add a header file for atomic operations

We're already using them in several places, but __sync builtins are just
too ugly to type, and do not provide seqcst load/store operations.

Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Paolo Bonzini 2013-05-13 13:29:47 +02:00
parent 22fc860b0a
commit 5444e768ee
6 changed files with 531 additions and 46 deletions

352
docs/atomics.txt Normal file
View file

@ -0,0 +1,352 @@
CPUs perform independent memory operations effectively in random order.
but this can be a problem for CPU-CPU interaction (including interactions
between QEMU and the guest). Multi-threaded programs use various tools
to instruct the compiler and the CPU to restrict the order to something
that is consistent with the expectations of the programmer.
The most basic tool is locking. Mutexes, condition variables and
semaphores are used in QEMU, and should be the default approach to
synchronization. Anything else is considerably harder, but it's
also justified more often than one would like. The two tools that
are provided by qemu/atomic.h are memory barriers and atomic operations.
Macros defined by qemu/atomic.h fall in three camps:
- compiler barriers: barrier();
- weak atomic access and manual memory barriers: atomic_read(),
atomic_set(), smp_rmb(), smp_wmb(), smp_mb(), smp_read_barrier_depends();
- sequentially consistent atomic access: everything else.
COMPILER MEMORY BARRIER
=======================
barrier() prevents the compiler from moving the memory accesses either
side of it to the other side. The compiler barrier has no direct effect
on the CPU, which may then reorder things however it wishes.
barrier() is mostly used within qemu/atomic.h itself. On some
architectures, CPU guarantees are strong enough that blocking compiler
optimizations already ensures the correct order of execution. In this
case, qemu/atomic.h will reduce stronger memory barriers to simple
compiler barriers.
Still, barrier() can be useful when writing code that can be interrupted
by signal handlers.
SEQUENTIALLY CONSISTENT ATOMIC ACCESS
=====================================
Most of the operations in the qemu/atomic.h header ensure *sequential
consistency*, where "the result of any execution is the same as if the
operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence
in the order specified by its program".
qemu/atomic.h provides the following set of atomic read-modify-write
operations:
void atomic_inc(ptr)
void atomic_dec(ptr)
void atomic_add(ptr, val)
void atomic_sub(ptr, val)
void atomic_and(ptr, val)
void atomic_or(ptr, val)
typeof(*ptr) atomic_fetch_inc(ptr)
typeof(*ptr) atomic_fetch_dec(ptr)
typeof(*ptr) atomic_fetch_add(ptr, val)
typeof(*ptr) atomic_fetch_sub(ptr, val)
typeof(*ptr) atomic_fetch_and(ptr, val)
typeof(*ptr) atomic_fetch_or(ptr, val)
typeof(*ptr) atomic_xchg(ptr, val
typeof(*ptr) atomic_cmpxchg(ptr, old, new)
all of which return the old value of *ptr. These operations are
polymorphic; they operate on any type that is as wide as an int.
Sequentially consistent loads and stores can be done using:
atomic_fetch_add(ptr, 0) for loads
atomic_xchg(ptr, val) for stores
However, they are quite expensive on some platforms, notably POWER and
ARM. Therefore, qemu/atomic.h provides two primitives with slightly
weaker constraints:
typeof(*ptr) atomic_mb_read(ptr)
void atomic_mb_set(ptr, val)
The semantics of these primitives map to Java volatile variables,
and are strongly related to memory barriers as used in the Linux
kernel (see below).
As long as you use atomic_mb_read and atomic_mb_set, accesses cannot
be reordered with each other, and it is also not possible to reorder
"normal" accesses around them.
However, and this is the important difference between
atomic_mb_read/atomic_mb_set and sequential consistency, it is important
for both threads to access the same volatile variable. It is not the
case that everything visible to thread A when it writes volatile field f
becomes visible to thread B after it reads volatile field g. The store
and load have to "match" (i.e., be performed on the same volatile
field) to achieve the right semantics.
These operations operate on any type that is as wide as an int or smaller.
WEAK ATOMIC ACCESS AND MANUAL MEMORY BARRIERS
=============================================
Compared to sequentially consistent atomic access, programming with
weaker consistency models can be considerably more complicated.
In general, if the algorithm you are writing includes both writes
and reads on the same side, it is generally simpler to use sequentially
