hw/hppa: Implement DINO system board

Now that we have the prerequisites in target/hppa/,
implement the hardware for a PA7100LC.

This also enables build for hppa-softmmu.

Signed-off-by: Helge Deller <deller@gmx.de>
[rth: Since it is all new code, squashed all branch development
withing hw/hppa/ to a single patch.]
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Helge Deller 2017-10-08 16:47:27 -04:00 committed by Richard Henderson
parent 7b93dab51e
commit a72bd606ca
9 changed files with 938 additions and 2 deletions

View file

@ -156,6 +156,7 @@ trace-events-subdirs += hw/vfio
trace-events-subdirs += hw/acpi
trace-events-subdirs += hw/arm
trace-events-subdirs += hw/alpha
trace-events-subdirs += hw/hppa
trace-events-subdirs += hw/xen
trace-events-subdirs += hw/ide
trace-events-subdirs += ui

View file

@ -0,0 +1,14 @@
include pci.mak
include usb.mak
CONFIG_SERIAL=y
CONFIG_SERIAL_ISA=y
CONFIG_ISA_BUS=y
CONFIG_I8259=y
CONFIG_VIRTIO_PCI=$(CONFIG_PCI)
CONFIG_VIRTIO=y
CONFIG_E1000_PCI=y
CONFIG_IDE_ISA=y
CONFIG_IDE_CMD646=y
# CONFIG_IDE_MMIO=y
CONFIG_VIRTIO_VGA=y
CONFIG_MC146818RTC=y

