target-arm queue:

* new model of the ARM MPS2/MPS2+ FPGA based development board
  * clean up DISAS_* exit conditions and fix various regressions
    since commits e75449a346 8a6b28c7b5 (in particular including
    ones which broke OP-TEE guests)
  * make Cortex-M3 and M4 correctly default to 8 PMSA regions
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCAAGBQJZbLEBAAoJEDwlJe0UNgzeTqsP/06M2a/rswUKjIGAsXv+TeTl
 5N31g9E6Jr57HXK94Q0XtNkLlPwvIn97Dcv6VKg5+E8OgJx7ozldwZVFghWvMbOA
 mbaikzgTRRUf6ydNTA4DtWYZPkaLNT86Vmb2T1GKS0nmw2ymd+hMLNk5vZd1jhDv
 krHxwECI5e+u1INpw7erlQ2mqVP1NjvOuMNtjdAgtJ5tnjFRfQaVedePmr5qOuIK
 xkYMKMNtled/KS0gP4TaSu5S012iYhzrpKISN/g4WHT/8kllr+iEowNAOJSJ6l38
 oaBJJJCsLwnnV1nRClp4NNQv0Q/RXyIex5mPkeWERk4QU9adSDHnYJR7xn7JEyzV
 l9o+av28bXA7l3C8BOi3ahSGh5cDu+hif0Biml/Kke7e4+1Lp3/QWSQ+p/E5PDDq
 rhk65cg07PxSHeogN8hgu+RYN0gF3WBKASwUIDAkVdBsLlH8LVmoT5DtllL+6PyY
 cwCp3nWeu0q2YDxGOfCZrUC4YJMl8hqHoWbdVah8vLKV/w/JVUtVEIol0za50dzG
 ii6wOLqzV8GH0vkVa5x0InlH+t+/LtDRVkgHUT3/64eEEG+SsK/GmZeEtvcmp7GP
 7Qx+Dd7hPgh+uis0XZPz37vqyCYhaFNw1+M9EESlQKUKfdY8B5B5bpXVDOBF+0Zl
 daOoMw8xBd21DXNk9tCk
 =gVxi
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20170717' into staging

target-arm queue:
 * new model of the ARM MPS2/MPS2+ FPGA based development board
 * clean up DISAS_* exit conditions and fix various regressions
   since commits e75449a346 8a6b28c7b5 (in particular including
   ones which broke OP-TEE guests)
 * make Cortex-M3 and M4 correctly default to 8 PMSA regions

# gpg: Signature made Mon 17 Jul 2017 13:43:45 BST
# gpg:                using RSA key 0x3C2525ED14360CDE
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>"
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>"
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>"
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20170717:
  MAINTAINERS: Add entries for MPS2 board
  hw/arm/mps2: Add ethernet
  hw/arm/mps2: Add SCC
  hw/misc/mps2_scc: Implement MPS2 Serial Communication Controller
  hw/arm/mps2: Add timers
  hw/char/cmsdk-apb-timer: Implement CMSDK APB timer device
  hw/arm/mps2: Add UARTs
  hw/char/cmsdk-apb-uart.c: Implement CMSDK APB UART
  hw/arm/mps2: Implement skeleton mps2-an385 and mps2-an511 board models
  target/arm: use DISAS_EXIT for eret handling
  target/arm: use gen_goto_tb for ISB handling
  target/arm/translate: ensure gen_goto_tb sets exit flags
  target/arm/translate.h: expand comment on DISAS_EXIT
  target/arm/translate: make DISAS_UPDATE match declared semantics
  include/exec/exec-all: document common exit conditions
  target/arm: Make Cortex-M3 and M4 default to 8 PMSA regions
  qdev: support properties which don't set a default value
  qdev-properties.h: Explicitly set the default value for arraylen properties

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2017-07-18 10:35:06 +01:00
commit 6c4591566d
24 changed files with 1673 additions and 24 deletions

View file

@ -375,7 +375,7 @@ F: hw/*/allwinner*
F: include/hw/*/allwinner*
F: hw/arm/cubieboard.c
ARM PrimeCell
ARM PrimeCell and CMSDK devices
M: Peter Maydell <peter.maydell@linaro.org>
L: qemu-arm@nongnu.org
S: Maintained
@ -389,6 +389,10 @@ F: hw/intc/pl190.c
F: hw/sd/pl181.c
F: hw/timer/pl031.c
F: include/hw/arm/primecell.h
F: hw/timer/cmsdk-apb-timer.c
F: include/hw/timer/cmsdk-apb-timer.h
F: hw/char/cmsdk-apb-uart.c
F: include/hw/char/cmsdk-apb-uart.h
ARM cores
M: Peter Maydell <peter.maydell@linaro.org>
@ -450,6 +454,14 @@ S: Maintained
F: hw/arm/integratorcp.c
F: hw/misc/arm_integrator_debug.c
MPS2
M: Peter Maydell <peter.maydell@linaro.org>
L: qemu-arm@nongnu.org
S: Maintained
F: hw/arm/mps2.c
F: hw/misc/mps2-scc.c
F: include/hw/misc/mps2-scc.h
Musicpal
M: Jan Kiszka <jan.kiszka@web.de>
L: qemu-arm@nongnu.org

View file

@ -83,6 +83,7 @@ CONFIG_ONENAND=y
CONFIG_TUSB6010=y
CONFIG_IMX=y
CONFIG_MAINSTONE=y
CONFIG_MPS2=y
CONFIG_NSERIES=y
CONFIG_RASPI=y
CONFIG_REALVIEW=y
@ -95,6 +96,11 @@ CONFIG_STM32F2XX_ADC=y
CONFIG_STM32F2XX_SPI=y
CONFIG_STM32F205_SOC=y
CONFIG_CMSDK_APB_TIMER=y
CONFIG_CMSDK_APB_UART=y
CONFIG_MPS2_SCC=y
CONFIG_VERSATILE_PCI=y
CONFIG_VERSATILE_I2C=y

View file

@ -18,3 +18,4 @@ obj-$(CONFIG_FSL_IMX25) += fsl-imx25.o imx25_pdk.o
obj-$(CONFIG_FSL_IMX31) += fsl-imx31.o kzm.o
obj-$(CONFIG_FSL_IMX6) += fsl-imx6.o sabrelite.o
obj-$(CONFIG_ASPEED_SOC) += aspeed_soc.o aspeed.o
obj-$(CONFIG_MPS2) += mps2.o