consistent primitives.
When using this model, variables are accessed with atomic_read() and
atomic_set(), and restrictions to the ordering of accesses is enforced
using the smp_rmb(), smp_wmb(), smp_mb() and smp_read_barrier_depends()
memory barriers.
atomic_read() and atomic_set() prevents the compiler from using
optimizations that might otherwise optimize accesses out of existence
on the one hand, or that might create unsolicited accesses on the other.
In general this should not have any effect, because the same compiler
barriers are already implied by memory barriers. However, it is useful
to do so, because it tells readers which variables are shared with
other threads, and which are local to the current thread or protected
by other, more mundane means.
Memory barriers control the order of references to shared memory.
They come in four kinds:
- smp_rmb() guarantees that all the LOAD operations specified before
the barrier will appear to happen before all the LOAD operations
specified after the barrier with respect to the other components of
the system.
In other words, smp_rmb() puts a partial ordering on loads, but is not
required to have any effect on stores.
- smp_wmb() guarantees that all the STORE operations specified before
the barrier will appear to happen before all the STORE operations
specified after the barrier with respect to the other components of
the system.
In other words, smp_wmb() puts a partial ordering on stores, but is not
required to have any effect on loads.
- smp_mb() guarantees that all the LOAD and STORE operations specified
before the barrier will appear to happen before all the LOAD and
STORE operations specified after the barrier with respect to the other
components of the system.
smp_mb() puts a partial ordering on both loads and stores. It is
stronger than both a read and a write memory barrier; it implies both
smp_rmb() and smp_wmb(), but it also prevents STOREs coming before the
barrier from overtaking LOADs coming after the barrier and vice versa.
- smp_read_barrier_depends() is a weaker kind of read barrier. On
most processors, whenever two loads are performed such that the
second depends on the result of the first (e.g., the first load
retrieves the address to which the second load will be directed),
the processor will guarantee that the first LOAD will appear to happen
before the second with respect to the other components of the system.
However, this is not always true---for example, it was not true on
Alpha processors. Whenever this kind of access happens to shared
memory (that is not protected by a lock), a read barrier is needed,
and smp_read_barrier_depends() can be used instead of smp_rmb().
Note that the first load really has to have a _data_ dependency and not
a control dependency. If the address for the second load is dependent
on the first load, but the dependency is through a conditional rather
than actually loading the address itself, then it's a _control_
dependency and a full read barrier or better is required.
This is the set of barriers that is required *between* two atomic_read()
and atomic_set() operations to achieve sequential consistency:
| 2nd operation |
|-----------------------------------------|
1st operation | (after last) | atomic_read | atomic_set |
---------------+--------------+-------------+------------|
(before first) | | none | smp_wmb() |
---------------+--------------+-------------+------------|
atomic_read | smp_rmb() | smp_rmb()* | ** |
---------------+--------------+-------------+------------|
atomic_set | none | smp_mb()*** | smp_wmb() |
---------------+--------------+-------------+------------|
* Or smp_read_barrier_depends().
** This requires a load-store barrier. How to achieve this varies
depending on the machine, but in practice smp_rmb()+smp_wmb()
should have the desired effect. For example, on PowerPC the
lwsync instruction is a combined load-load, load-store and
store-store barrier.
*** This requires a store-load barrier. On most machines, the only
way to achieve this is a full barrier.
You can see that the two possible definitions of atomic_mb_read()
and atomic_mb_set() are the following:
1) atomic_mb_read(p) = atomic_read(p); smp_rmb()
atomic_mb_set(p, v) = smp_wmb(); atomic_set(p, v); smp_mb()
2) atomic_mb_read(p) = smp_mb() atomic_read(p); smp_rmb()
atomic_mb_set(p, v) = smp_wmb(); atomic_set(p, v);
Usually the former is used, because smp_mb() is expensive and a program
normally has more reads than writes. Therefore it makes more sense to