View file

@ -1 +1 @@
obj-y += machine.o
obj-y += machine.o pci.o dino.o

518
hw/hppa/dino.c Normal file
View file

@ -0,0 +1,518 @@
/*
* HP-PARISC Dino PCI chipset emulation.
*
* (C) 2017 by Helge Deller <deller@gmx.de>
*
* This work is licensed under the GNU GPL license version 2 or later.
*
* Documentation available at:
* https://parisc.wiki.kernel.org/images-parisc/9/91/Dino_ers.pdf
* https://parisc.wiki.kernel.org/images-parisc/7/70/Dino_3_1_Errata.pdf
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "hw/hw.h"
#include "hw/devices.h"
#include "sysemu/sysemu.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bus.h"
#include "hppa_sys.h"
#include "exec/address-spaces.h"
#define TYPE_DINO_PCI_HOST_BRIDGE "dino-pcihost"
#define DINO_IAR0 0x004
#define DINO_IODC 0x008
#define DINO_IRR0 0x00C /* RO */
#define DINO_IAR1 0x010
#define DINO_IRR1 0x014 /* RO */
#define DINO_IMR 0x018
#define DINO_IPR 0x01C
#define DINO_TOC_ADDR 0x020
#define DINO_ICR 0x024
#define DINO_ILR 0x028 /* RO */
#define DINO_IO_COMMAND 0x030 /* WO */
#define DINO_IO_STATUS 0x034 /* RO */
#define DINO_IO_CONTROL 0x038
#define DINO_IO_GSC_ERR_RESP 0x040 /* RO */
#define DINO_IO_ERR_INFO 0x044 /* RO */
#define DINO_IO_PCI_ERR_RESP 0x048 /* RO */
#define DINO_IO_FBB_EN 0x05c
#define DINO_IO_ADDR_EN 0x060
#define DINO_PCI_CONFIG_ADDR 0x064
#define DINO_PCI_CONFIG_DATA 0x068
#define DINO_PCI_IO_DATA 0x06c
#define DINO_PCI_MEM_DATA 0x070 /* Dino 3.x only */
#define DINO_GSC2X_CONFIG 0x7b4 /* RO */
#define DINO_GMASK 0x800
#define DINO_PAMR 0x804
#define DINO_PAPR 0x808
#define DINO_DAMODE 0x80c
#define DINO_PCICMD 0x810
#define DINO_PCISTS 0x814 /* R/WC */
#define DINO_MLTIM 0x81c
#define DINO_BRDG_FEAT 0x820
#define DINO_PCIROR 0x824
#define DINO_PCIWOR 0x828
#define DINO_TLTIM 0x830
#define DINO_IRQS 11 /* bits 0-10 are architected */
#define DINO_IRR_MASK 0x5ff /* only 10 bits are implemented */
#define DINO_LOCAL_IRQS (DINO_IRQS + 1)
#define DINO_MASK_IRQ(x) (1 << (x))
#define PCIINTA 0x001
#define PCIINTB 0x002
#define PCIINTC 0x004
#define PCIINTD 0x008
#define PCIINTE 0x010
#define PCIINTF 0x020
#define GSCEXTINT 0x040
/* #define xxx 0x080 - bit 7 is "default" */
/* #define xxx 0x100 - bit 8 not used */
/* #define xxx 0x200 - bit 9 not used */
#define RS232INT 0x400
#define DINO_MEM_CHUNK_SIZE (8 * 1024 * 1024) /* 8MB */
#define DINO_PCI_HOST_BRIDGE(obj) \
OBJECT_CHECK(DinoState, (obj), TYPE_DINO_PCI_HOST_BRIDGE)
typedef struct DinoState {
PCIHostState parent_obj;
/* PCI_CONFIG_ADDR is parent_obj.config_reg, via pci_host_conf_be_ops,
so that we can map PCI_CONFIG_DATA to pci_host_data_be_ops. */
uint32_t iar0;
uint32_t iar1;
uint32_t imr;
uint32_t ipr;
uint32_t icr;
uint32_t ilr;
uint32_t io_addr_en;
uint32_t io_control;
MemoryRegion this_mem;
MemoryRegion pci_mem;
MemoryRegion pci_mem_alias[32];
AddressSpace bm_as;
MemoryRegion bm;
MemoryRegion bm_ram_alias;
MemoryRegion bm_pci_alias;
MemoryRegion cpu0_eir_mem;
} DinoState;
/*
* Dino can forward memory accesses from the CPU in the range between
* 0xf0800000 and 0xff000000 to the PCI bus.
*/
static void gsc_to_pci_forwarding(DinoState *s)
{
uint32_t io_addr_en, tmp;
int enabled, i;
tmp = extract32(s->io_control, 7, 2);
enabled = (tmp == 0x01);
io_addr_en = s->io_addr_en;
memory_region_transaction_begin();
for (i = 1; i < 31; i++) {
MemoryRegion *mem = &s->pci_mem_alias[i];
if (enabled && (io_addr_en & (1U << i))) {
if (!memory_region_is_mapped(mem)) {
uint32_t addr = 0xf0000000 + i * DINO_MEM_CHUNK_SIZE;
memory_region_add_subregion(get_system_memory(), addr, mem);
}
} else if (memory_region_is_mapped(mem)) {
memory_region_del_subregion(get_system_memory(), mem);
}
}
memory_region_transaction_commit();
}
static bool dino_chip_mem_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write)
{
switch (addr) {
case DINO_IAR0:
case DINO_IAR1:
case DINO_IRR0:
case DINO_IRR1:
case DINO_IMR:
case DINO_IPR:
case DINO_ICR:
case DINO_ILR:
case DINO_IO_CONTROL:
case DINO_IO_ADDR_EN:
case DINO_PCI_IO_DATA:
return true;
case DINO_PCI_IO_DATA + 2:
return size <= 2;
case DINO_PCI_IO_DATA + 1:
case DINO_PCI_IO_DATA + 3:
return size == 1;
}
return false;
}
static MemTxResult dino_chip_read_with_attrs(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
DinoState *s = opaque;
MemTxResult ret = MEMTX_OK;
AddressSpace *io;
uint16_t ioaddr;
uint32_t val;
switch (addr) {
case DINO_PCI_IO_DATA ... DINO_PCI_IO_DATA + 3:
/* Read from PCI IO space. */
io = &address_space_io;
ioaddr = s->parent_obj.config_reg;
switch (size) {
case 1:
val = address_space_ldub(io, ioaddr, attrs, &ret);
break;
case 2:
val = address_space_lduw_be(io, ioaddr, attrs, &ret);
break;
case 4:
val = address_space_ldl_be(io, ioaddr, attrs, &ret);
break;
default:
g_assert_not_reached();
}
break;
case DINO_IO_ADDR_EN:
val = s->io_addr_en;
break;
case DINO_IO_CONTROL:
val = s->io_control;
break;
case DINO_IAR0:
val = s->iar0;
break;
case DINO_IAR1:
val = s->iar1;
break;
case DINO_IMR:
val = s->imr;
break;
case DINO_ICR:
val = s->icr;
break;
case DINO_IPR:
val = s->ipr;
/* Any read to IPR clears the register. */
s->ipr = 0;
break;
case DINO_ILR:
val = s->ilr;
break;
case DINO_IRR0:
val = s->ilr & s->imr & ~s->icr;
break;
case DINO_IRR1:
val = s->ilr & s->imr & s->icr;
break;
default:
/* Controlled by dino_chip_mem_valid above. */
g_assert_not_reached();
}
*data = val;
return ret;
}
static MemTxResult dino_chip_write_with_attrs(void *opaque, hwaddr addr,
uint64_t val, unsigned size,
MemTxAttrs attrs)
{
DinoState *s = opaque;
AddressSpace *io;
MemTxResult ret;
uint16_t ioaddr;
switch (addr) {
case DINO_IO_DATA ... DINO_PCI_IO_DATA + 3:
/* Write into PCI IO space. */
io = &address_space_io;
ioaddr = s->parent_obj.config_reg;
switch (size) {
case 1:
address_space_stb(io, ioaddr, val, attrs, &ret);
break;
case 2:
address_space_stw_be(io, ioaddr, val, attrs, &ret);
break;
case 4:
address_space_stl_be(io, ioaddr, val, attrs, &ret);
break;
default:
g_assert_not_reached();
}
return ret;
case DINO_IO_ADDR_EN:
/* Never allow first (=firmware) and last (=Dino) areas. */
s->io_addr_en = val & 0x7ffffffe;
gsc_to_pci_forwarding(s);
break;
case DINO_IO_CONTROL:
s->io_control = val;
gsc_to_pci_forwarding(s);
break;
case DINO_IAR0:
s->iar0 = val;
break;
case DINO_IAR1:
s->iar1 = val;
break;
case DINO_IMR:
s->imr = val;
break;
case DINO_ICR:
s->icr = val;
break;
case DINO_IPR:
/* Any write to IPR clears the register. */
s->ipr = 0;
break;
case DINO_ILR:
case DINO_IRR0:
case DINO_IRR1:
/* These registers are read-only. */
break;
default:
/* Controlled by dino_chip_mem_valid above. */
g_assert_not_reached();
}
return MEMTX_OK;
}
static const MemoryRegionOps dino_chip_ops = {
.read_with_attrs = dino_chip_read_with_attrs,
.write_with_attrs = dino_chip_write_with_attrs,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
.accepts = dino_chip_mem_valid,
},
.impl = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static const VMStateDescription vmstate_dino = {
.name = "Dino",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(iar0, DinoState),
VMSTATE_UINT32(iar1, DinoState),
VMSTATE_UINT32(imr, DinoState),
VMSTATE_UINT32(ipr, DinoState),
VMSTATE_UINT32(icr, DinoState),
VMSTATE_UINT32(ilr, DinoState),
VMSTATE_UINT32(io_addr_en, DinoState),
VMSTATE_UINT32(io_control, DinoState),
VMSTATE_END_OF_LIST()
}
};
/* Unlike pci_config_data_le_ops, no check of high bit set in config_reg. */
static uint64_t dino_config_data_read(void *opaque, hwaddr addr, unsigned len)
{
PCIHostState *s = opaque;
return pci_data_read(s->bus, s->config_reg | (addr & 3), len);
}
static void dino_config_data_write(void *opaque, hwaddr addr,
uint64_t val, unsigned len)
{
PCIHostState *s = opaque;
pci_data_write(s->bus, s->config_reg | (addr & 3), val, len);
}
static const MemoryRegionOps dino_config_data_ops = {
.read = dino_config_data_read,