385
hw/arm/mps2.c Normal file
View file

@ -0,0 +1,385 @@
/*
* ARM V2M MPS2 board emulation.
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
* FPGA but is otherwise the same as the 2). Since the CPU itself
* and most of the devices are in the FPGA, the details of the board
* as seen by the guest depend significantly on the FPGA image.
* We model the following FPGA images:
* "mps2-an385" -- Cortex-M3 as documented in ARM Application Note AN385
* "mps2-an511" -- Cortex-M3 'DesignStart' as documented in AN511
*
* Links to the TRM for the board itself and to the various Application
* Notes which document the FPGA images can be found here:
* https://developer.arm.com/products/system-design/development-boards/cortex-m-prototyping-system
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "hw/arm/arm.h"
#include "hw/arm/armv7m.h"
#include "hw/or-irq.h"
#include "hw/boards.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/misc/unimp.h"
#include "hw/char/cmsdk-apb-uart.h"
#include "hw/timer/cmsdk-apb-timer.h"
#include "hw/misc/mps2-scc.h"
#include "hw/devices.h"
#include "net/net.h"
typedef enum MPS2FPGAType {
FPGA_AN385,
FPGA_AN511,
} MPS2FPGAType;
typedef struct {
MachineClass parent;
MPS2FPGAType fpga_type;
const char *cpu_model;
uint32_t scc_id;
} MPS2MachineClass;
typedef struct {
MachineState parent;
ARMv7MState armv7m;
MemoryRegion psram;
MemoryRegion ssram1;
MemoryRegion ssram1_m;
MemoryRegion ssram23;
MemoryRegion ssram23_m;
MemoryRegion blockram;
MemoryRegion blockram_m1;
MemoryRegion blockram_m2;
MemoryRegion blockram_m3;
MemoryRegion sram;
MPS2SCC scc;
} MPS2MachineState;
#define TYPE_MPS2_MACHINE "mps2"
#define TYPE_MPS2_AN385_MACHINE MACHINE_TYPE_NAME("mps2-an385")
#define TYPE_MPS2_AN511_MACHINE MACHINE_TYPE_NAME("mps2-an511")
#define MPS2_MACHINE(obj) \
OBJECT_CHECK(MPS2MachineState, obj, TYPE_MPS2_MACHINE)
#define MPS2_MACHINE_GET_CLASS(obj) \
OBJECT_GET_CLASS(MPS2MachineClass, obj, TYPE_MPS2_MACHINE)
#define MPS2_MACHINE_CLASS(klass) \
OBJECT_CLASS_CHECK(MPS2MachineClass, klass, TYPE_MPS2_MACHINE)
/* Main SYSCLK frequency in Hz */
#define SYSCLK_FRQ 25000000
/* Initialize the auxiliary RAM region @mr and map it into
* the memory map at @base.
*/
static void make_ram(MemoryRegion *mr, const char *name,
hwaddr base, hwaddr size)
{
memory_region_init_ram(mr, NULL, name, size, &error_fatal);
memory_region_add_subregion(get_system_memory(), base, mr);
}
/* Create an alias of an entire original MemoryRegion @orig
* located at @base in the memory map.
*/
static void make_ram_alias(MemoryRegion *mr, const char *name,
MemoryRegion *orig, hwaddr base)
{
memory_region_init_alias(mr, NULL, name, orig, 0,
memory_region_size(orig));
memory_region_add_subregion(get_system_memory(), base, mr);
}
static void mps2_common_init(MachineState *machine)
{
MPS2MachineState *mms = MPS2_MACHINE(machine);
MPS2MachineClass *mmc = MPS2_MACHINE_GET_CLASS(machine);
MemoryRegion *system_memory = get_system_memory();
DeviceState *armv7m, *sccdev;
if (!machine->cpu_model) {
machine->cpu_model = mmc->cpu_model;
}
if (strcmp(machine->cpu_model, mmc->cpu_model) != 0) {
error_report("This board can only be used with CPU %s", mmc->cpu_model);
exit(1);
}
/* The FPGA images have an odd combination of different RAMs,
* because in hardware they are different implementations and
* connected to different buses, giving varying performance/size
* tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
* call the 16MB our "system memory", as it's the largest lump.
*
* Common to both boards:
* 0x21000000..0x21ffffff : PSRAM (16MB)
* AN385 only:
* 0x00000000 .. 0x003fffff : ZBT SSRAM1
* 0x00400000 .. 0x007fffff : mirror of ZBT SSRAM1
* 0x20000000 .. 0x203fffff : ZBT SSRAM 2&3
* 0x20400000 .. 0x207fffff : mirror of ZBT SSRAM 2&3
* 0x01000000 .. 0x01003fff : block RAM (16K)
* 0x01004000 .. 0x01007fff : mirror of above
* 0x01008000 .. 0x0100bfff : mirror of above
* 0x0100c000 .. 0x0100ffff : mirror of above
* AN511 only:
* 0x00000000 .. 0x0003ffff : FPGA block RAM
* 0x00400000 .. 0x007fffff : ZBT SSRAM1
* 0x20000000 .. 0x2001ffff : SRAM
* 0x20400000 .. 0x207fffff : ZBT SSRAM 2&3
*
* The AN385 has a feature where the lowest 16K can be mapped
* either to the bottom of the ZBT SSRAM1 or to the block RAM.
* This is of no use for QEMU so we don't implement it (as if
* zbt_boot_ctrl is always zero).
*/
memory_region_allocate_system_memory(&mms->psram,
NULL, "mps.ram", 0x1000000);
memory_region_add_subregion(system_memory, 0x21000000, &mms->psram);
switch (mmc->fpga_type) {
case FPGA_AN385:
make_ram(&mms->ssram1, "mps.ssram1", 0x0, 0x400000);
make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", &mms->ssram1, 0x400000);
make_ram(&mms->ssram23, "mps.ssram23", 0x20000000, 0x400000);
make_ram_alias(&mms->ssram23_m, "mps.ssram23_m",
&mms->ssram23, 0x20400000);
make_ram(&mms->blockram, "mps.blockram", 0x01000000, 0x4000);
make_ram_alias(&mms->blockram_m1, "mps.blockram_m1",
&mms->blockram, 0x01004000);
make_ram_alias(&mms->blockram_m2, "mps.blockram_m2",
&mms->blockram, 0x01008000);
make_ram_alias(&mms->blockram_m3, "mps.blockram_m3",
&mms->blockram, 0x0100c000);
break;
case FPGA_AN511:
make_ram(&mms->blockram, "mps.blockram", 0x0, 0x40000);
make_ram(&mms->ssram1, "mps.ssram1", 0x00400000, 0x00800000);
make_ram(&mms->sram, "mps.sram", 0x20000000, 0x20000);
make_ram(&mms->ssram23, "mps.ssram23", 0x20400000, 0x400000);
break;
default:
g_assert_not_reached();
}
object_initialize(&mms->armv7m, sizeof(mms->armv7m), TYPE_ARMV7M);
armv7m = DEVICE(&mms->armv7m);
qdev_set_parent_bus(armv7m, sysbus_get_default());
switch (mmc->fpga_type) {
case FPGA_AN385:
qdev_prop_set_uint32(armv7m, "num-irq", 32);
break;
case FPGA_AN511:
qdev_prop_set_uint32(armv7m, "num-irq", 64);
break;
default:
g_assert_not_reached();
}
qdev_prop_set_string(armv7m, "cpu-model", machine->cpu_model);
object_property_set_link(OBJECT(&mms->armv7m), OBJECT(system_memory),
