mirror of
https://gitlab.com/qemu-project/qemu
synced 2024-11-05 20:35:44 +00:00
target-alpha: Move floating-point helpers to fpu_helper.c.
Signed-off-by: Richard Henderson <rth@twiddle.net> Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
This commit is contained in:
parent
b9f0923eb7
commit
4a58aedff4
5 changed files with 961 additions and 923 deletions
|
@ -96,7 +96,7 @@ libobj-y += cpu_init.o
|
|||
endif
|
||||
libobj-$(TARGET_SPARC) += int32_helper.o
|
||||
libobj-$(TARGET_SPARC64) += int64_helper.o
|
||||
libobj-$(TARGET_ALPHA) += int_helper.o
|
||||
libobj-$(TARGET_ALPHA) += int_helper.o fpu_helper.o
|
||||
|
||||
libobj-y += disas.o
|
||||
libobj-$(CONFIG_TCI_DIS) += tci-dis.o
|
||||
|
|
846
target-alpha/fpu_helper.c
Normal file
846
target-alpha/fpu_helper.c
Normal file
|
@ -0,0 +1,846 @@
|
|||
/*
|
||||
* Helpers for floating point instructions.
|
||||
*
|
||||
* Copyright (c) 2007 Jocelyn Mayer
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "cpu.h"
|
||||
#include "helper.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#define FP_STATUS (env->fp_status)
|
||||
|
||||
|
||||
void helper_setroundmode(CPUAlphaState *env, uint32_t val)
|
||||
{
|
||||
set_float_rounding_mode(val, &FP_STATUS);
|
||||
}
|
||||
|
||||
void helper_setflushzero(CPUAlphaState *env, uint32_t val)
|
||||
{
|
||||
set_flush_to_zero(val, &FP_STATUS);
|
||||
}
|
||||
|
||||
void helper_fp_exc_clear(CPUAlphaState *env)
|
||||
{
|
||||
set_float_exception_flags(0, &FP_STATUS);
|
||||
}
|
||||
|
||||
uint32_t helper_fp_exc_get(CPUAlphaState *env)
|
||||
{
|
||||
return get_float_exception_flags(&FP_STATUS);
|
||||
}
|
||||
|
||||
static inline void inline_fp_exc_raise(CPUAlphaState *env, void *retaddr,
|
||||
uint32_t exc, uint32_t regno)
|
||||
{
|
||||
if (exc) {
|
||||
uint32_t hw_exc = 0;
|
||||
|
||||
if (exc & float_flag_invalid) {
|
||||
hw_exc |= EXC_M_INV;
|
||||
}
|
||||
if (exc & float_flag_divbyzero) {
|
||||
hw_exc |= EXC_M_DZE;
|
||||
}
|
||||
if (exc & float_flag_overflow) {
|
||||
hw_exc |= EXC_M_FOV;
|
||||
}
|
||||
if (exc & float_flag_underflow) {
|
||||
hw_exc |= EXC_M_UNF;
|
||||
}
|
||||
if (exc & float_flag_inexact) {
|
||||
hw_exc |= EXC_M_INE;
|
||||
}
|
||||
|
||||
arith_excp(env, retaddr, hw_exc, 1ull << regno);
|
||||
}
|
||||
}
|
||||
|
||||
/* Raise exceptions for ieee fp insns without software completion.
|
||||
In that case there are no exceptions that don't trap; the mask
|
||||
doesn't apply. */
|
||||
void helper_fp_exc_raise(CPUAlphaState *env, uint32_t exc, uint32_t regno)
|
||||
{
|
||||
inline_fp_exc_raise(env, GETPC(), exc, regno);
|
||||
}
|
||||
|
||||
/* Raise exceptions for ieee fp insns with software completion. */
|
||||
void helper_fp_exc_raise_s(CPUAlphaState *env, uint32_t exc, uint32_t regno)
|
||||
{
|
||||
if (exc) {
|
||||
env->fpcr_exc_status |= exc;
|
||||
exc &= ~env->fpcr_exc_mask;
|
||||
inline_fp_exc_raise(env, GETPC(), exc, regno);
|
||||
}
|
||||
}
|
||||
|
||||
/* Input remapping without software completion. Handle denormal-map-to-zero
|
||||
and trap for all other non-finite numbers. */
|
||||
uint64_t helper_ieee_input(CPUAlphaState *env, uint64_t val)
|
||||
{
|
||||
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
||||
uint64_t frac = val & 0xfffffffffffffull;
|
||||
|
||||
if (exp == 0) {
|
||||
if (frac != 0) {
|
||||
/* If DNZ is set flush denormals to zero on input. */
|
||||
if (env->fpcr_dnz) {
|
||||
val &= 1ull << 63;
|
||||
} else {
|
||||
arith_excp(env, GETPC(), EXC_M_UNF, 0);
|
||||
}
|
||||
}
|
||||
} else if (exp == 0x7ff) {
|
||||
/* Infinity or NaN. */
|
||||
/* ??? I'm not sure these exception bit flags are correct. I do
|
||||
know that the Linux kernel, at least, doesn't rely on them and
|
||||
just emulates the insn to figure out what exception to use. */
|
||||
arith_excp(env, GETPC(), frac ? EXC_M_INV : EXC_M_FOV, 0);
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
/* Similar, but does not trap for infinities. Used for comparisons. */
|
||||
uint64_t helper_ieee_input_cmp(CPUAlphaState *env, uint64_t val)
|
||||
{
|
||||
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
||||
uint64_t frac = val & 0xfffffffffffffull;
|
||||
|
||||
if (exp == 0) {
|
||||
if (frac != 0) {
|
||||
/* If DNZ is set flush denormals to zero on input. */
|
||||
if (env->fpcr_dnz) {
|
||||
val &= 1ull << 63;
|
||||
} else {
|
||||
arith_excp(env, GETPC(), EXC_M_UNF, 0);
|
||||
}
|
||||
}
|
||||
} else if (exp == 0x7ff && frac) {
|
||||
/* NaN. */
|
||||
arith_excp(env, GETPC(), EXC_M_INV, 0);
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
/* Input remapping with software completion enabled. All we have to do
|
||||
is handle denormal-map-to-zero; all other inputs get exceptions as
|
||||
needed from the actual operation. */
|
||||
uint64_t helper_ieee_input_s(CPUAlphaState *env, uint64_t val)
|
||||
{
|
||||
if (env->fpcr_dnz) {
|
||||
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
||||
if (exp == 0) {
|
||||
val &= 1ull << 63;
|
||||
}
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
/* F floating (VAX) */
|
||||
static uint64_t float32_to_f(float32 fa)
|
||||
{
|
||||
uint64_t r, exp, mant, sig;
|
||||
CPU_FloatU a;
|
||||
|
||||
a.f = fa;
|
||||
sig = ((uint64_t)a.l & 0x80000000) << 32;
|
||||
exp = (a.l >> 23) & 0xff;
|
||||
mant = ((uint64_t)a.l & 0x007fffff) << 29;
|
||||
|
||||
if (exp == 255) {
|
||||
/* NaN or infinity */
|
||||
r = 1; /* VAX dirty zero */