.write = dino_config_data_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static AddressSpace *dino_pcihost_set_iommu(PCIBus *bus, void *opaque,
int devfn)
{
DinoState *s = opaque;
return &s->bm_as;
}
/*
* Dino interrupts are connected as shown on Page 78, Table 23
* (Little-endian bit numbers)
* 0 PCI INTA
* 1 PCI INTB
* 2 PCI INTC
* 3 PCI INTD
* 4 PCI INTE
* 5 PCI INTF
* 6 GSC External Interrupt
* 7 Bus Error for "less than fatal" mode
* 8 PS2
* 9 Unused
* 10 RS232
*/
static void dino_set_irq(void *opaque, int irq, int level)
{
DinoState *s = opaque;
uint32_t bit = 1u << irq;
uint32_t old_ilr = s->ilr;
if (level) {
uint32_t ena = bit & ~old_ilr;
s->ipr |= ena;
s->ilr = old_ilr | bit;
if (ena & s->imr) {
uint32_t iar = (ena & s->icr ? s->iar1 : s->iar0);
stl_be_phys(&address_space_memory, iar & -32, iar & 31);
}
} else {
s->ilr = old_ilr & ~bit;
}
}
static int dino_pci_map_irq(PCIDevice *d, int irq_num)
{
int slot = d->devfn >> 3;
int local_irq;
assert(irq_num >= 0 && irq_num <= 3);
local_irq = slot & 0x03;
return local_irq;
}
static void dino_set_timer_irq(void *opaque, int irq, int level)
{
/* ??? Not connected. */
}
static void dino_set_serial_irq(void *opaque, int irq, int level)
{
dino_set_irq(opaque, 10, level);
}
PCIBus *dino_init(MemoryRegion *addr_space,
qemu_irq *p_rtc_irq, qemu_irq *p_ser_irq)
{
DeviceState *dev;
DinoState *s;
PCIBus *b;
int i;
dev = qdev_create(NULL, TYPE_DINO_PCI_HOST_BRIDGE);
s = DINO_PCI_HOST_BRIDGE(dev);
/* Dino PCI access from main memory. */
memory_region_init_io(&s->this_mem, OBJECT(s), &dino_chip_ops,
s, "dino", 4096);
memory_region_add_subregion(addr_space, DINO_HPA, &s->this_mem);
/* Dino PCI config. */
memory_region_init_io(&s->parent_obj.conf_mem, OBJECT(&s->parent_obj),
&pci_host_conf_be_ops, dev, "pci-conf-idx", 4);
memory_region_init_io(&s->parent_obj.data_mem, OBJECT(&s->parent_obj),
&dino_config_data_ops, dev, "pci-conf-data", 4);
memory_region_add_subregion(&s->this_mem, DINO_PCI_CONFIG_ADDR,
&s->parent_obj.conf_mem);
memory_region_add_subregion(&s->this_mem, DINO_CONFIG_DATA,
&s->parent_obj.data_mem);
/* Dino PCI bus memory. */
memory_region_init(&s->pci_mem, OBJECT(s), "pci-memory", 1ull << 32);
b = pci_register_root_bus(dev, "pci", dino_set_irq, dino_pci_map_irq, s,
&s->pci_mem, get_system_io(),
PCI_DEVFN(0, 0), 32, TYPE_PCI_BUS);
s->parent_obj.bus = b;
qdev_init_nofail(dev);
/* Set up windows into PCI bus memory. */
for (i = 1; i < 31; i++) {
uint32_t addr = 0xf0000000 + i * DINO_MEM_CHUNK_SIZE;
char *name = g_strdup_printf("PCI Outbound Window %d", i);
memory_region_init_alias(&s->pci_mem_alias[i], OBJECT(s),
name, &s->pci_mem, addr,
DINO_MEM_CHUNK_SIZE);
}
/* Set up PCI view of memory: Bus master address space. */
memory_region_init(&s->bm, OBJECT(s), "bm-dino", 1ull << 32);
memory_region_init_alias(&s->bm_ram_alias, OBJECT(s),
"bm-system", addr_space, 0,
0xf0000000 + DINO_MEM_CHUNK_SIZE);
memory_region_init_alias(&s->bm_pci_alias, OBJECT(s),
"bm-pci", &s->pci_mem,
0xf0000000 + DINO_MEM_CHUNK_SIZE,
31 * DINO_MEM_CHUNK_SIZE);
memory_region_add_subregion(&s->bm, 0,
&s->bm_ram_alias);
memory_region_add_subregion(&s->bm,
0xf0000000 + DINO_MEM_CHUNK_SIZE,
&s->bm_pci_alias);
address_space_init(&s->bm_as, &s->bm, "pci-bm");
pci_setup_iommu(b, dino_pcihost_set_iommu, s);
*p_rtc_irq = qemu_allocate_irq(dino_set_timer_irq, s, 0);
*p_ser_irq = qemu_allocate_irq(dino_set_serial_irq, s, 0);
return b;
}
static int dino_pcihost_init(SysBusDevice *dev)
{
return 0;
}
static void dino_pcihost_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
k->init = dino_pcihost_init;
dc->vmsd = &vmstate_dino;
}
static const TypeInfo dino_pcihost_info = {
.name = TYPE_DINO_PCI_HOST_BRIDGE,
.parent = TYPE_PCI_HOST_BRIDGE,
.instance_size = sizeof(DinoState),
.class_init = dino_pcihost_class_init,
};
static void dino_register_types(void)
{
type_register_static(&dino_pcihost_info);
}
type_init(dino_register_types)