"memory", &error_abort);
object_property_set_bool(OBJECT(&mms->armv7m), true, "realized",
&error_fatal);
create_unimplemented_device("zbtsmram mirror", 0x00400000, 0x00400000);
create_unimplemented_device("RESERVED 1", 0x00800000, 0x00800000);
create_unimplemented_device("Block RAM", 0x01000000, 0x00010000);
create_unimplemented_device("RESERVED 2", 0x01010000, 0x1EFF0000);
create_unimplemented_device("RESERVED 3", 0x20800000, 0x00800000);
create_unimplemented_device("PSRAM", 0x21000000, 0x01000000);
/* These three ranges all cover multiple devices; we may implement
* some of them below (in which case the real device takes precedence
* over the unimplemented-region mapping).
*/
create_unimplemented_device("CMSDK APB peripheral region @0x40000000",
0x40000000, 0x00010000);
create_unimplemented_device("CMSDK peripheral region @0x40010000",
0x40010000, 0x00010000);
create_unimplemented_device("Extra peripheral region @0x40020000",
0x40020000, 0x00010000);
create_unimplemented_device("RESERVED 4", 0x40030000, 0x001D0000);
create_unimplemented_device("VGA", 0x41000000, 0x0200000);
switch (mmc->fpga_type) {
case FPGA_AN385:
{
/* The overflow IRQs for UARTs 0, 1 and 2 are ORed together.
* Overflow for UARTs 4 and 5 doesn't trigger any interrupt.
*/
Object *orgate;
DeviceState *orgate_dev;
int i;
orgate = object_new(TYPE_OR_IRQ);
object_property_set_int(orgate, 6, "num-lines", &error_fatal);
object_property_set_bool(orgate, true, "realized", &error_fatal);
orgate_dev = DEVICE(orgate);
qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12));
for (i = 0; i < 5; i++) {
static const hwaddr uartbase[] = {0x40004000, 0x40005000,
0x40006000, 0x40007000,
0x40009000};
Chardev *uartchr = i < MAX_SERIAL_PORTS ? serial_hds[i] : NULL;
/* RX irq number; TX irq is always one greater */
static const int uartirq[] = {0, 2, 4, 18, 20};
qemu_irq txovrint = NULL, rxovrint = NULL;
if (i < 3) {
txovrint = qdev_get_gpio_in(orgate_dev, i * 2);
rxovrint = qdev_get_gpio_in(orgate_dev, i * 2 + 1);
}
cmsdk_apb_uart_create(uartbase[i],
qdev_get_gpio_in(armv7m, uartirq[i] + 1),
qdev_get_gpio_in(armv7m, uartirq[i]),
txovrint, rxovrint,
NULL,
uartchr, SYSCLK_FRQ);
}
break;
}
case FPGA_AN511:
{
/* The overflow IRQs for all UARTs are ORed together.
* Tx and Rx IRQs for each UART are ORed together.
*/
Object *orgate;
DeviceState *orgate_dev;
int i;
orgate = object_new(TYPE_OR_IRQ);
object_property_set_int(orgate, 10, "num-lines", &error_fatal);
object_property_set_bool(orgate, true, "realized", &error_fatal);
orgate_dev = DEVICE(orgate);
qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12));
for (i = 0; i < 5; i++) {
/* system irq numbers for the combined tx/rx for each UART */
static const int uart_txrx_irqno[] = {0, 2, 45, 46, 56};
static const hwaddr uartbase[] = {0x40004000, 0x40005000,
0x4002c000, 0x4002d000,
0x4002e000};
Chardev *uartchr = i < MAX_SERIAL_PORTS ? serial_hds[i] : NULL;
Object *txrx_orgate;
DeviceState *txrx_orgate_dev;
txrx_orgate = object_new(TYPE_OR_IRQ);
object_property_set_int(txrx_orgate, 2, "num-lines", &error_fatal);
object_property_set_bool(txrx_orgate, true, "realized",
&error_fatal);
txrx_orgate_dev = DEVICE(txrx_orgate);
qdev_connect_gpio_out(txrx_orgate_dev, 0,
qdev_get_gpio_in(armv7m, uart_txrx_irqno[i]));
cmsdk_apb_uart_create(uartbase[i],
qdev_get_gpio_in(txrx_orgate_dev, 0),
qdev_get_gpio_in(txrx_orgate_dev, 1),
qdev_get_gpio_in(orgate_dev, 0),
qdev_get_gpio_in(orgate_dev, 1),
NULL,
uartchr, SYSCLK_FRQ);
}
break;
}
default:
g_assert_not_reached();
}
cmsdk_apb_timer_create(0x40000000, qdev_get_gpio_in(armv7m, 8), SYSCLK_FRQ);
cmsdk_apb_timer_create(0x40001000, qdev_get_gpio_in(armv7m, 9), SYSCLK_FRQ);
object_initialize(&mms->scc, sizeof(mms->scc), TYPE_MPS2_SCC);
sccdev = DEVICE(&mms->scc);
qdev_set_parent_bus(armv7m, sysbus_get_default());
qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
qdev_prop_set_uint32(sccdev, "scc-aid", 0x02000008);
qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
object_property_set_bool(OBJECT(&mms->scc), true, "realized",
&error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(sccdev), 0, 0x4002f000);
/* In hardware this is a LAN9220; the LAN9118 is software compatible
* except that it doesn't support the checksum-offload feature.
*/
lan9118_init(&nd_table[0], 0x40200000,
qdev_get_gpio_in(armv7m,
mmc->fpga_type == FPGA_AN385 ? 13 : 47));
system_clock_scale = NANOSECONDS_PER_SECOND / SYSCLK_FRQ;
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
0x400000);
}
static void mps2_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->init = mps2_common_init;
mc->max_cpus = 1;
}
static void mps2_an385_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MPS2MachineClass *mmc = MPS2_MACHINE_CLASS(oc);
mc->desc = "ARM MPS2 with AN385 FPGA image for Cortex-M3";
mmc->fpga_type = FPGA_AN385;
mmc->cpu_model = "cortex-m3";
mmc->scc_id = 0x41040000 | (385 << 4);
}
static void mps2_an511_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MPS2MachineClass *mmc = MPS2_MACHINE_CLASS(oc);
mc->desc = "ARM MPS2 with AN511 DesignStart FPGA image for Cortex-M3";
mmc->fpga_type = FPGA_AN511;
mmc->cpu_model = "cortex-m3";
mmc->scc_id = 0x4104000 | (511 << 4);
}
static const TypeInfo mps2_info = {
.name = TYPE_MPS2_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(MPS2MachineState),
.class_size = sizeof(MPS2MachineClass),
.class_init = mps2_class_init,
};
static const TypeInfo mps2_an385_info = {
.name = TYPE_MPS2_AN385_MACHINE,
.parent = TYPE_MPS2_MACHINE,
.class_init = mps2_an385_class_init,
};
static const TypeInfo mps2_an511_info = {
.name = TYPE_MPS2_AN511_MACHINE,
.parent = TYPE_MPS2_MACHINE,
.class_init = mps2_an511_class_init,
};
static void mps2_machine_init(void)
{
type_register_static(&mps2_info);
type_register_static(&mps2_an385_info);
type_register_static(&mps2_an511_info);
}
type_init(mps2_machine_init);