|
||||
} else if (exp == 0) {
|
||||
if (mant == 0) {
|
||||
/* Zero */
|
||||
r = 0;
|
||||
} else {
|
||||
/* Denormalized */
|
||||
r = sig | ((exp + 1) << 52) | mant;
|
||||
}
|
||||
} else {
|
||||
if (exp >= 253) {
|
||||
/* Overflow */
|
||||
r = 1; /* VAX dirty zero */
|
||||
} else {
|
||||
r = sig | ((exp + 2) << 52);
|
||||
}
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static float32 f_to_float32(CPUAlphaState *env, void *retaddr, uint64_t a)
|
||||
{
|
||||
uint32_t exp, mant_sig;
|
||||
CPU_FloatU r;
|
||||
|
||||
exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
|
||||
mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
|
||||
|
||||
if (unlikely(!exp && mant_sig)) {
|
||||
/* Reserved operands / Dirty zero */
|
||||
dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
|
||||
}
|
||||
|
||||
if (exp < 3) {
|
||||
/* Underflow */
|
||||
r.l = 0;
|
||||
} else {
|
||||
r.l = ((exp - 2) << 23) | mant_sig;
|
||||
}
|
||||
|
||||
return r.f;
|
||||
}
|
||||
|
||||
uint32_t helper_f_to_memory(uint64_t a)
|
||||
{
|
||||
uint32_t r;
|
||||
r = (a & 0x00001fffe0000000ull) >> 13;
|
||||
r |= (a & 0x07ffe00000000000ull) >> 45;
|
||||
r |= (a & 0xc000000000000000ull) >> 48;
|
||||
return r;
|
||||
}
|
||||
|
||||
uint64_t helper_memory_to_f(uint32_t a)
|
||||
{
|
||||
uint64_t r;
|
||||
r = ((uint64_t)(a & 0x0000c000)) << 48;
|
||||
r |= ((uint64_t)(a & 0x003fffff)) << 45;
|
||||
r |= ((uint64_t)(a & 0xffff0000)) << 13;
|
||||
if (!(a & 0x00004000)) {
|
||||
r |= 0x7ll << 59;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should
|
||||
either implement VAX arithmetic properly or just signal invalid opcode. */
|
||||
|
||||
uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = f_to_float32(env, GETPC(), a);
|
||||
fb = f_to_float32(env, GETPC(), b);
|
||||
fr = float32_add(fa, fb, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = f_to_float32(env, GETPC(), a);
|
||||
fb = f_to_float32(env, GETPC(), b);
|
||||
fr = float32_sub(fa, fb, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = f_to_float32(env, GETPC(), a);
|
||||
fb = f_to_float32(env, GETPC(), b);
|
||||
fr = float32_mul(fa, fb, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = f_to_float32(env, GETPC(), a);
|
||||
fb = f_to_float32(env, GETPC(), b);
|
||||
fr = float32_div(fa, fb, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t)
|
||||
{
|
||||
float32 ft, fr;
|
||||
|
||||
ft = f_to_float32(env, GETPC(), t);
|
||||
fr = float32_sqrt(ft, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
|
||||
/* G floating (VAX) */
|
||||
static uint64_t float64_to_g(float64 fa)
|
||||
{
|
||||
uint64_t r, exp, mant, sig;
|
||||
CPU_DoubleU a;
|
||||
|
||||
a.d = fa;
|
||||
sig = a.ll & 0x8000000000000000ull;
|
||||
exp = (a.ll >> 52) & 0x7ff;
|
||||
mant = a.ll & 0x000fffffffffffffull;
|
||||
|
||||
if (exp == 2047) {
|
||||
/* NaN or infinity */
|
||||
r = 1; /* VAX dirty zero */
|
||||
} else if (exp == 0) {
|
||||
if (mant == 0) {
|
||||
/* Zero */
|
||||
r = 0;
|
||||
} else {
|
||||
/* Denormalized */
|
||||
r = sig | ((exp + 1) << 52) | mant;
|
||||
}
|
||||
} else {
|
||||
if (exp >= 2045) {
|
||||
/* Overflow */
|
||||
r = 1; /* VAX dirty zero */
|
||||
} else {
|
||||
r = sig | ((exp + 2) << 52);
|
||||
}
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static float64 g_to_float64(CPUAlphaState *env, void *retaddr, uint64_t a)
|
||||
{
|
||||
uint64_t exp, mant_sig;
|
||||
CPU_DoubleU r;
|
||||
|
||||
exp = (a >> 52) & 0x7ff;
|
||||
mant_sig = a & 0x800fffffffffffffull;
|
||||
|
||||
if (!exp && mant_sig) {
|
||||
/* Reserved operands / Dirty zero */
|
||||
dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
|
||||
}
|
||||
|
||||
if (exp < 3) {
|
||||
/* Underflow */
|
||||
r.ll = 0;
|
||||
} else {
|
||||
r.ll = ((exp - 2) << 52) | mant_sig;
|
||||
}
|
||||
|
||||
return r.d;
|
||||
}
|
||||
|
||||
uint64_t helper_g_to_memory(uint64_t a)
|
||||
{
|
||||
uint64_t r;
|
||||
r = (a & 0x000000000000ffffull) << 48;
|
||||
r |= (a & 0x00000000ffff0000ull) << 16;
|
||||
r |= (a & 0x0000ffff00000000ull) >> 16;
|
||||
r |= (a & 0xffff000000000000ull) >> 48;
|
||||
return r;
|
||||
}
|
||||
|
||||
uint64_t helper_memory_to_g(uint64_t a)
|
||||
{
|
||||
uint64_t r;
|
||||
r = (a & 0x000000000000ffffull) << 48;
|
||||
r |= (a & 0x00000000ffff0000ull) << 16;
|
||||
r |= (a & 0x0000ffff00000000ull) >> 16;
|
||||
r |= (a & 0xffff000000000000ull) >> 48;
|
||||
return r;
|
||||
}
|
||||
|
||||
uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fb = g_to_float64(env, GETPC(), b);
|
||||
fr = float64_add(fa, fb, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fb = g_to_float64(env, GETPC(), b);
|
||||
fr = float64_sub(fa, fb, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fb = g_to_float64(env, GETPC(), b);
|
||||
fr = float64_mul(fa, fb, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fb = g_to_float64(env, GETPC(), b);
|
||||
fr = float64_div(fa, fb, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float64 fa, fr;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fr = float64_sqrt(fa, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
|
||||
/* S floating (single) */
|
||||
|
||||
/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */
|
||||
static inline uint64_t float32_to_s_int(uint32_t fi)
|
||||
{
|
||||
uint32_t frac = fi & 0x7fffff;
|
||||
uint32_t sign = fi >> 31;
|
||||
uint32_t exp_msb = (fi >> 30) & 1;