40
hw/hppa/hppa_hardware.h Normal file
View file

@ -0,0 +1,40 @@
/* HPPA cores and system support chips. */
#define FIRMWARE_START 0xf0000000
#define FIRMWARE_END 0xf0800000
#define DEVICE_HPA_LEN 0x00100000
#define GSC_HPA 0xffc00000
#define DINO_HPA 0xfff80000
#define DINO_UART_HPA 0xfff83000
#define DINO_UART_BASE 0xfff83800
#define DINO_SCSI_HPA 0xfff8c000
#define LASI_HPA 0xffd00000
#define LASI_UART_HPA 0xffd05000
#define LASI_SCSI_HPA 0xffd06000
#define LASI_LAN_HPA 0xffd07000
#define LASI_LPT_HPA 0xffd02000
#define LASI_AUDIO_HPA 0xffd04000
#define LASI_PS2KBD_HPA 0xffd08000
#define LASI_PS2MOU_HPA 0xffd08100
#define LASI_GFX_HPA 0xf8000000
#define CPU_HPA 0xfff10000
#define MEMORY_HPA 0xfffbf000
#define PCI_HPA DINO_HPA /* PCI bus */
#define IDE_HPA 0xf9000000 /* Boot disc controller */
/* offsets to DINO HPA: */
#define DINO_PCI_ADDR 0x064
#define DINO_CONFIG_DATA 0x068
#define DINO_IO_DATA 0x06c
#define PORT_PCI_CMD (PCI_HPA + DINO_PCI_ADDR)
#define PORT_PCI_DATA (PCI_HPA + DINO_CONFIG_DATA)
#define PORT_SERIAL1 (DINO_UART_HPA + 0x800)
#define PORT_SERIAL2 (LASI_UART_HPA + 0x800)
#define HPPA_MAX_CPUS 32 /* max. number of SMP CPUs */
#define CPU_CLOCK_MHZ 250 /* emulate a 250 MHz CPU */

24
hw/hppa/hppa_sys.h Normal file
View file

@ -0,0 +1,24 @@
/* HPPA cores and system support chips. */
#ifndef HW_HPPA_SYS_H
#define HW_HPPA_SYS_H
#include "target/hppa/cpu-qom.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_host.h"
#include "hw/ide.h"
#include "hw/i386/pc.h"
#include "hw/irq.h"
#include "hw/hppa/hppa_hardware.h"
PCIBus *dino_init(MemoryRegion *, qemu_irq *, qemu_irq *);
#define TYPE_DINO_PCI_HOST_BRIDGE "dino-pcihost"
/* hppa_pci.c. */
extern const MemoryRegionOps hppa_pci_ignore_ops;
extern const MemoryRegionOps hppa_pci_conf1_ops;
extern const MemoryRegionOps hppa_pci_iack_ops;
#endif