View file

@ -19,6 +19,7 @@ obj-$(CONFIG_DIGIC) += digic-uart.o
obj-$(CONFIG_STM32F2XX_USART) += stm32f2xx_usart.o
obj-$(CONFIG_RASPI) += bcm2835_aux.o
common-obj-$(CONFIG_CMSDK_APB_UART) += cmsdk-apb-uart.o
common-obj-$(CONFIG_ETRAXFS) += etraxfs_ser.o
common-obj-$(CONFIG_ISA_DEBUG) += debugcon.o
common-obj-$(CONFIG_GRLIB) += grlib_apbuart.o

403
hw/char/cmsdk-apb-uart.c Normal file
View file

@ -0,0 +1,403 @@
/*
* ARM CMSDK APB UART emulation
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* This is a model of the "APB UART" which is part of the Cortex-M
* System Design Kit (CMSDK) and documented in the Cortex-M System
* Design Kit Technical Reference Manual (ARM DDI0479C):
* https://developer.arm.com/products/system-design/system-design-kits/cortex-m-system-design-kit
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "chardev/char-fe.h"
#include "chardev/char-serial.h"
#include "hw/char/cmsdk-apb-uart.h"
REG32(DATA, 0)
REG32(STATE, 4)
FIELD(STATE, TXFULL, 0, 1)
FIELD(STATE, RXFULL, 1, 1)
FIELD(STATE, TXOVERRUN, 2, 1)
FIELD(STATE, RXOVERRUN, 3, 1)
REG32(CTRL, 8)
FIELD(CTRL, TX_EN, 0, 1)
FIELD(CTRL, RX_EN, 1, 1)
FIELD(CTRL, TX_INTEN, 2, 1)
FIELD(CTRL, RX_INTEN, 3, 1)
FIELD(CTRL, TXO_INTEN, 4, 1)
FIELD(CTRL, RXO_INTEN, 5, 1)
FIELD(CTRL, HSTEST, 6, 1)
REG32(INTSTATUS, 0xc)
FIELD(INTSTATUS, TX, 0, 1)
FIELD(INTSTATUS, RX, 1, 1)
FIELD(INTSTATUS, TXO, 2, 1)
FIELD(INTSTATUS, RXO, 3, 1)
REG32(BAUDDIV, 0x10)
REG32(PID4, 0xFD0)
REG32(PID5, 0xFD4)
REG32(PID6, 0xFD8)
REG32(PID7, 0xFDC)
REG32(PID0, 0xFE0)
REG32(PID1, 0xFE4)
REG32(PID2, 0xFE8)
REG32(PID3, 0xFEC)
REG32(CID0, 0xFF0)
REG32(CID1, 0xFF4)
REG32(CID2, 0xFF8)
REG32(CID3, 0xFFC)
/* PID/CID values */
static const int uart_id[] = {
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
0x21, 0xb8, 0x1b, 0x00, /* PID0..PID3 */
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};
static bool uart_baudrate_ok(CMSDKAPBUART *s)
{
/* The minimum permitted bauddiv setting is 16, so we just ignore
* settings below that (usually this means the device has just
* been reset and not yet programmed).
*/
return s->bauddiv >= 16 && s->bauddiv <= s->pclk_frq;
}
static void uart_update_parameters(CMSDKAPBUART *s)
{
QEMUSerialSetParams ssp;
/* This UART is always 8N1 but the baud rate is programmable. */
if (!uart_baudrate_ok(s)) {
return;
}
ssp.data_bits = 8;
ssp.parity = 'N';
ssp.stop_bits = 1;
ssp.speed = s->pclk_frq / s->bauddiv;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
trace_cmsdk_apb_uart_set_params(ssp.speed);
}
static void cmsdk_apb_uart_update(CMSDKAPBUART *s)
{
/* update outbound irqs, including handling the way the rxo and txo
* interrupt status bits are just logical AND of the overrun bit in
* STATE and the overrun interrupt enable bit in CTRL.
*/
uint32_t omask = (R_INTSTATUS_RXO_MASK | R_INTSTATUS_TXO_MASK);
s->intstatus &= ~omask;
s->intstatus |= (s->state & (s->ctrl >> 2) & omask);
qemu_set_irq(s->txint, !!(s->intstatus & R_INTSTATUS_TX_MASK));
qemu_set_irq(s->rxint, !!(s->intstatus & R_INTSTATUS_RX_MASK));
qemu_set_irq(s->txovrint, !!(s->intstatus & R_INTSTATUS_TXO_MASK));
qemu_set_irq(s->rxovrint, !!(s->intstatus & R_INTSTATUS_RXO_MASK));
qemu_set_irq(s->uartint, !!(s->intstatus));
}
static int uart_can_receive(void *opaque)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
/* We can take a char if RX is enabled and the buffer is empty */
if (s->ctrl & R_CTRL_RX_EN_MASK && !(s->state & R_STATE_RXFULL_MASK)) {
return 1;
}
return 0;
}
static void uart_receive(void *opaque, const uint8_t *buf, int size)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
trace_cmsdk_apb_uart_receive(*buf);
/* In fact uart_can_receive() ensures that we can't be
* called unless RX is enabled and the buffer is empty,
* but we include this logic as documentation of what the
* hardware does if a character arrives in these circumstances.
*/
if (!(s->ctrl & R_CTRL_RX_EN_MASK)) {
/* Just drop the character on the floor */
return;
}
if (s->state & R_STATE_RXFULL_MASK) {
s->state |= R_STATE_RXOVERRUN_MASK;
}
s->rxbuf = *buf;
s->state |= R_STATE_RXFULL_MASK;
if (s->ctrl & R_CTRL_RX_INTEN_MASK) {
s->intstatus |= R_INTSTATUS_RX_MASK;
}
cmsdk_apb_uart_update(s);
}
static uint64_t uart_read(void *opaque, hwaddr offset, unsigned size)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
uint64_t r;
switch (offset) {
case A_DATA:
r = s->rxbuf;
s->state &= ~R_STATE_RXFULL_MASK;
cmsdk_apb_uart_update(s);
break;
case A_STATE:
r = s->state;
break;
case A_CTRL:
r = s->ctrl;
break;
case A_INTSTATUS:
r = s->intstatus;
break;
case A_BAUDDIV:
r = s->bauddiv;
break;
case A_PID4 ... A_CID3:
r = uart_id[(offset - A_PID4) / 4];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB UART read: bad offset %x\n", (int) offset);
r = 0;
break;
}
trace_cmsdk_apb_uart_read(offset, r, size);
return r;
}
/* Try to send tx data, and arrange to be called back later if
* we can't (ie the char backend is busy/blocking).
*/
static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
int ret;
s->watch_tag = 0;
if (!(s->ctrl & R_CTRL_TX_EN_MASK) || !(s->state & R_STATE_TXFULL_MASK)) {
return FALSE;
}
ret = qemu_chr_fe_write(&s->chr, &s->txbuf, 1);
if (ret <= 0) {
s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
uart_transmit, s);
if (!s->watch_tag) {
/* Most common reason to be here is "no chardev backend":
* just insta-drain the buffer, so the serial output
* goes into a void, rather than blocking the guest.
*/
goto buffer_drained;
}
/* Transmit pending */
trace_cmsdk_apb_uart_tx_pending();
return FALSE;
}
buffer_drained:
/* Character successfully sent */
trace_cmsdk_apb_uart_tx(s->txbuf);
s->state &= ~R_STATE_TXFULL_MASK;
/* Going from TXFULL set to clear triggers the tx interrupt */
if (s->ctrl & R_CTRL_TX_INTEN_MASK) {
s->intstatus |= R_INTSTATUS_TX_MASK;
}
cmsdk_apb_uart_update(s);
return FALSE;
}
static void uart_cancel_transmit(CMSDKAPBUART *s)
{
if (s->watch_tag) {
g_source_remove(s->watch_tag);
s->watch_tag = 0;
}
}
static void uart_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
trace_cmsdk_apb_uart_write(offset, value, size);
switch (offset) {
case A_DATA:
s->txbuf = value;
if (s->state & R_STATE_TXFULL_MASK) {
/* Buffer already full -- note the overrun and let the
* existing pending transmit callback handle the new char.
*/
s->state |= R_STATE_TXOVERRUN_MASK;
cmsdk_apb_uart_update(s);
} else {
s->state |= R_STATE_TXFULL_MASK;
uart_transmit(NULL, G_IO_OUT, s);
}
break;
case A_STATE:
/* Bits 0 and 1 are read only; bits 2 and 3 are W1C */
s->state &= ~(value &
(R_STATE_TXOVERRUN_MASK | R_STATE_RXOVERRUN_MASK));
cmsdk_apb_uart_update(s);
break;
case A_CTRL:
s->ctrl = value & 0x7f;
if ((s->ctrl & R_CTRL_TX_EN_MASK) && !uart_baudrate_ok(s)) {
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB UART: Tx enabled with invalid baudrate\n");
}
cmsdk_apb_uart_update(s);
break;
case A_INTSTATUS:
/* All bits are W1C. Clearing the overrun interrupt bits really
* clears the overrun status bits in the STATE register (which
* is then reflected into the intstatus value by the update function).
*/
s->state &= ~(value & (R_INTSTATUS_TXO_MASK | R_INTSTATUS_RXO_MASK));
cmsdk_apb_uart_update(s);
break;
case A_BAUDDIV:
s->bauddiv = value & 0xFFFFF;
uart_update_parameters(s);
break;
case A_PID4 ... A_CID3:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB UART write: write to RO offset 0x%x\n",
(int)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB UART write: bad offset 0x%x\n", (int) offset);
break;
}
}
static const MemoryRegionOps uart_ops = {
.read = uart_read,
.write = uart_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void cmsdk_apb_uart_reset(DeviceState *dev)
{
CMSDKAPBUART *s = CMSDK_APB_UART(dev);
trace_cmsdk_apb_uart_reset();
uart_cancel_transmit(s);
s->state = 0;
s->ctrl = 0;
s->intstatus = 0;
s->bauddiv = 0;
s->txbuf = 0;
s->rxbuf = 0;
}
static void cmsdk_apb_uart_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
CMSDKAPBUART *s = CMSDK_APB_UART(obj);
memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->txint);
sysbus_init_irq(sbd, &s->rxint);
sysbus_init_irq(sbd, &s->txovrint);
sysbus_init_irq(sbd, &s->rxovrint);
sysbus_init_irq(sbd, &s->uartint);
}
static void cmsdk_apb_uart_realize(DeviceState *dev, Error **errp)
{
CMSDKAPBUART *s = CMSDK_APB_UART(dev);
if (s->pclk_frq == 0) {
error_setg(errp, "CMSDK APB UART: pclk-frq property must be set");
return;
}
/* This UART has no flow control, so we do not need to register
* an event handler to deal with CHR_EVENT_BREAK.
*/
qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
NULL, NULL, s, NULL, true);
}
static int cmsdk_apb_uart_post_load(void *opaque, int version_id)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
/* If we have a pending character, arrange to resend it. */
if (s->state & R_STATE_TXFULL_MASK) {
s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
uart_transmit, s);
}
uart_update_parameters(s);
return 0;
}
static const VMStateDescription cmsdk_apb_uart_vmstate = {
.name = "cmsdk-apb-uart",
.version_id = 1,
.minimum_version_id = 1,
.post_load = cmsdk_apb_uart_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(state, CMSDKAPBUART),
VMSTATE_UINT32(ctrl, CMSDKAPBUART),
VMSTATE_UINT32(intstatus, CMSDKAPBUART),
VMSTATE_UINT32(bauddiv, CMSDKAPBUART),
VMSTATE_UINT8(txbuf, CMSDKAPBUART),
VMSTATE_UINT8(rxbuf, CMSDKAPBUART),
VMSTATE_END_OF_LIST()
}
};
static Property cmsdk_apb_uart_properties[] = {
DEFINE_PROP_CHR("chardev", CMSDKAPBUART, chr),
DEFINE_PROP_UINT32("pclk-frq", CMSDKAPBUART, pclk_frq, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void cmsdk_apb_uart_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = cmsdk_apb_uart_realize;
dc->vmsd = &cmsdk_apb_uart_vmstate;
dc->reset = cmsdk_apb_uart_reset;
dc->props = cmsdk_apb_uart_properties;
}
static const TypeInfo cmsdk_apb_uart_info = {
.name = TYPE_CMSDK_APB_UART,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CMSDKAPBUART),
.instance_init = cmsdk_apb_uart_init,
.class_init = cmsdk_apb_uart_class_init,
};
static void cmsdk_apb_uart_register_types(void)
{
type_register_static(&cmsdk_apb_uart_info);
}
type_init(cmsdk_apb_uart_register_types);

View file

@ -56,3 +56,12 @@ pl011_write(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
pl011_can_receive(uint32_t lcr, int read_count, int r) "LCR %08x read_count %d returning %d"
pl011_put_fifo(uint32_t c, int read_count) "new char 0x%x read_count now %d"
pl011_put_fifo_full(void) "FIFO now full, RXFF set"
# hw/char/cmsdk_apb_uart.c
cmsdk_apb_uart_read(uint64_t offset, uint64_t data, unsigned size) "CMSDK APB UART read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
cmsdk_apb_uart_write(uint64_t offset, uint64_t data, unsigned size) "CMSDK APB UART write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
cmsdk_apb_uart_reset(void) "CMSDK APB UART: reset"
cmsdk_apb_uart_receive(uint8_t c) "CMSDK APB UART: got character 0x%x from backend"
cmsdk_apb_uart_tx_pending(void) "CMSDK APB UART: character send to backend pending"
cmsdk_apb_uart_tx(uint8_t c) "CMSDK APB UART: character 0x%x sent to backend"
cmsdk_apb_uart_set_params(int speed) "CMSDK APB UART: params set to %d 8N1"