make atomic_mb_set() the more expensive operation.
There are two common cases in which atomic_mb_read and atomic_mb_set
generate too many memory barriers, and thus it can be useful to manually
place barriers instead:
- when a data structure has one thread that is always a writer
and one thread that is always a reader, manual placement of
memory barriers makes the write side faster. Furthermore,
correctness is easy to check for in this case using the "pairing"
trick that is explained below:
thread 1 thread 1
------------------------- ------------------------
(other writes)
smp_wmb()
atomic_mb_set(&a, x) atomic_set(&a, x)
smp_wmb()
atomic_mb_set(&b, y) atomic_set(&b, y)
=>
thread 2 thread 2
------------------------- ------------------------
y = atomic_mb_read(&b) y = atomic_read(&b)
smp_rmb()
x = atomic_mb_read(&a) x = atomic_read(&a)
smp_rmb()
- sometimes, a thread is accessing many variables that are otherwise
unrelated to each other (for example because, apart from the current
thread, exactly one other thread will read or write each of these
variables). In this case, it is possible to "hoist" the implicit
barriers provided by atomic_mb_read() and atomic_mb_set() outside
a loop. For example, the above definition atomic_mb_read() gives
the following transformation:
n = 0; n = 0;
for (i = 0; i < 10; i++) => for (i = 0; i < 10; i++)
n += atomic_mb_read(&a[i]); n += atomic_read(&a[i]);
smp_rmb();
Similarly, atomic_mb_set() can be transformed as follows:
smp_mb():
smp_wmb();
for (i = 0; i < 10; i++) => for (i = 0; i < 10; i++)
atomic_mb_set(&a[i], false); atomic_set(&a[i], false);
smp_mb();
The two tricks can be combined. In this case, splitting a loop in
two lets you hoist the barriers out of the loops _and_ eliminate the
expensive smp_mb():
smp_wmb();
for (i = 0; i < 10; i++) { => for (i = 0; i < 10; i++)
atomic_mb_set(&a[i], false); atomic_set(&a[i], false);
atomic_mb_set(&b[i], false); smb_wmb();
} for (i = 0; i < 10; i++)
atomic_set(&a[i], false);
smp_mb();
The other thread can still use atomic_mb_read()/atomic_mb_set()
Memory barrier pairing
----------------------
A useful rule of thumb is that memory barriers should always, or almost
always, be paired with another barrier. In the case of QEMU, however,
note that the other barrier may actually be in a driver that runs in
the guest!
For the purposes of pairing, smp_read_barrier_depends() and smp_rmb()
both count as read barriers. A read barriers shall pair with a write
barrier or a full barrier; a write barrier shall pair with a read
barrier or a full barrier. A full barrier can pair with anything.
For example:
thread 1 thread 2
=============== ===============
a = 1;
smp_wmb();
b = 2; x = b;
smp_rmb();
y = a;
Note that the "writing" thread are accessing the variables in the
opposite order as the "reading" thread. This is expected: stores
before the write barrier will normally match the loads after the
read barrier, and vice versa. The same is true for more than 2
access and for data dependency barriers:
thread 1 thread 2
=============== ===============
b[2] = 1;
smp_wmb();
x->i = 2;
smp_wmb();
a = x; x = a;
smp_read_barrier_depends();
y = x->i;
smp_read_barrier_depends();
z = b[y];
smp_wmb() also pairs with atomic_mb_read(), and smp_rmb() also pairs
with atomic_mb_set().
COMPARISON WITH LINUX KERNEL MEMORY BARRIERS
============================================
Here is a list of differences between Linux kernel atomic operations
and memory barriers, and the equivalents in QEMU:
- atomic operations in Linux are always on a 32-bit int type and
use a boxed atomic_t type; atomic operations in QEMU are polymorphic
and use normal C types.
- atomic_read and atomic_set in Linux give no guarantee at all;
atomic_read and atomic_set in QEMU include a compiler barrier
(similar to the ACCESS_ONCE macro in Linux).
- most atomic read-modify-write operations in Linux return void;
in QEMU, all of them return the old value of the variable.
- different atomic read-modify-write operations in Linux imply
a different set of memory barriers; in QEMU, all of them enforce
sequential consistency, which means they imply full memory barriers
before and after the operation.
- Linux does not have an equivalent of atomic_mb_read() and
atomic_mb_set(). In particular, note that set_mb() is a little
weaker than atomic_mb_set().
SOURCES
=======
* Documentation/memory-barriers.txt from the Linux kernel
* "The JSR-133 Cookbook for Compiler Writers", available at
http://g.oswego.edu/dl/jmm/cookbook.html