View file

@ -16,20 +16,265 @@
#include "hw/ide.h"
#include "hw/timer/i8254.h"
#include "hw/char/serial.h"
#include "hw/hppa/hppa_sys.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#define MAX_IDE_BUS 2
static ISABus *hppa_isa_bus(void)
{
ISABus *isa_bus;
qemu_irq *isa_irqs;
MemoryRegion *isa_region;
isa_region = g_new(MemoryRegion, 1);
memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops,
NULL, "isa-io", 0x800);
memory_region_add_subregion(get_system_memory(), IDE_HPA,
isa_region);
isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region,
&error_abort);
isa_irqs = i8259_init(isa_bus,
/* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */
NULL);
isa_bus_irqs(isa_bus, isa_irqs);
return isa_bus;
}
static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr)
{
addr &= (0x10000000 - 1);
return addr;
}
static HPPACPU *cpu[HPPA_MAX_CPUS];
static uint64_t firmware_entry;
static void machine_hppa_init(MachineState *machine)
{
const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
const char *initrd_filename = machine->initrd_filename;
PCIBus *pci_bus;
ISABus *isa_bus;
qemu_irq rtc_irq, serial_irq;
char *firmware_filename;
uint64_t firmware_low, firmware_high;
long size;
uint64_t kernel_entry = 0, kernel_low, kernel_high;
MemoryRegion *addr_space = get_system_memory();
MemoryRegion *rom_region;
MemoryRegion *ram_region;
MemoryRegion *cpu_region;
long i;
ram_size = machine->ram_size;
/* Create CPUs. */
for (i = 0; i < smp_cpus; i++) {
cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type));
cpu_region = g_new(MemoryRegion, 1);
memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops,
cpu[i], g_strdup_printf("cpu%ld-io-eir", i), 4);
memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000,
cpu_region);
}
/* Limit main memory. */
if (ram_size > FIRMWARE_START) {
machine->ram_size = ram_size = FIRMWARE_START;
}
/* Main memory region. */
ram_region = g_new(MemoryRegion, 1);
memory_region_allocate_system_memory(ram_region, OBJECT(machine),
"ram", ram_size);
memory_region_add_subregion(addr_space, 0, ram_region);
/* Init Dino (PCI host bus chip). */
pci_bus = dino_init(addr_space, &rtc_irq, &serial_irq);
assert(pci_bus);
/* Create ISA bus. */
isa_bus = hppa_isa_bus();
assert(isa_bus);
/* Realtime clock, used by firmware for PDC_TOD call. */
mc146818_rtc_init(isa_bus, 2000, rtc_irq);
/* Serial code setup. */
if (serial_hds[0]) {
uint32_t addr = DINO_UART_HPA + 0x800;
serial_mm_init(addr_space, addr, 0, serial_irq,
115200, serial_hds[0], DEVICE_BIG_ENDIAN);
fprintf(stderr, "Serial port created at 0x%x\n", addr);
}
/* SCSI disk setup. */
lsi53c895a_create(pci_bus);
/* Network setup. e1000 is good enough, failing Tulip support. */
for (i = 0; i < nb_nics; i++) {
pci_nic_init_nofail(&nd_table[i], pci_bus, "e1000", NULL);
}
/* Load firmware. Given that this is not "real" firmware,
but one explicitly written for the emulation, we might as
well load it directly from an ELF image. */
firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
bios_name ? bios_name :
"hppa-firmware.img");
if (firmware_filename == NULL) {
error_report("no firmware provided");
exit(1);
}
size = load_elf(firmware_filename, NULL,
NULL, &firmware_entry, &firmware_low, &firmware_high,
true, EM_PARISC, 0, 0);
/* Unfortunately, load_elf sign-extends reading elf32. */
firmware_entry = (target_ureg)firmware_entry;
firmware_low = (target_ureg)firmware_low;
firmware_high = (target_ureg)firmware_high;
if (size < 0) {
error_report("could not load firmware '%s'", firmware_filename);
exit(1);
}
fprintf(stderr, "Firmware loaded at 0x%08" PRIx64 "-0x%08" PRIx64
", entry at 0x%08" PRIx64 ".\n",
firmware_low, firmware_high, firmware_entry);
if (firmware_low < ram_size || firmware_high >= FIRMWARE_END) {
error_report("Firmware overlaps with memory or IO space");
exit(1);
}
g_free(firmware_filename);
rom_region = g_new(MemoryRegion, 1);
memory_region_allocate_system_memory(rom_region, OBJECT(machine),
"firmware",
(FIRMWARE_END - FIRMWARE_START));
memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region);
/* Load kernel */
if (kernel_filename) {
fprintf(stderr, "LOADING kernel '%s'\n", kernel_filename);
size = load_elf(kernel_filename, &cpu_hppa_to_phys,
NULL, &kernel_entry, &kernel_low, &kernel_high,
true, EM_PARISC, 0, 0);
/* Unfortunately, load_elf sign-extends reading elf32. */
kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry);
kernel_low = (target_ureg)kernel_low;
kernel_high = (target_ureg)kernel_high;
if (size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
fprintf(stderr, "Kernel loaded at 0x%08" PRIx64 "-0x%08" PRIx64
", entry at 0x%08" PRIx64 ", size %ld kB.\n",
kernel_low, kernel_high, kernel_entry, size / 1024);
if (kernel_cmdline) {
cpu[0]->env.gr[24] = 0x4000;
pstrcpy_targphys("cmdline", cpu[0]->env.gr[24],
TARGET_PAGE_SIZE, kernel_cmdline);
}
if (initrd_filename) {
ram_addr_t initrd_base;
long initrd_size;
initrd_size = get_image_size(initrd_filename);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
/* Load the initrd image high in memory.
Mirror the algorithm used by palo:
(1) Due to sign-extension problems and PDC,
put the initrd no higher than 1G.
(2) Reserve 64k for stack. */
initrd_base = MIN(ram_size, 1024 * 1024 * 1024);
initrd_base = initrd_base - 64 * 1024;
initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK;
if (initrd_base < kernel_high) {
error_report("kernel and initial ram disk too large!");
exit(1);
}
load_image_targphys(initrd_filename, initrd_base, initrd_size);
cpu[0]->env.gr[23] = initrd_base;
cpu[0]->env.gr[22] = initrd_base + initrd_size;
}
}
if (!kernel_entry) {
/* When booting via firmware, tell firmware if we want interactive
* mode (kernel_entry=1), and to boot from CD (gr[24]='d')
* or hard disc * (gr[24]='c').
*/
kernel_entry = boot_menu ? 1 : 0;
cpu[0]->env.gr[24] = machine->boot_order[0];
}
/* We jump to the firmware entry routine and pass the
* various parameters in registers. After firmware initialization,
* firmware will start the Linux kernel with ramdisk and cmdline.
*/
cpu[0]->env.gr[26] = ram_size;
cpu[0]->env.gr[25] = kernel_entry;
/* tell firmware how many SMP CPUs to present in inventory table */
cpu[0]->env.gr[21] = smp_cpus;
}
static void hppa_machine_reset(void)
{
int i;
qemu_devices_reset();
/* Start all CPUs at the firmware entry point.
* Monarch CPU will initialize firmware, secondary CPUs
* will enter a small idle look and wait for rendevouz. */
for (i = 0; i < smp_cpus; i++) {
cpu_set_pc(CPU(cpu[i]), firmware_entry);
cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000;
}
/* already initialized by machine_hppa_init()? */
if (cpu[0]->env.gr[26] == ram_size) {
return;
}
cpu[0]->env.gr[26] = ram_size;
cpu[0]->env.gr[25] = 0; /* no firmware boot menu */
cpu[0]->env.gr[24] = 'c';
/* gr22/gr23 unused, no initrd while reboot. */
cpu[0]->env.gr[21] = smp_cpus;
}
static void machine_hppa_machine_init(MachineClass *mc)
{
mc->desc = "HPPA generic machine";
mc->default_cpu_type = TYPE_HPPA_CPU;
mc->init = machine_hppa_init;
mc->reset = hppa_machine_reset;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 1;
mc->max_cpus = HPPA_MAX_CPUS;
mc->default_cpus = 1;
mc->is_default = 1;
mc->default_ram_size = 512 * M_BYTE;
mc->default_boot_order = "cd";