View file

@ -800,7 +800,7 @@ void qdev_property_add_static(DeviceState *dev, Property *prop,
prop->info->description,
&error_abort);
if (prop->info->set_default_value) {
if (prop->set_default) {
prop->info->set_default_value(obj, prop);
}
}

View file

@ -52,6 +52,7 @@ obj-$(CONFIG_STM32F2XX_SYSCFG) += stm32f2xx_syscfg.o
obj-$(CONFIG_MIPS_CPS) += mips_cmgcr.o
obj-$(CONFIG_MIPS_CPS) += mips_cpc.o
obj-$(CONFIG_MIPS_ITU) += mips_itu.o
obj-$(CONFIG_MPS2_SCC) += mps2-scc.o
obj-$(CONFIG_PVPANIC) += pvpanic.o
obj-$(CONFIG_HYPERV_TESTDEV) += hyperv_testdev.o

310
hw/misc/mps2-scc.c Normal file
View file

@ -0,0 +1,310 @@
/*
* ARM MPS2 SCC emulation
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* This is a model of the SCC (Serial Communication Controller)
* found in the FPGA images of MPS2 development boards.
*
* Documentation of it can be found in the MPS2 TRM:
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100112_0100_03_en/index.html
* and also in the Application Notes documenting individual FPGA images.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/misc/mps2-scc.h"
REG32(CFG0, 0)
REG32(CFG1, 4)
REG32(CFG3, 0xc)
REG32(CFG4, 0x10)
REG32(CFGDATA_RTN, 0xa0)
REG32(CFGDATA_OUT, 0xa4)
REG32(CFGCTRL, 0xa8)
FIELD(CFGCTRL, DEVICE, 0, 12)
FIELD(CFGCTRL, RES1, 12, 8)
FIELD(CFGCTRL, FUNCTION, 20, 6)
FIELD(CFGCTRL, RES2, 26, 4)
FIELD(CFGCTRL, WRITE, 30, 1)
FIELD(CFGCTRL, START, 31, 1)
REG32(CFGSTAT, 0xac)
FIELD(CFGSTAT, DONE, 0, 1)
FIELD(CFGSTAT, ERROR, 1, 1)
REG32(DLL, 0x100)
REG32(AID, 0xFF8)
REG32(ID, 0xFFC)
/* Handle a write via the SYS_CFG channel to the specified function/device.
* Return false on error (reported to guest via SYS_CFGCTRL ERROR bit).
*/
static bool scc_cfg_write(MPS2SCC *s, unsigned function,
unsigned device, uint32_t value)
{
trace_mps2_scc_cfg_write(function, device, value);
if (function != 1 || device >= NUM_OSCCLK) {
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 SCC config write: bad function %d device %d\n",
function, device);
return false;
}
s->oscclk[device] = value;
return true;
}
/* Handle a read via the SYS_CFG channel to the specified function/device.
* Return false on error (reported to guest via SYS_CFGCTRL ERROR bit),
* or set *value on success.
*/
static bool scc_cfg_read(MPS2SCC *s, unsigned function,
unsigned device, uint32_t *value)
{
if (function != 1 || device >= NUM_OSCCLK) {
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 SCC config read: bad function %d device %d\n",
function, device);
return false;
}
*value = s->oscclk[device];
trace_mps2_scc_cfg_read(function, device, *value);
return true;
}
static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size)
{
MPS2SCC *s = MPS2_SCC(opaque);
uint64_t r;
switch (offset) {
case A_CFG0:
r = s->cfg0;
break;
case A_CFG1:
r = s->cfg1;
break;
case A_CFG3:
/* These are user-settable DIP switches on the board. We don't
* model that, so just return zeroes.
*/
r = 0;
break;
case A_CFG4:
r = s->cfg4;
break;
case A_CFGDATA_RTN:
r = s->cfgdata_rtn;
break;
case A_CFGDATA_OUT:
r = s->cfgdata_out;
break;
case A_CFGCTRL:
r = s->cfgctrl;
break;
case A_CFGSTAT:
r = s->cfgstat;
break;
case A_DLL:
r = s->dll;
break;
case A_AID:
r = s->aid;
break;
case A_ID:
r = s->id;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 SCC read: bad offset %x\n", (int) offset);
r = 0;
break;
}
trace_mps2_scc_read(offset, r, size);
return r;
}
static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
MPS2SCC *s = MPS2_SCC(opaque);
trace_mps2_scc_write(offset, value, size);
switch (offset) {
case A_CFG0:
/* TODO on some boards bit 0 controls RAM remapping */
s->cfg0 = value;
break;
case A_CFG1:
/* CFG1 bits [7:0] control the board LEDs. We don't currently have
* a mechanism for displaying this graphically, so use a trace event.
*/
trace_mps2_scc_leds(value & 0x80 ? '*' : '.',
value & 0x40 ? '*' : '.',
value & 0x20 ? '*' : '.',
value & 0x10 ? '*' : '.',
value & 0x08 ? '*' : '.',
value & 0x04 ? '*' : '.',
value & 0x02 ? '*' : '.',
value & 0x01 ? '*' : '.');
s->cfg1 = value;
break;
case A_CFGDATA_OUT:
s->cfgdata_out = value;
break;
case A_CFGCTRL:
/* Writing to CFGCTRL clears SYS_CFGSTAT */
s->cfgstat = 0;
s->cfgctrl = value & ~(R_CFGCTRL_RES1_MASK |
R_CFGCTRL_RES2_MASK |
R_CFGCTRL_START_MASK);
if (value & R_CFGCTRL_START_MASK) {
/* Start bit set -- do a read or write (instantaneously) */
int device = extract32(s->cfgctrl, R_CFGCTRL_DEVICE_SHIFT,
R_CFGCTRL_DEVICE_LENGTH);
int function = extract32(s->cfgctrl, R_CFGCTRL_FUNCTION_SHIFT,
R_CFGCTRL_FUNCTION_LENGTH);
s->cfgstat = R_CFGSTAT_DONE_MASK;
if (s->cfgctrl & R_CFGCTRL_WRITE_MASK) {
if (!scc_cfg_write(s, function, device, s->cfgdata_out)) {
s->cfgstat |= R_CFGSTAT_ERROR_MASK;
}
} else {
uint32_t result;
if (!scc_cfg_read(s, function, device, &result)) {
s->cfgstat |= R_CFGSTAT_ERROR_MASK;
} else {
s->cfgdata_rtn = result;
}
}
}
break;
case A_DLL:
/* DLL stands for Digital Locked Loop.
* Bits [31:24] (DLL_LOCK_MASK) are writable, and indicate a
* mask of which of the DLL_LOCKED bits [16:23] should be ORed
* together to determine the ALL_UNMASKED_DLLS_LOCKED bit [0].
* For QEMU, our DLLs are always locked, so we can leave bit 0
* as 1 always and don't need to recalculate it.
*/
s->dll = deposit32(s->dll, 24, 8, extract32(value, 24, 8));
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 SCC write: bad offset 0x%x\n", (int) offset);
break;
}
}
static const MemoryRegionOps mps2_scc_ops = {
.read = mps2_scc_read,
.write = mps2_scc_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void mps2_scc_reset(DeviceState *dev)
{
MPS2SCC *s = MPS2_SCC(dev);
int i;
trace_mps2_scc_reset();
s->cfg0 = 0;
s->cfg1 = 0;
s->cfgdata_rtn = 0;
s->cfgdata_out = 0;
s->cfgctrl = 0x100000;
s->cfgstat = 0;
s->dll = 0xffff0001;
for (i = 0; i < NUM_OSCCLK; i++) {
s->oscclk[i] = s->oscclk_reset[i];
}
}
static void mps2_scc_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
MPS2SCC *s = MPS2_SCC(obj);
memory_region_init_io(&s->iomem, obj, &mps2_scc_ops, s, "mps2-scc", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static void mps2_scc_realize(DeviceState *dev, Error **errp)
{
}
static const VMStateDescription mps2_scc_vmstate = {
.name = "mps2-scc",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cfg0, MPS2SCC),
VMSTATE_UINT32(cfg1, MPS2SCC),
VMSTATE_UINT32(cfgdata_rtn, MPS2SCC),
VMSTATE_UINT32(cfgdata_out, MPS2SCC),
VMSTATE_UINT32(cfgctrl, MPS2SCC),
VMSTATE_UINT32(cfgstat, MPS2SCC),
VMSTATE_UINT32(dll, MPS2SCC),
VMSTATE_UINT32_ARRAY(oscclk, MPS2SCC, NUM_OSCCLK),
VMSTATE_END_OF_LIST()
}
};
static Property mps2_scc_properties[] = {
/* Values for various read-only ID registers (which are specific
* to the board model or FPGA image)
*/
DEFINE_PROP_UINT32("scc-cfg4", MPS2SCC, aid, 0),
DEFINE_PROP_UINT32("scc-aid", MPS2SCC, aid, 0),
DEFINE_PROP_UINT32("scc-id", MPS2SCC, aid, 0),
/* These are the initial settings for the source clocks on the board.
* In hardware they can be configured via a config file read by the
* motherboard configuration controller to suit the FPGA image.
* These default values are used by most of the standard FPGA images.
*/
DEFINE_PROP_UINT32("oscclk0", MPS2SCC, oscclk_reset[0], 50000000),
DEFINE_PROP_UINT32("oscclk1", MPS2SCC, oscclk_reset[1], 24576000),
DEFINE_PROP_UINT32("oscclk2", MPS2SCC, oscclk_reset[2], 25000000),
DEFINE_PROP_END_OF_LIST(),
};
static void mps2_scc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = mps2_scc_realize;
dc->vmsd = &mps2_scc_vmstate;
dc->reset = mps2_scc_reset;
dc->props = mps2_scc_properties;
}
static const TypeInfo mps2_scc_info = {
.name = TYPE_MPS2_SCC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MPS2SCC),
.instance_init = mps2_scc_init,
.class_init = mps2_scc_class_init,
};
static void mps2_scc_register_types(void)
{
type_register_static(&mps2_scc_info);
}
type_init(mps2_scc_register_types);