View file

@ -23,6 +23,7 @@
#include "qemu-common.h"
#include "qemu/timer.h"
#include "qemu/queue.h"
#include "qemu/atomic.h"
#include "monitor/monitor.h"
#include "sysemu/sysemu.h"
#include "trace.h"
@ -1726,7 +1727,7 @@ static void qxl_send_events(PCIQXLDevice *d, uint32_t events)
trace_qxl_send_events_vm_stopped(d->id, events);
return;
}
old_pending = __sync_fetch_and_or(&d->ram->int_pending, le_events);
old_pending = atomic_fetch_or(&d->ram->int_pending, le_events);
if ((old_pending & le_events) == le_events) {
return;
}

View file

@ -16,6 +16,7 @@
#include <sys/ioctl.h>
#include "hw/virtio/vhost.h"
#include "hw/hw.h"
#include "qemu/atomic.h"
#include "qemu/range.h"
#include <linux/vhost.h>
#include "exec/address-spaces.h"
@ -47,11 +48,9 @@ static void vhost_dev_sync_region(struct vhost_dev *dev,
addr += VHOST_LOG_CHUNK;
continue;
}
/* Data must be read atomically. We don't really
* need the barrier semantics of __sync
* builtins, but it's easier to use them than
* roll our own. */
log = __sync_fetch_and_and(from, 0);
/* Data must be read atomically. We don't really need barrier semantics
* but it's easier to use atomic_* than roll our own. */
log = atomic_xchg(from, 0);
while ((bit = sizeof(log) > sizeof(int) ?
ffsll(log) : ffs(log))) {
hwaddr page_addr;