|
||||
uint32_t exp_low = (fi >> 23) & 0x7f;
|
||||
uint32_t exp;
|
||||
|
||||
exp = (exp_msb << 10) | exp_low;
|
||||
if (exp_msb) {
|
||||
if (exp_low == 0x7f) {
|
||||
exp = 0x7ff;
|
||||
}
|
||||
} else {
|
||||
if (exp_low != 0x00) {
|
||||
exp |= 0x380;
|
||||
}
|
||||
}
|
||||
|
||||
return (((uint64_t)sign << 63)
|
||||
| ((uint64_t)exp << 52)
|
||||
| ((uint64_t)frac << 29));
|
||||
}
|
||||
|
||||
static inline uint64_t float32_to_s(float32 fa)
|
||||
{
|
||||
CPU_FloatU a;
|
||||
a.f = fa;
|
||||
return float32_to_s_int(a.l);
|
||||
}
|
||||
|
||||
static inline uint32_t s_to_float32_int(uint64_t a)
|
||||
{
|
||||
return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
|
||||
}
|
||||
|
||||
static inline float32 s_to_float32(uint64_t a)
|
||||
{
|
||||
CPU_FloatU r;
|
||||
r.l = s_to_float32_int(a);
|
||||
return r.f;
|
||||
}
|
||||
|
||||
uint32_t helper_s_to_memory(uint64_t a)
|
||||
{
|
||||
return s_to_float32_int(a);
|
||||
}
|
||||
|
||||
uint64_t helper_memory_to_s(uint32_t a)
|
||||
{
|
||||
return float32_to_s_int(a);
|
||||
}
|
||||
|
||||
uint64_t helper_adds(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fb = s_to_float32(b);
|
||||
fr = float32_add(fa, fb, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_subs(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fb = s_to_float32(b);
|
||||
fr = float32_sub(fa, fb, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_muls(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fb = s_to_float32(b);
|
||||
fr = float32_mul(fa, fb, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_divs(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fb = s_to_float32(b);
|
||||
fr = float32_div(fa, fb, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_sqrts(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float32 fa, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fr = float32_sqrt(fa, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
|
||||
/* T floating (double) */
|
||||
static inline float64 t_to_float64(uint64_t a)
|
||||
{
|
||||
/* Memory format is the same as float64 */
|
||||
CPU_DoubleU r;
|
||||
r.ll = a;
|
||||
return r.d;
|
||||
}
|
||||
|
||||
static inline uint64_t float64_to_t(float64 fa)
|
||||
{
|
||||
/* Memory format is the same as float64 */
|
||||
CPU_DoubleU r;
|
||||
r.d = fa;
|
||||
return r.ll;
|
||||
}
|
||||
|
||||
uint64_t helper_addt(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
fr = float64_add(fa, fb, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_subt(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
fr = float64_sub(fa, fb, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_mult(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
fr = float64_mul(fa, fb, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_divt(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
fr = float64_div(fa, fb, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_sqrtt(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float64 fa, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fr = float64_sqrt(fa, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
/* Comparisons */
|
||||
uint64_t helper_cmptun(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
|
||||
if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
|
||||
return 0x4000000000000000ULL;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t helper_cmpteq(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
|
||||
if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
|
||||
return 0x4000000000000000ULL;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t helper_cmptle(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
|
||||
if (float64_le(fa, fb, &FP_STATUS)) {
|
||||
return 0x4000000000000000ULL;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t helper_cmptlt(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
|
||||
if (float64_lt(fa, fb, &FP_STATUS)) {
|
||||
return 0x4000000000000000ULL;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fb = g_to_float64(env, GETPC(), b);
|
||||
|
||||
if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
|
||||
return 0x4000000000000000ULL;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fb = g_to_float64(env, GETPC(), b);
|
||||
|
||||
if (float64_le(fa, fb, &FP_STATUS)) {
|
||||
return 0x4000000000000000ULL;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fb = g_to_float64(env, GETPC(), b);
|
||||
|
||||
if (float64_lt(fa, fb, &FP_STATUS)) {
|
||||
return 0x4000000000000000ULL;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Floating point format conversion */
|
||||
uint64_t helper_cvtts(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float64 fa;
|
||||
float32 fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fr = float64_to_float32(fa, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtst(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float32 fa;
|
||||
float64 fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fr = float32_to_float64(fa, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtqs(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float32 fr = int64_to_float32(a, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
/* Implement float64 to uint64 conversion without saturation -- we must
|
||||
supply the truncated result. This behaviour is used by the compiler
|
||||
to get unsigned conversion for free with the same instruction.
|