View file

@ -53,3 +53,11 @@ milkymist_pfpu_pulse_irq(void) "Pulse IRQ"
# hw/misc/aspeed_scu.c
aspeed_scu_write(uint64_t offset, unsigned size, uint32_t data) "To 0x%" PRIx64 " of size %u: 0x%" PRIx32
# hw/misc/mps2_scc.c
mps2_scc_read(uint64_t offset, uint64_t data, unsigned size) "MPS2 SCC read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
mps2_scc_write(uint64_t offset, uint64_t data, unsigned size) "MPS2 SCC write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
mps2_scc_reset(void) "MPS2 SCC: reset"
mps2_scc_leds(char led7, char led6, char led5, char led4, char led3, char led2, char led1, char led0) "MPS2 SCC LEDs: %c%c%c%c%c%c%c%c"
mps2_scc_cfg_write(unsigned function, unsigned device, uint32_t value) "MPS2 SCC config write: function %d device %d data 0x%" PRIx32
mps2_scc_cfg_read(unsigned function, unsigned device, uint32_t value) "MPS2 SCC config read: function %d device %d data 0x%" PRIx32

View file

@ -41,3 +41,4 @@ common-obj-$(CONFIG_STM32F2XX_TIMER) += stm32f2xx_timer.o
common-obj-$(CONFIG_ASPEED_SOC) += aspeed_timer.o
common-obj-$(CONFIG_SUN4V_RTC) += sun4v-rtc.o
common-obj-$(CONFIG_CMSDK_APB_TIMER) += cmsdk-apb-timer.o

253
hw/timer/cmsdk-apb-timer.c Normal file
View file

@ -0,0 +1,253 @@
/*
* ARM CMSDK APB timer emulation
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* This is a model of the "APB timer" which is part of the Cortex-M
* System Design Kit (CMSDK) and documented in the Cortex-M System
* Design Kit Technical Reference Manual (ARM DDI0479C):
* https://developer.arm.com/products/system-design/system-design-kits/cortex-m-system-design-kit
*
* The hardware has an EXTIN input wire, which can be configured
* by the guest to act either as a 'timer enable' (timer does not run
* when EXTIN is low), or as a 'timer clock' (timer runs at frequency
* of EXTIN clock, not PCLK frequency). We don't model this.
*
* The documentation is not very clear about the exact behaviour;
* we choose to implement that the interrupt is triggered when
* the counter goes from 1 to 0, that the counter then holds at 0
* for one clock cycle before reloading from the RELOAD register,
* and that if the RELOAD register is 0 this does not cause an
* interrupt (as there is no further 1->0 transition).
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/timer/cmsdk-apb-timer.h"
REG32(CTRL, 0)
FIELD(CTRL, EN, 0, 1)
FIELD(CTRL, SELEXTEN, 1, 1)
FIELD(CTRL, SELEXTCLK, 2, 1)
FIELD(CTRL, IRQEN, 3, 1)
REG32(VALUE, 4)
REG32(RELOAD, 8)
REG32(INTSTATUS, 0xc)
FIELD(INTSTATUS, IRQ, 0, 1)
REG32(PID4, 0xFD0)
REG32(PID5, 0xFD4)
REG32(PID6, 0xFD8)
REG32(PID7, 0xFDC)
REG32(PID0, 0xFE0)
REG32(PID1, 0xFE4)
REG32(PID2, 0xFE8)
REG32(PID3, 0xFEC)
REG32(CID0, 0xFF0)
REG32(CID1, 0xFF4)
REG32(CID2, 0xFF8)
REG32(CID3, 0xFFC)
/* PID/CID values */
static const int timer_id[] = {
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
0x22, 0xb8, 0x1b, 0x00, /* PID0..PID3 */
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};
static void cmsdk_apb_timer_update(CMSDKAPBTIMER *s)
{
qemu_set_irq(s->timerint, !!(s->intstatus & R_INTSTATUS_IRQ_MASK));
}
static uint64_t cmsdk_apb_timer_read(void *opaque, hwaddr offset, unsigned size)
{
CMSDKAPBTIMER *s = CMSDK_APB_TIMER(opaque);
uint64_t r;
switch (offset) {
case A_CTRL:
r = s->ctrl;
break;
case A_VALUE:
r = ptimer_get_count(s->timer);
break;
case A_RELOAD:
r = ptimer_get_limit(s->timer);
break;
case A_INTSTATUS:
r = s->intstatus;
break;
case A_PID4 ... A_CID3:
r = timer_id[(offset - A_PID4) / 4];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB timer read: bad offset %x\n", (int) offset);
r = 0;
break;
}
trace_cmsdk_apb_timer_read(offset, r, size);
return r;
}
static void cmsdk_apb_timer_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
CMSDKAPBTIMER *s = CMSDK_APB_TIMER(opaque);
trace_cmsdk_apb_timer_write(offset, value, size);
switch (offset) {
case A_CTRL:
if (value & 6) {
/* Bits [1] and [2] enable using EXTIN as either clock or
* an enable line. We don't model this.
*/
qemu_log_mask(LOG_UNIMP,
"CMSDK APB timer: EXTIN input not supported\n");
}
s->ctrl = value & 0xf;
if (s->ctrl & R_CTRL_EN_MASK) {
ptimer_run(s->timer, 0);
} else {
ptimer_stop(s->timer);
}
break;
case A_RELOAD:
/* Writing to reload also sets the current timer value */
ptimer_set_limit(s->timer, value, 1);
break;
case A_VALUE:
ptimer_set_count(s->timer, value);
break;
case A_INTSTATUS:
/* Just one bit, which is W1C. */
value &= 1;
s->intstatus &= ~value;
cmsdk_apb_timer_update(s);
break;
case A_PID4 ... A_CID3:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB timer write: write to RO offset 0x%x\n",
(int)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB timer write: bad offset 0x%x\n", (int) offset);
break;
}
}
static const MemoryRegionOps cmsdk_apb_timer_ops = {
.read = cmsdk_apb_timer_read,
.write = cmsdk_apb_timer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void cmsdk_apb_timer_tick(void *opaque)
{
CMSDKAPBTIMER *s = CMSDK_APB_TIMER(opaque);
if (s->ctrl & R_CTRL_IRQEN_MASK) {
s->intstatus |= R_INTSTATUS_IRQ_MASK;
cmsdk_apb_timer_update(s);
}
}
static void cmsdk_apb_timer_reset(DeviceState *dev)
{
CMSDKAPBTIMER *s = CMSDK_APB_TIMER(dev);
trace_cmsdk_apb_timer_reset();
s->ctrl = 0;
s->intstatus = 0;
ptimer_stop(s->timer);
/* Set the limit and the count */
ptimer_set_limit(s->timer, 0, 1);
}
static void cmsdk_apb_timer_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
CMSDKAPBTIMER *s = CMSDK_APB_TIMER(obj);
memory_region_init_io(&s->iomem, obj, &cmsdk_apb_timer_ops,
s, "cmsdk-apb-timer", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->timerint);
}
static void cmsdk_apb_timer_realize(DeviceState *dev, Error **errp)
{
CMSDKAPBTIMER *s = CMSDK_APB_TIMER(dev);
QEMUBH *bh;
if (s->pclk_frq == 0) {
error_setg(errp, "CMSDK APB timer: pclk-frq property must be set");
return;
}
bh = qemu_bh_new(cmsdk_apb_timer_tick, s);
s->timer = ptimer_init(bh,
PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD |
PTIMER_POLICY_NO_IMMEDIATE_TRIGGER |
PTIMER_POLICY_NO_IMMEDIATE_RELOAD |
PTIMER_POLICY_NO_COUNTER_ROUND_DOWN);
ptimer_set_freq(s->timer, s->pclk_frq);
}
static const VMStateDescription cmsdk_apb_timer_vmstate = {
.name = "cmsdk-apb-timer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_PTIMER(timer, CMSDKAPBTIMER),
VMSTATE_UINT32(ctrl, CMSDKAPBTIMER),
VMSTATE_UINT32(value, CMSDKAPBTIMER),
VMSTATE_UINT32(reload, CMSDKAPBTIMER),
VMSTATE_UINT32(intstatus, CMSDKAPBTIMER),
VMSTATE_END_OF_LIST()
}
};
static Property cmsdk_apb_timer_properties[] = {
DEFINE_PROP_UINT32("pclk-frq", CMSDKAPBTIMER, pclk_frq, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void cmsdk_apb_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = cmsdk_apb_timer_realize;
dc->vmsd = &cmsdk_apb_timer_vmstate;
dc->reset = cmsdk_apb_timer_reset;
dc->props = cmsdk_apb_timer_properties;
}
static const TypeInfo cmsdk_apb_timer_info = {
.name = TYPE_CMSDK_APB_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CMSDKAPBTIMER),
.instance_init = cmsdk_apb_timer_init,
.class_init = cmsdk_apb_timer_class_init,
};
static void cmsdk_apb_timer_register_types(void)
{
type_register_static(&cmsdk_apb_timer_info);
}
type_init(cmsdk_apb_timer_register_types);