View file

@ -1,68 +1,202 @@
#ifndef __QEMU_BARRIER_H
#define __QEMU_BARRIER_H 1
/*
* Simple interface for atomic operations.
*
* Copyright (C) 2013 Red Hat, Inc.
*
* Author: Paolo Bonzini <pbonzini@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#ifndef __QEMU_ATOMIC_H
#define __QEMU_ATOMIC_H 1
#include "qemu/compiler.h"
/* For C11 atomic ops */
/* Compiler barrier */
#define barrier() asm volatile("" ::: "memory")
#define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
#if defined(__i386__)
#include "qemu/compiler.h" /* QEMU_GNUC_PREREQ */
#ifndef __ATOMIC_RELAXED
/*
* Because of the strongly ordered x86 storage model, wmb() and rmb() are nops
* on x86(well, a compiler barrier only). Well, at least as long as
* qemu doesn't do accesses to write-combining memory or non-temporal
* load/stores from C code.
* We use GCC builtin if it's available, as that can use mfence on
* 32-bit as well, e.g. if built with -march=pentium-m. However, on
* i386 the spec is buggy, and the implementation followed it until
* 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
*/
#if defined(__i386__) || defined(__x86_64__)
#if !QEMU_GNUC_PREREQ(4, 4)
#if defined __x86_64__
#define smp_mb() ({ asm volatile("mfence" ::: "memory"); (void)0; })
#else
#define smp_mb() ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
#endif
#endif
#endif
#ifdef __alpha__
#define smp_read_barrier_depends() asm volatile("mb":::"memory")
#endif
#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
/*
* Because of the strongly ordered storage model, wmb() and rmb() are nops
* here (a compiler barrier only). QEMU doesn't do accesses to write-combining
* qemu memory or non-temporal load/stores from C code.
*/
#define smp_wmb() barrier()
#define smp_rmb() barrier()
/*
* We use GCC builtin if it's available, as that can use
* mfence on 32 bit as well, e.g. if built with -march=pentium-m.
* However, on i386, there seem to be known bugs as recently as 4.3.
* */
#if QEMU_GNUC_PREREQ(4, 4)
#define smp_mb() __sync_synchronize()
#else
#define smp_mb() asm volatile("lock; addl $0,0(%%esp) " ::: "memory")
#endif
* __sync_lock_test_and_set() is documented to be an acquire barrier only,
* but it is a full barrier at the hardware level. Add a compiler barrier
* to make it a full barrier also at the compiler level.
*/
#define atomic_xchg(ptr, i) (barrier(), __sync_lock_test_and_set(ptr, i))
#elif defined(__x86_64__)
#define smp_wmb() barrier()
#define smp_rmb() barrier()
#define smp_mb() asm volatile("mfence" ::: "memory")
/*
* Load/store with Java volatile semantics.
*/
#define atomic_mb_set(ptr, i) ((void)atomic_xchg(ptr, i))
#elif defined(_ARCH_PPC)
/*
* We use an eieio() for wmb() on powerpc. This assumes we don't
* need to order cacheable and non-cacheable stores with respect to
* each other
* each other.
*
* smp_mb has the same problem as on x86 for not-very-new GCC
* (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
*/
#define smp_wmb() asm volatile("eieio" ::: "memory")
#define smp_wmb() ({ asm volatile("eieio" ::: "memory"); (void)0; })
#if defined(__powerpc64__)
#define smp_rmb() asm volatile("lwsync" ::: "memory")
#define smp_rmb() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
#else
#define smp_rmb() asm volatile("sync" ::: "memory")
#define smp_rmb() ({ asm volatile("sync" ::: "memory"); (void)0; })
#endif
#define smp_mb() ({ asm volatile("sync" ::: "memory"); (void)0; })
#define smp_mb() asm volatile("sync" ::: "memory")
#endif /* _ARCH_PPC */
#else
#endif /* C11 atomics */
/*
* For (host) platforms we don't have explicit barrier definitions
* for, we use the gcc __sync_synchronize() primitive to generate a
* full barrier. This should be safe on all platforms, though it may
* be overkill for wmb() and rmb().
* be overkill for smp_wmb() and smp_rmb().
*/
#ifndef smp_mb
#define smp_mb() __sync_synchronize()
#endif
#ifndef smp_wmb
#ifdef __ATOMIC_RELEASE
#define smp_wmb() __atomic_thread_fence(__ATOMIC_RELEASE)
#else
#define smp_wmb() __sync_synchronize()
#define smp_mb() __sync_synchronize()
#endif
#endif
#ifndef smp_rmb
#ifdef __ATOMIC_ACQUIRE
#define smp_rmb() __atomic_thread_fence(__ATOMIC_ACQUIRE)
#else
#define smp_rmb() __sync_synchronize()
#endif
#endif
#ifndef smp_read_barrier_depends
#ifdef __ATOMIC_CONSUME
#define smp_read_barrier_depends() __atomic_thread_fence(__ATOMIC_CONSUME)
#else
#define smp_read_barrier_depends() barrier()
#endif
#endif
#ifndef atomic_read
#define atomic_read(ptr) (*(__typeof__(*ptr) *volatile) (ptr))
#endif
#ifndef atomic_set
#define atomic_set(ptr, i) ((*(__typeof__(*ptr) *volatile) (ptr)) = (i))
#endif
/* These have the same semantics as Java volatile variables.
* See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
* "1. Issue a StoreStore barrier (wmb) before each volatile store."
* 2. Issue a StoreLoad barrier after each volatile store.
* Note that you could instead issue one before each volatile load, but
* this would be slower for typical programs using volatiles in which
* reads greatly outnumber writes. Alternatively, if available, you
* can implement volatile store as an atomic instruction (for example
* XCHG on x86) and omit the barrier. This may be more efficient if
* atomic instructions are cheaper than StoreLoad barriers.
* 3. Issue LoadLoad and LoadStore barriers after each volatile load."
*
* If you prefer to think in terms of "pairing" of memory barriers,
* an atomic_mb_read pairs with an atomic_mb_set.
*
* And for the few ia64 lovers that exist, an atomic_mb_read is a ld.acq,
* while an atomic_mb_set is a st.rel followed by a memory barrier.
*
* These are a bit weaker than __atomic_load/store with __ATOMIC_SEQ_CST
* (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
* Just always use the barriers manually by the rules above.
*/
#ifndef atomic_mb_read
#define atomic_mb_read(ptr) ({ \
typeof(*ptr) _val = atomic_read(ptr); \
smp_rmb(); \
_val; \
})
#endif
#ifndef atomic_mb_set
#define atomic_mb_set(ptr, i) do { \
smp_wmb(); \
atomic_set(ptr, i); \
smp_mb(); \
} while (0)
#endif
#ifndef atomic_xchg
#ifdef __ATOMIC_SEQ_CST
#define atomic_xchg(ptr, i) ({ \
typeof(*ptr) _new = (i), _old; \
__atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
_old; \
})
#elif defined __clang__
#define atomic_xchg(ptr, i) __sync_exchange(ptr, i)
#else
/* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
#define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
#endif
#endif
/* Provide shorter names for GCC atomic builtins. */
#define atomic_fetch_inc(ptr) __sync_fetch_and_add(ptr, 1)
#define atomic_fetch_dec(ptr) __sync_fetch_and_add(ptr, -1)
#define atomic_fetch_add __sync_fetch_and_add
#define atomic_fetch_sub __sync_fetch_and_sub
#define atomic_fetch_and __sync_fetch_and_and
#define atomic_fetch_or __sync_fetch_and_or
#define atomic_cmpxchg __sync_val_compare_and_swap
/* And even shorter names that return void. */
#define atomic_inc(ptr) ((void) __sync_fetch_and_add(ptr, 1))
#define atomic_dec(ptr) ((void) __sync_fetch_and_add(ptr, -1))
#define atomic_add(ptr, n) ((void) __sync_fetch_and_add(ptr, n))
#define atomic_sub(ptr, n) ((void) __sync_fetch_and_sub(ptr, n))
#define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
#define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
#endif