||||
|
||||
The VI flag is set when overflow or inexact exceptions should be raised. */
|
||||
|
||||
static inline uint64_t inline_cvttq(CPUAlphaState *env, uint64_t a,
|
||||
int roundmode, int VI)
|
||||
{
|
||||
uint64_t frac, ret = 0;
|
||||
uint32_t exp, sign, exc = 0;
|
||||
int shift;
|
||||
|
||||
sign = (a >> 63);
|
||||
exp = (uint32_t)(a >> 52) & 0x7ff;
|
||||
frac = a & 0xfffffffffffffull;
|
||||
|
||||
if (exp == 0) {
|
||||
if (unlikely(frac != 0)) {
|
||||
goto do_underflow;
|
||||
}
|
||||
} else if (exp == 0x7ff) {
|
||||
exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
|
||||
} else {
|
||||
/* Restore implicit bit. */
|
||||
frac |= 0x10000000000000ull;
|
||||
|
||||
shift = exp - 1023 - 52;
|
||||
if (shift >= 0) {
|
||||
/* In this case the number is so large that we must shift
|
||||
the fraction left. There is no rounding to do. */
|
||||
if (shift < 63) {
|
||||
ret = frac << shift;
|
||||
if (VI && (ret >> shift) != frac) {
|
||||
exc = float_flag_overflow;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
uint64_t round;
|
||||
|
||||
/* In this case the number is smaller than the fraction as
|
||||
represented by the 52 bit number. Here we must think
|
||||
about rounding the result. Handle this by shifting the
|
||||
fractional part of the number into the high bits of ROUND.
|
||||
This will let us efficiently handle round-to-nearest. */
|
||||
shift = -shift;
|
||||
if (shift < 63) {
|
||||
ret = frac >> shift;
|
||||
round = frac << (64 - shift);
|
||||
} else {
|
||||
/* The exponent is so small we shift out everything.
|
||||
Leave a sticky bit for proper rounding below. */
|
||||
do_underflow:
|
||||
round = 1;
|
||||
}
|
||||
|
||||
if (round) {
|
||||
exc = (VI ? float_flag_inexact : 0);
|
||||
switch (roundmode) {
|
||||
case float_round_nearest_even:
|
||||
if (round == (1ull << 63)) {
|
||||
/* Fraction is exactly 0.5; round to even. */
|
||||
ret += (ret & 1);
|
||||
} else if (round > (1ull << 63)) {
|
||||
ret += 1;
|
||||
}
|
||||
break;
|
||||
case float_round_to_zero:
|
||||
break;
|
||||
case float_round_up:
|
||||
ret += 1 - sign;
|
||||
break;
|
||||
case float_round_down:
|
||||
ret += sign;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (sign) {
|
||||
ret = -ret;
|
||||
}
|
||||
}
|
||||
if (unlikely(exc)) {
|
||||
float_raise(exc, &FP_STATUS);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
uint64_t helper_cvttq(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
return inline_cvttq(env, a, FP_STATUS.float_rounding_mode, 1);
|
||||
}
|
||||
|
||||
uint64_t helper_cvttq_c(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
return inline_cvttq(env, a, float_round_to_zero, 0);
|
||||
}
|
||||
|
||||
uint64_t helper_cvttq_svic(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
return inline_cvttq(env, a, float_round_to_zero, 1);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtqt(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float64 fr = int64_to_float64(a, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float32 fr = int64_to_float32(a, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float64 fa;
|
||||
float32 fr;
|
||||
|
||||
fa = g_to_float64(env, GETPC(), a);
|
||||
fr = float64_to_float32(fa, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float64 fa = g_to_float64(env, GETPC(), a);
|
||||
return float64_to_int64_round_to_zero(fa, &FP_STATUS);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a)
|
||||
{
|
||||
float64 fr;
|
||||
fr = int64_to_float64(a, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
|
@ -39,65 +39,65 @@ DEF_HELPER_FLAGS_1(store_fpcr, TCG_CALL_CONST, void, i64)
|
|||
|
||||
DEF_HELPER_FLAGS_1(f_to_memory, TCG_CALL_CONST | TCG_CALL_PURE, i32, i64)
|
||||
DEF_HELPER_FLAGS_1(memory_to_f, TCG_CALL_CONST | TCG_CALL_PURE, i64, i32)
|
||||
DEF_HELPER_FLAGS_2(addf, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(subf, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(mulf, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(divf, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(sqrtf, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(addf, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(subf, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(mulf, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(divf, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(sqrtf, TCG_CALL_CONST, i64, env, i64)
|
||||
|
||||
DEF_HELPER_FLAGS_1(g_to_memory, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(memory_to_g, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(addg, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(subg, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(mulg, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(divg, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(sqrtg, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(addg, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(subg, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(mulg, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(divg, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(sqrtg, TCG_CALL_CONST, i64, env, i64)
|
||||
|
||||
DEF_HELPER_FLAGS_1(s_to_memory, TCG_CALL_CONST | TCG_CALL_PURE, i32, i64)
|
||||
DEF_HELPER_FLAGS_1(memory_to_s, TCG_CALL_CONST | TCG_CALL_PURE, i64, i32)
|
||||
