struct elf_shdr));
if (do_swap) {
for(i = 0; i < ehdr.e_shnum; i++) {
elf_swap_shdr(&shdr[i]);
@ -590,35 +594,12 @@ int load_elf(const char *filename, FILE *outfile, int do_print_enum)
if (do_swap) {
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
swab32s(&sym->st_name);
swab32s(&sym->st_value);
swab32s(&sym->st_size);
swabls(&sym->st_value);
swabls(&sym->st_size);
swab16s(&sym->st_shndx);
}
}
switch(e_machine) {
case EM_386:
cpu_name = "i386";
break;
case EM_PPC:
cpu_name = "ppc";
break;
case EM_MIPS:
cpu_name = "mips";
break;
case EM_ARM:
cpu_name = "arm";
break;
case EM_SPARC:
cpu_name = "sparc";
break;
case EM_S390:
cpu_name = "s390";
break;
default:
error("unsupported CPU (e_machine=%d)", e_machine);
}
if (do_print_enum) {
fprintf(outfile, "DEF(end, 0)\n");
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
@ -669,7 +650,7 @@ fprintf(outfile,
);
/* generate a return */
switch(e_machine) {
switch(ELF_ARCH) {
case EM_386:
fprintf(outfile, "*gen_code_ptr++ = 0xc3; /* ret */\n");
break;
@ -679,8 +660,6 @@ fprintf(outfile,
case EM_S390:
fprintf(outfile, "*((uint16_t *)gen_code_ptr)++ = 0x07fe; /* br %%r14 */\n");
break;
default:
error("no return generation for cpu '%s'", cpu_name);
}
fprintf(outfile, "return gen_code_ptr - gen_code_buf;\n");