View file

@ -293,8 +293,7 @@ static void migrate_fd_cleanup(void *opaque)
static void migrate_finish_set_state(MigrationState *s, int new_state)
{
if (__sync_val_compare_and_swap(&s->state, MIG_STATE_ACTIVE,
new_state) == new_state) {
if (atomic_cmpxchg(&s->state, MIG_STATE_ACTIVE, new_state) == new_state) {
trace_migrate_set_state(new_state);
}
}

View file

@ -17,15 +17,15 @@ typedef struct {
static int worker_cb(void *opaque)
{
WorkerTestData *data = opaque;
return __sync_fetch_and_add(&data->n, 1);
return atomic_fetch_inc(&data->n);
}
static int long_cb(void *opaque)
{
WorkerTestData *data = opaque;
__sync_fetch_and_add(&data->n, 1);
atomic_inc(&data->n);
g_usleep(2000000);
__sync_fetch_and_add(&data->n, 1);
atomic_inc(&data->n);
return 0;
}
@ -169,7 +169,7 @@ static void test_cancel(void)
/* Cancel the jobs that haven't been started yet. */
num_canceled = 0;
for (i = 0; i < 100; i++) {
if (__sync_val_compare_and_swap(&data[i].n, 0, 3) == 0) {
if (atomic_cmpxchg(&data[i].n, 0, 3) == 0) {
data[i].ret = -ECANCELED;
bdrv_aio_cancel(data[i].aiocb);
active--;