DEF_HELPER_FLAGS_2(adds, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(subs, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(muls, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(divs, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(sqrts, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(adds, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(subs, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(muls, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(divs, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(sqrts, TCG_CALL_CONST, i64, env, i64)
|
||||
|
||||
DEF_HELPER_FLAGS_2(addt, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(subt, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(mult, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(divt, TCG_CALL_CONST, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(sqrtt, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(addt, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(subt, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(mult, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(divt, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(sqrtt, TCG_CALL_CONST, i64, env, i64)
|
||||
|
||||
DEF_HELPER_FLAGS_2(cmptun, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(cmpteq, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(cmptle, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(cmptlt, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(cmpgeq, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(cmpgle, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(cmpglt, TCG_CALL_CONST | TCG_CALL_PURE, i64, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(cmptun, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(cmpteq, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(cmptle, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(cmptlt, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(cmpgeq, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(cmpgle, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
DEF_HELPER_FLAGS_3(cmpglt, TCG_CALL_CONST, i64, env, i64, i64)
|
||||
|
||||
DEF_HELPER_FLAGS_1(cvtts, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvtst, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvtqs, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvtqt, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvtqf, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvtgf, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvtgq, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvtqg, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(cvtts, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvtst, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvtqs, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvtqt, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvtqf, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvtgf, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvtgq, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvtqg, TCG_CALL_CONST, i64, env, i64)
|
||||
|
||||
DEF_HELPER_FLAGS_1(cvttq, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvttq_c, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_1(cvttq_svic, TCG_CALL_CONST, i64, i64)
|
||||
DEF_HELPER_FLAGS_2(cvttq, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvttq_c, TCG_CALL_CONST, i64, env, i64)
|
||||
DEF_HELPER_FLAGS_2(cvttq_svic, TCG_CALL_CONST, i64, env, i64)
|
||||
|
||||
DEF_HELPER_FLAGS_1(setroundmode, TCG_CALL_CONST, void, i32)
|
||||
DEF_HELPER_FLAGS_1(setflushzero, TCG_CALL_CONST, void, i32)
|
||||
DEF_HELPER_FLAGS_0(fp_exc_clear, TCG_CALL_CONST, void)
|
||||
DEF_HELPER_FLAGS_0(fp_exc_get, TCG_CALL_CONST | TCG_CALL_PURE, i32)
|
||||
DEF_HELPER_2(fp_exc_raise, void, i32, i32)
|
||||
DEF_HELPER_2(fp_exc_raise_s, void, i32, i32)
|
||||
DEF_HELPER_FLAGS_2(setroundmode, TCG_CALL_CONST, void, env, i32)
|
||||
DEF_HELPER_FLAGS_2(setflushzero, TCG_CALL_CONST, void, env, i32)
|
||||
DEF_HELPER_FLAGS_1(fp_exc_clear, TCG_CALL_CONST, void, env)
|
||||
DEF_HELPER_FLAGS_1(fp_exc_get, TCG_CALL_CONST | TCG_CALL_PURE, i32, env)
|
||||
DEF_HELPER_3(fp_exc_raise, void, env, i32, i32)
|
||||
DEF_HELPER_3(fp_exc_raise_s, void, env, i32, i32)
|
||||
|
||||
DEF_HELPER_1(ieee_input, i64, i64)
|
||||
DEF_HELPER_1(ieee_input_cmp, i64, i64)
|
||||
DEF_HELPER_1(ieee_input_s, i64, i64)
|
||||
DEF_HELPER_2(ieee_input, i64, env, i64)
|
||||
DEF_HELPER_2(ieee_input_cmp, i64, env, i64)
|
||||
DEF_HELPER_2(ieee_input_s, i64, env, i64)
|
||||
|
||||
#if !defined (CONFIG_USER_ONLY)
|
||||
DEF_HELPER_1(hw_ret, void, i64)
|
||||
|
|
|
@ -25,8 +25,6 @@
|
|||
#include "sysemu.h"
|
||||
#include "qemu-timer.h"
|
||||
|
||||
#define FP_STATUS (env->fp_status)
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Exceptions processing helpers */
|
||||
|
||||
|
@ -117,816 +115,6 @@ uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
|
|||
return tl;
|
||||
}
|
||||
|
||||
/* Floating point helpers */
|
||||
|
||||
void helper_setroundmode (uint32_t val)
|
||||
{
|
||||
set_float_rounding_mode(val, &FP_STATUS);
|
||||
}
|
||||
|
||||
void helper_setflushzero (uint32_t val)
|
||||
{
|
||||
set_flush_to_zero(val, &FP_STATUS);
|
||||
}
|
||||
|
||||
void helper_fp_exc_clear (void)
|
||||
{
|
||||
set_float_exception_flags(0, &FP_STATUS);
|
||||
}
|
||||
|
||||
uint32_t helper_fp_exc_get (void)
|
||||
{
|
||||
return get_float_exception_flags(&FP_STATUS);
|
||||
}
|
||||
|
||||
/* Raise exceptions for ieee fp insns without software completion.