View file

@ -55,3 +55,8 @@ systick_reload(void) "systick reload"
systick_timer_tick(void) "systick reload"
systick_read(uint64_t addr, uint32_t value, unsigned size) "systick read addr 0x%" PRIx64 " data 0x%" PRIx32 " size %u"
systick_write(uint64_t addr, uint32_t value, unsigned size) "systick write addr 0x%" PRIx64 " data 0x%" PRIx32 " size %u"
# hw/char/cmsdk_apb_timer.c
cmsdk_apb_timer_read(uint64_t offset, uint64_t data, unsigned size) "CMSDK APB timer read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
cmsdk_apb_timer_write(uint64_t offset, uint64_t data, unsigned size) "CMSDK APB timer write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
cmsdk_apb_timer_reset(void) "CMSDK APB timer: reset"

View file

@ -35,11 +35,34 @@ typedef abi_ulong tb_page_addr_t;
typedef ram_addr_t tb_page_addr_t;
#endif
/* is_jmp field values */
/* DisasContext is_jmp field values
*
* is_jmp starts as DISAS_NEXT. The translator will keep processing
* instructions until an exit condition is reached. If we reach the
* exit condition and is_jmp is still DISAS_NEXT (because of some
* other condition) we simply "jump" to the next address.
* The remaining exit cases are:
*
* DISAS_JUMP - Only the PC was modified dynamically (e.g computed)
* DISAS_TB_JUMP - Only the PC was modified statically (e.g. branch)
*
* In these cases as long as the PC is updated we can chain to the
* next TB either by exiting the loop or looking up the next TB via
* the loookup helper.
*
* DISAS_UPDATE - CPU State was modified dynamically
*
* This covers any other CPU state which necessities us exiting the
* TCG code to the main run-loop. Typically this includes anything
* that might change the interrupt state.
*
* Individual translators may define additional exit cases to deal
* with per-target special conditions.
*/
#define DISAS_NEXT 0 /* next instruction can be analyzed */
#define DISAS_JUMP 1 /* only pc was modified dynamically */
#define DISAS_UPDATE 2 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
#define DISAS_TB_JUMP 2 /* only pc was modified statically */
#define DISAS_UPDATE 3 /* cpu state was modified dynamically */
#include "qemu/log.h"

View file

@ -0,0 +1,78 @@
/*
* ARM CMSDK APB UART emulation
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#ifndef CMSDK_APB_UART_H
#define CMSDK_APB_UART_H
#include "hw/sysbus.h"
#include "chardev/char-fe.h"
#define TYPE_CMSDK_APB_UART "cmsdk-apb-uart"
#define CMSDK_APB_UART(obj) OBJECT_CHECK(CMSDKAPBUART, (obj), \
TYPE_CMSDK_APB_UART)
typedef struct {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
MemoryRegion iomem;
CharBackend chr;
qemu_irq txint;
qemu_irq rxint;
qemu_irq txovrint;
qemu_irq rxovrint;
qemu_irq uartint;
guint watch_tag;
uint32_t pclk_frq;
uint32_t state;
uint32_t ctrl;
uint32_t intstatus;
uint32_t bauddiv;
/* This UART has no FIFO, only a 1-character buffer for each of Tx and Rx */
uint8_t txbuf;
uint8_t rxbuf;
} CMSDKAPBUART;
/**
* cmsdk_apb_uart_create - convenience function to create TYPE_CMSDK_APB_UART
* @addr: location in system memory to map registers
* @chr: Chardev backend to connect UART to, or NULL if no backend
* @pclk_frq: frequency in Hz of the PCLK clock (used for calculating baud rate)
*/
static inline DeviceState *cmsdk_apb_uart_create(hwaddr addr,
qemu_irq txint,
qemu_irq rxint,
qemu_irq txovrint,
qemu_irq rxovrint,
qemu_irq uartint,
Chardev *chr,
uint32_t pclk_frq)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, TYPE_CMSDK_APB_UART);
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
qdev_prop_set_uint32(dev, "pclk-frq", pclk_frq);
qdev_init_nofail(dev);
sysbus_mmio_map(s, 0, addr);
sysbus_connect_irq(s, 0, txint);
sysbus_connect_irq(s, 1, rxint);
sysbus_connect_irq(s, 2, txovrint);
sysbus_connect_irq(s, 3, rxovrint);
sysbus_connect_irq(s, 4, uartint);
return dev;
}
#endif

View file

@ -0,0 +1,43 @@
/*
* ARM MPS2 SCC emulation
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#ifndef MPS2_SCC_H
#define MPS2_SCC_H
#include "hw/sysbus.h"
#define TYPE_MPS2_SCC "mps2-scc"
#define MPS2_SCC(obj) OBJECT_CHECK(MPS2SCC, (obj), TYPE_MPS2_SCC)
#define NUM_OSCCLK 3
typedef struct {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
MemoryRegion iomem;
uint32_t cfg0;
uint32_t cfg1;
uint32_t cfg4;
uint32_t cfgdata_rtn;
uint32_t cfgdata_out;
uint32_t cfgctrl;
uint32_t cfgstat;
uint32_t dll;
uint32_t aid;
uint32_t id;
uint32_t oscclk[NUM_OSCCLK];
uint32_t oscclk_reset[NUM_OSCCLK];
} MPS2SCC;
#endif

View file

@ -221,11 +221,21 @@ struct BusState {
QLIST_ENTRY(BusState) sibling;
};
/**
* Property:
* @set_default: true if the default value should be set from @defval,
* in which case @info->set_default_value must not be NULL
* (if false then no default value is set by the property system
* and the field retains whatever value it was given by instance_init).
* @defval: default value for the property. This is used only if @set_default
* is true.
*/
struct Property {
const char *name;
const PropertyInfo *info;
ptrdiff_t offset;
uint8_t bitnr;
bool set_default;
union {
int64_t i;
uint64_t u;

View file

@ -44,15 +44,24 @@ extern const PropertyInfo qdev_prop_link;
.info = &(_prop), \
.offset = offsetof(_state, _field) \
+ type_check(_type,typeof_field(_state, _field)), \
.set_default = true, \
.defval.i = (_type)_defval, \
}
#define DEFINE_PROP_SIGNED_NODEFAULT(_name, _state, _field, _prop, _type) { \
.name = (_name), \
.info = &(_prop), \
.offset = offsetof(_state, _field) \
+ type_check(_type, typeof_field(_state, _field)), \
}
#define DEFINE_PROP_BIT(_name, _state, _field, _bit, _defval) { \
.name = (_name), \
.info = &(qdev_prop_bit), \
.bitnr = (_bit), \
.offset = offsetof(_state, _field) \
+ type_check(uint32_t,typeof_field(_state, _field)), \
.set_default = true, \
.defval.u = (bool)_defval, \
}
@ -61,15 +70,24 @@ extern const PropertyInfo qdev_prop_link;
.info = &(_prop), \
.offset = offsetof(_state, _field) \
+ type_check(_type, typeof_field(_state, _field)), \
.set_default = true, \
.defval.u = (_type)_defval, \
}
#define DEFINE_PROP_UNSIGNED_NODEFAULT(_name, _state, _field, _prop, _type) { \
.name = (_name), \
.info = &(_prop), \
.offset = offsetof(_state, _field) \
+ type_check(_type, typeof_field(_state, _field)), \
}
#define DEFINE_PROP_BIT64(_name, _state, _field, _bit, _defval) { \
.name = (_name), \
.info = &(qdev_prop_bit64), \
.bitnr = (_bit), \
.offset = offsetof(_state, _field) \
+ type_check(uint64_t, typeof_field(_state, _field)), \
.set_default = true, \
.defval.u = (bool)_defval, \
}
@ -78,6 +96,7 @@ extern const PropertyInfo qdev_prop_link;
.info = &(qdev_prop_bool), \
.offset = offsetof(_state, _field) \
+ type_check(bool, typeof_field(_state, _field)), \
.set_default = true, \
.defval.u = (bool)_defval, \
}
@ -111,6 +130,8 @@ extern const PropertyInfo qdev_prop_link;
_arrayfield, _arrayprop, _arraytype) { \
.name = (PROP_ARRAY_LEN_PREFIX _name), \
.info = &(qdev_prop_arraylen), \
.set_default = true, \
.defval.u = 0, \
.offset = offsetof(_state, _field) \
+ type_check(uint32_t, typeof_field(_state, _field)), \
.arrayinfo = &(_arrayprop), \