90
hw/hppa/pci.c Normal file
View file

@ -0,0 +1,90 @@
/*
* QEMU HP-PARISC PCI support functions.
*
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "hppa_sys.h"
#include "qemu/log.h"
#include "sysemu/sysemu.h"
#include "trace.h"
/* Fallback for unassigned PCI I/O operations. Avoids MCHK. */
static uint64_t ignore_read(void *opaque, hwaddr addr, unsigned size)
{
return 0;
}
static void ignore_write(void *opaque, hwaddr addr, uint64_t v, unsigned size)
{
}
const MemoryRegionOps hppa_pci_ignore_ops = {
.read = ignore_read,
.write = ignore_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
/* PCI config space reads/writes, to byte-word addressable memory. */
static uint64_t bw_conf1_read(void *opaque, hwaddr addr,
unsigned size)
{
PCIBus *b = opaque;
return pci_data_read(b, addr, size);
}
static void bw_conf1_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PCIBus *b = opaque;
pci_data_write(b, addr, val, size);
}
const MemoryRegionOps hppa_pci_conf1_ops = {
.read = bw_conf1_read,
.write = bw_conf1_write,
.endianness = DEVICE_BIG_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 4,
},
};
/* PCI/EISA Interrupt Acknowledge Cycle. */
static uint64_t iack_read(void *opaque, hwaddr addr, unsigned size)
{
return pic_read_irq(isa_pic);
}
static void special_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
trace_hppa_pci_iack_write();
}
const MemoryRegionOps hppa_pci_iack_ops = {
.read = iack_read,
.write = special_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};

4
hw/hppa/trace-events Normal file
View file

@ -0,0 +1,4 @@
# See docs/devel/tracing.txt for syntax documentation.
# hw/hppa/pci.c
hppa_pci_iack_write(void) ""