|
||||
In that case there are no exceptions that don't trap; the mask
|
||||
doesn't apply. */
|
||||
void helper_fp_exc_raise(uint32_t exc, uint32_t regno)
|
||||
{
|
||||
if (exc) {
|
||||
uint32_t hw_exc = 0;
|
||||
|
||||
if (exc & float_flag_invalid) {
|
||||
hw_exc |= EXC_M_INV;
|
||||
}
|
||||
if (exc & float_flag_divbyzero) {
|
||||
hw_exc |= EXC_M_DZE;
|
||||
}
|
||||
if (exc & float_flag_overflow) {
|
||||
hw_exc |= EXC_M_FOV;
|
||||
}
|
||||
if (exc & float_flag_underflow) {
|
||||
hw_exc |= EXC_M_UNF;
|
||||
}
|
||||
if (exc & float_flag_inexact) {
|
||||
hw_exc |= EXC_M_INE;
|
||||
}
|
||||
|
||||
arith_excp(env, GETPC(), hw_exc, 1ull << regno);
|
||||
}
|
||||
}
|
||||
|
||||
/* Raise exceptions for ieee fp insns with software completion. */
|
||||
void helper_fp_exc_raise_s(uint32_t exc, uint32_t regno)
|
||||
{
|
||||
if (exc) {
|
||||
env->fpcr_exc_status |= exc;
|
||||
|
||||
exc &= ~env->fpcr_exc_mask;
|
||||
if (exc) {
|
||||
helper_fp_exc_raise(exc, regno);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Input remapping without software completion. Handle denormal-map-to-zero
|
||||
and trap for all other non-finite numbers. */
|
||||
uint64_t helper_ieee_input(uint64_t val)
|
||||
{
|
||||
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
||||
uint64_t frac = val & 0xfffffffffffffull;
|
||||
|
||||
if (exp == 0) {
|
||||
if (frac != 0) {
|
||||
/* If DNZ is set flush denormals to zero on input. */
|
||||
if (env->fpcr_dnz) {
|
||||
val &= 1ull << 63;
|
||||
} else {
|
||||
arith_excp(env, GETPC(), EXC_M_UNF, 0);
|
||||
}
|
||||
}
|
||||
} else if (exp == 0x7ff) {
|
||||
/* Infinity or NaN. */
|
||||
/* ??? I'm not sure these exception bit flags are correct. I do
|
||||
know that the Linux kernel, at least, doesn't rely on them and
|
||||
just emulates the insn to figure out what exception to use. */
|
||||
arith_excp(env, GETPC(), frac ? EXC_M_INV : EXC_M_FOV, 0);
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
/* Similar, but does not trap for infinities. Used for comparisons. */
|
||||
uint64_t helper_ieee_input_cmp(uint64_t val)
|
||||
{
|
||||
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
||||
uint64_t frac = val & 0xfffffffffffffull;
|
||||
|
||||
if (exp == 0) {
|
||||
if (frac != 0) {
|
||||
/* If DNZ is set flush denormals to zero on input. */
|
||||
if (env->fpcr_dnz) {
|
||||
val &= 1ull << 63;
|
||||
} else {
|
||||
arith_excp(env, GETPC(), EXC_M_UNF, 0);
|
||||
}
|
||||
}
|
||||
} else if (exp == 0x7ff && frac) {
|
||||
/* NaN. */
|
||||
arith_excp(env, GETPC(), EXC_M_INV, 0);
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
/* Input remapping with software completion enabled. All we have to do
|
||||
is handle denormal-map-to-zero; all other inputs get exceptions as
|
||||
needed from the actual operation. */
|
||||
uint64_t helper_ieee_input_s(uint64_t val)
|
||||
{
|
||||
if (env->fpcr_dnz) {
|
||||
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
||||
if (exp == 0) {
|
||||
val &= 1ull << 63;
|
||||
}
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
/* F floating (VAX) */
|
||||
static inline uint64_t float32_to_f(float32 fa)
|
||||
{
|
||||
uint64_t r, exp, mant, sig;
|
||||
CPU_FloatU a;
|
||||
|
||||
a.f = fa;
|
||||
sig = ((uint64_t)a.l & 0x80000000) << 32;
|
||||
exp = (a.l >> 23) & 0xff;
|
||||
mant = ((uint64_t)a.l & 0x007fffff) << 29;
|
||||
|
||||
if (exp == 255) {
|
||||
/* NaN or infinity */
|
||||
r = 1; /* VAX dirty zero */
|
||||
} else if (exp == 0) {
|
||||
if (mant == 0) {
|
||||
/* Zero */
|
||||
r = 0;
|
||||
} else {
|
||||
/* Denormalized */
|
||||
r = sig | ((exp + 1) << 52) | mant;
|
||||
}
|
||||
} else {
|
||||
if (exp >= 253) {
|
||||
/* Overflow */
|
||||
r = 1; /* VAX dirty zero */
|
||||
} else {
|
||||
r = sig | ((exp + 2) << 52);
|
||||
}
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static inline float32 f_to_float32(uint64_t a)
|
||||
{
|
||||
uint32_t exp, mant_sig;
|
||||
CPU_FloatU r;
|
||||
|
||||
exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
|
||||
mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
|
||||
|
||||
if (unlikely(!exp && mant_sig)) {
|
||||
/* Reserved operands / Dirty zero */
|
||||
dynamic_excp(env, GETPC(), EXCP_OPCDEC, 0);
|
||||
}
|
||||
|
||||
if (exp < 3) {
|
||||
/* Underflow */
|
||||
r.l = 0;
|
||||
} else {
|
||||
r.l = ((exp - 2) << 23) | mant_sig;
|
||||
}
|
||||
|
||||
return r.f;
|
||||
}
|
||||
|
||||
uint32_t helper_f_to_memory (uint64_t a)
|
||||
{
|
||||
uint32_t r;
|
||||
r = (a & 0x00001fffe0000000ull) >> 13;
|
||||
r |= (a & 0x07ffe00000000000ull) >> 45;
|
||||