View file

@ -0,0 +1,59 @@
/*
* ARM CMSDK APB timer emulation
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#ifndef CMSDK_APB_TIMER_H
#define CMSDK_APB_TIMER_H
#include "hw/sysbus.h"
#include "hw/ptimer.h"
#define TYPE_CMSDK_APB_TIMER "cmsdk-apb-timer"
#define CMSDK_APB_TIMER(obj) OBJECT_CHECK(CMSDKAPBTIMER, (obj), \
TYPE_CMSDK_APB_TIMER)
typedef struct {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
MemoryRegion iomem;
qemu_irq timerint;
uint32_t pclk_frq;
struct ptimer_state *timer;
uint32_t ctrl;
uint32_t value;
uint32_t reload;
uint32_t intstatus;
} CMSDKAPBTIMER;
/**
* cmsdk_apb_timer_create - convenience function to create TYPE_CMSDK_APB_TIMER
* @addr: location in system memory to map registers
* @pclk_frq: frequency in Hz of the PCLK clock (used for calculating baud rate)
*/
static inline DeviceState *cmsdk_apb_timer_create(hwaddr addr,
qemu_irq timerint,
uint32_t pclk_frq)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, TYPE_CMSDK_APB_TIMER);
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_uint32(dev, "pclk-frq", pclk_frq);
qdev_init_nofail(dev);
sysbus_mmio_map(s, 0, addr);
sysbus_connect_irq(s, 0, timerint);
return dev;
}
#endif

View file

@ -543,8 +543,15 @@ static Property arm_cpu_has_pmu_property =
static Property arm_cpu_has_mpu_property =
DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
* because the CPU initfn will have already set cpu->pmsav7_dregion to
* the right value for that particular CPU type, and we don't want
* to override that with an incorrect constant value.
*/
static Property arm_cpu_pmsav7_dregion_property =
DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
pmsav7_dregion,
qdev_prop_uint32, uint32_t);
static void arm_cpu_post_init(Object *obj)
{
@ -1054,6 +1061,7 @@ static void cortex_m3_initfn(Object *obj)
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_M);
cpu->midr = 0x410fc231;
cpu->pmsav7_dregion = 8;
}
static void cortex_m4_initfn(Object *obj)
@ -1064,6 +1072,7 @@ static void cortex_m4_initfn(Object *obj)
set_feature(&cpu->env, ARM_FEATURE_M);
set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
cpu->midr = 0x410fc240; /* r0p0 */
cpu->pmsav7_dregion = 8;
}
static void arm_v7m_class_init(ObjectClass *oc, void *data)
{
@ -1112,6 +1121,7 @@ static void cortex_r5_initfn(Object *obj)
cpu->id_isar4 = 0x0010142;
cpu->id_isar5 = 0x0;
cpu->mp_is_up = true;
cpu->pmsav7_dregion = 16;
define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
}

View file

@ -1393,7 +1393,7 @@ static void handle_sync(DisasContext *s, uint32_t insn,
* a self-modified code correctly and also to take
* any pending interrupts immediately.
*/
s->is_jmp = DISAS_UPDATE;
gen_goto_tb(s, 0, s->pc);
return;
default:
unallocated_encoding(s);
@ -1788,7 +1788,8 @@ static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
return;
}
gen_helper_exception_return(cpu_env);
s->is_jmp = DISAS_JUMP;
/* Must exit loop to check un-masked IRQs */
s->is_jmp = DISAS_EXIT;
return;
case 5: /* DRPS */
if (rn != 0x1f) {
@ -11364,16 +11365,9 @@ void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
default:
case DISAS_UPDATE:
gen_a64_set_pc_im(dc->pc);
/* fall through */
case DISAS_JUMP:
tcg_gen_lookup_and_goto_ptr(cpu_pc);
break;
case DISAS_EXIT:
tcg_gen_exit_tb(0);
break;
case DISAS_TB_JUMP:
case DISAS_EXC:
case DISAS_SWI:
@ -11397,6 +11391,13 @@ void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
*/
tcg_gen_exit_tb(0);
break;
case DISAS_UPDATE:
gen_a64_set_pc_im(dc->pc);
/* fall through */
case DISAS_EXIT:
default:
tcg_gen_exit_tb(0);
break;
}
}

View file

@ -4158,6 +4158,10 @@ static void gen_goto_ptr(void)
tcg_temp_free(addr);
}
/* This will end the TB but doesn't guarantee we'll return to
* cpu_loop_exec. Any live exit_requests will be processed as we
* enter the next TB.
*/
static void gen_goto_tb(DisasContext *s, int n, target_ulong dest)
{
if (use_goto_tb(s, dest)) {
@ -4168,6 +4172,7 @@ static void gen_goto_tb(DisasContext *s, int n, target_ulong dest)
gen_set_pc_im(s, dest);
gen_goto_ptr();
}
s->is_jmp = DISAS_TB_JUMP;
}
static inline void gen_jmp (DisasContext *s, uint32_t dest)
@ -4179,7 +4184,6 @@ static inline void gen_jmp (DisasContext *s, uint32_t dest)
gen_bx_im(s, dest);
} else {
gen_goto_tb(s, 0, dest);
s->is_jmp = DISAS_TB_JUMP;
}
}
@ -4475,7 +4479,8 @@ static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr)
*/
gen_helper_cpsr_write_eret(cpu_env, cpsr);
tcg_temp_free_i32(cpsr);
s->is_jmp = DISAS_JUMP;
/* Must exit loop to check un-masked IRQs */
s->is_jmp = DISAS_EXIT;
}
/* Generate an old-style exception return. Marks pc as dead. */
@ -8165,7 +8170,7 @@ static void disas_arm_insn(DisasContext *s, unsigned int insn)
* self-modifying code correctly and also to take
* any pending interrupts immediately.
*/
gen_lookup_tb(s);
gen_goto_tb(s, 0, s->pc & ~1);
return;
default:
goto illegal_op;
@ -9519,7 +9524,8 @@ static void disas_arm_insn(DisasContext *s, unsigned int insn)
tmp = load_cpu_field(spsr);
gen_helper_cpsr_write_eret(cpu_env, tmp);
tcg_temp_free_i32(tmp);
s->is_jmp = DISAS_JUMP;
/* Must exit loop to check un-masked IRQs */
s->is_jmp = DISAS_EXIT;
}
}
break;
@ -10558,7 +10564,7 @@ static int disas_thumb2_insn(CPUARMState *env, DisasContext *s, uint16_t insn_hw
* and also to take any pending interrupts
* immediately.
*/
gen_lookup_tb(s);
gen_goto_tb(s, 0, s->pc & ~1);
break;
default:
goto illegal_op;
@ -12095,12 +12101,12 @@ void gen_intermediate_code(CPUARMState *env, TranslationBlock *tb)
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
case DISAS_UPDATE:
gen_set_pc_im(dc, dc->pc);
/* fall through */
case DISAS_JUMP:
gen_goto_ptr();
break;
case DISAS_UPDATE:
gen_set_pc_im(dc, dc->pc);
/* fall through */
default:
/* indicate that the hash table must be used to find the next TB */
tcg_gen_exit_tb(0);

View file

@ -140,7 +140,10 @@ static void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
*/
#define DISAS_BX_EXCRET 11
/* For instructions which want an immediate exit to the main loop,
* as opposed to attempting to use lookup_and_goto_ptr.
* as opposed to attempting to use lookup_and_goto_ptr. Unlike
* DISAS_UPDATE this doesn't write the PC on exiting the translation
* loop so you need to ensure something (gen_a64_set_pc_im or runtime
* helper) has done so before we reach return from cpu_tb_exec.
*/
#define DISAS_EXIT 12