r |= (a & 0xc000000000000000ull) >> 48;
|
||||
return r;
|
||||
}
|
||||
|
||||
uint64_t helper_memory_to_f (uint32_t a)
|
||||
{
|
||||
uint64_t r;
|
||||
r = ((uint64_t)(a & 0x0000c000)) << 48;
|
||||
r |= ((uint64_t)(a & 0x003fffff)) << 45;
|
||||
r |= ((uint64_t)(a & 0xffff0000)) << 13;
|
||||
if (!(a & 0x00004000))
|
||||
r |= 0x7ll << 59;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should
|
||||
either implement VAX arithmetic properly or just signal invalid opcode. */
|
||||
|
||||
uint64_t helper_addf (uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = f_to_float32(a);
|
||||
fb = f_to_float32(b);
|
||||
fr = float32_add(fa, fb, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_subf (uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = f_to_float32(a);
|
||||
fb = f_to_float32(b);
|
||||
fr = float32_sub(fa, fb, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_mulf (uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = f_to_float32(a);
|
||||
fb = f_to_float32(b);
|
||||
fr = float32_mul(fa, fb, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_divf (uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = f_to_float32(a);
|
||||
fb = f_to_float32(b);
|
||||
fr = float32_div(fa, fb, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_sqrtf (uint64_t t)
|
||||
{
|
||||
float32 ft, fr;
|
||||
|
||||
ft = f_to_float32(t);
|
||||
fr = float32_sqrt(ft, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
|
||||
/* G floating (VAX) */
|
||||
static inline uint64_t float64_to_g(float64 fa)
|
||||
{
|
||||
uint64_t r, exp, mant, sig;
|
||||
CPU_DoubleU a;
|
||||
|
||||
a.d = fa;
|
||||
sig = a.ll & 0x8000000000000000ull;
|
||||
exp = (a.ll >> 52) & 0x7ff;
|
||||
mant = a.ll & 0x000fffffffffffffull;
|
||||
|
||||
if (exp == 2047) {
|
||||
/* NaN or infinity */
|
||||
r = 1; /* VAX dirty zero */
|
||||
} else if (exp == 0) {
|
||||
if (mant == 0) {
|
||||
/* Zero */
|
||||
r = 0;
|
||||
} else {
|
||||
/* Denormalized */
|
||||
r = sig | ((exp + 1) << 52) | mant;
|
||||
}
|
||||
} else {
|
||||
if (exp >= 2045) {
|
||||
/* Overflow */
|
||||
r = 1; /* VAX dirty zero */
|
||||
} else {
|
||||
r = sig | ((exp + 2) << 52);
|
||||
}
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static inline float64 g_to_float64(uint64_t a)
|
||||
{
|
||||
uint64_t exp, mant_sig;
|
||||
CPU_DoubleU r;
|
||||
|
||||
exp = (a >> 52) & 0x7ff;
|
||||
mant_sig = a & 0x800fffffffffffffull;
|
||||
|
||||
if (!exp && mant_sig) {
|
||||
/* Reserved operands / Dirty zero */
|
||||
dynamic_excp(env, GETPC(), EXCP_OPCDEC, 0);
|
||||
}
|
||||
|
||||
if (exp < 3) {
|
||||
/* Underflow */
|
||||
r.ll = 0;
|
||||
} else {
|
||||
r.ll = ((exp - 2) << 52) | mant_sig;
|
||||
}
|
||||
|
||||
return r.d;
|
||||
}
|
||||
|
||||
uint64_t helper_g_to_memory (uint64_t a)
|
||||
{
|
||||
uint64_t r;
|
||||
r = (a & 0x000000000000ffffull) << 48;
|
||||
r |= (a & 0x00000000ffff0000ull) << 16;
|
||||
r |= (a & 0x0000ffff00000000ull) >> 16;
|
||||
r |= (a & 0xffff000000000000ull) >> 48;
|
||||
return r;
|
||||
}
|
||||
|
||||
uint64_t helper_memory_to_g (uint64_t a)
|
||||
{
|
||||
uint64_t r;
|
||||
r = (a & 0x000000000000ffffull) << 48;
|
||||
r |= (a & 0x00000000ffff0000ull) << 16;
|
||||
r |= (a & 0x0000ffff00000000ull) >> 16;
|
||||
r |= (a & 0xffff000000000000ull) >> 48;
|
||||
return r;
|
||||
}
|
||||
|
||||
uint64_t helper_addg (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fb = g_to_float64(b);
|
||||
fr = float64_add(fa, fb, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_subg (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fb = g_to_float64(b);
|
||||
fr = float64_sub(fa, fb, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_mulg (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fb = g_to_float64(b);
|
||||
fr = float64_mul(fa, fb, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_divg (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fb = g_to_float64(b);
|
||||
fr = float64_div(fa, fb, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_sqrtg (uint64_t a)
|
||||
{
|
||||
float64 fa, fr;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fr = float64_sqrt(fa, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
|
||||
/* S floating (single) */
|
||||
|
||||
/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */
|
||||
static inline uint64_t float32_to_s_int(uint32_t fi)
|
||||
{
|
||||
uint32_t frac = fi & 0x7fffff;
|
||||
uint32_t sign = fi >> 31;
|
||||
uint32_t exp_msb = (fi >> 30) & 1;
|
||||
uint32_t exp_low = (fi >> 23) & 0x7f;
|
||||
uint32_t exp;
|
||||
|
||||
exp = (exp_msb << 10) | exp_low;
|
||||
if (exp_msb) {
|
||||
if (exp_low == 0x7f)
|
||||
exp = 0x7ff;
|
||||
} else {
|
||||
if (exp_low != 0x00)
|
||||
exp |= 0x380;
|
||||
}
|
||||
|
||||
return (((uint64_t)sign << 63)
|
||||
| ((uint64_t)exp << 52)
|
||||
| ((uint64_t)frac << 29));
|
||||
}
|
||||
|
||||
static inline uint64_t float32_to_s(float32 fa)
|
||||
{
|
||||
CPU_FloatU a;
|
||||
a.f = fa;
|
||||
return float32_to_s_int(a.l);
|
||||
}
|
||||
|
||||
static inline uint32_t s_to_float32_int(uint64_t a)
|
||||
{
|
||||
return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
|
||||
}
|
||||
|
||||
static inline float32 s_to_float32(uint64_t a)
|
||||
{
|
||||
CPU_FloatU r;
|
||||
r.l = s_to_float32_int(a);
|
||||
return r.f;
|
||||
}
|
||||
|
||||
uint32_t helper_s_to_memory (uint64_t a)
|
||||
{
|
||||
return s_to_float32_int(a);
|
||||
}
|
||||
|
||||
uint64_t helper_memory_to_s (uint32_t a)
|
||||
{
|
||||
return float32_to_s_int(a);
|
||||
}
|
||||
|
||||
uint64_t helper_adds (uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fb = s_to_float32(b);
|
||||
fr = float32_add(fa, fb, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_subs (uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fb = s_to_float32(b);
|
||||
fr = float32_sub(fa, fb, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_muls (uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fb = s_to_float32(b);
|
||||
fr = float32_mul(fa, fb, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_divs (uint64_t a, uint64_t b)
|
||||
{
|
||||
float32 fa, fb, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fb = s_to_float32(b);
|
||||
fr = float32_div(fa, fb, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_sqrts (uint64_t a)
|
||||
{
|
||||
float32 fa, fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fr = float32_sqrt(fa, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
|
||||
/* T floating (double) */
|
||||
static inline float64 t_to_float64(uint64_t a)
|
||||
{
|
||||
/* Memory format is the same as float64 */
|
||||
CPU_DoubleU r;
|
||||
r.ll = a;
|
||||
return r.d;
|
||||
}
|
||||
|
||||
static inline uint64_t float64_to_t(float64 fa)
|
||||
{
|
||||
/* Memory format is the same as float64 */
|
||||
CPU_DoubleU r;
|
||||
r.d = fa;
|
||||
return r.ll;
|
||||
}
|
||||
|
||||
uint64_t helper_addt (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
fr = float64_add(fa, fb, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_subt (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
fr = float64_sub(fa, fb, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_mult (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
fr = float64_mul(fa, fb, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_divt (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
fr = float64_div(fa, fb, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_sqrtt (uint64_t a)
|
||||
{
|
||||
float64 fa, fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fr = float64_sqrt(fa, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
/* Comparisons */
|
||||
uint64_t helper_cmptun (uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
|
||||
if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
|
||||
return 0x4000000000000000ULL;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t helper_cmpteq(uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
|
||||
if (float64_eq_quiet(fa, fb, &FP_STATUS))
|
||||
return 0x4000000000000000ULL;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t helper_cmptle(uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
|
||||
if (float64_le(fa, fb, &FP_STATUS))
|
||||
return 0x4000000000000000ULL;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t helper_cmptlt(uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fb = t_to_float64(b);
|
||||
|
||||
if (float64_lt(fa, fb, &FP_STATUS))
|
||||
return 0x4000000000000000ULL;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fb = g_to_float64(b);
|
||||
|
||||
if (float64_eq_quiet(fa, fb, &FP_STATUS))
|
||||
return 0x4000000000000000ULL;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t helper_cmpgle(uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fb = g_to_float64(b);
|
||||
|
||||
if (float64_le(fa, fb, &FP_STATUS))
|
||||
return 0x4000000000000000ULL;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t helper_cmpglt(uint64_t a, uint64_t b)
|
||||
{
|
||||
float64 fa, fb;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fb = g_to_float64(b);
|
||||
|
||||
if (float64_lt(fa, fb, &FP_STATUS))
|
||||
return 0x4000000000000000ULL;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Floating point format conversion */
|
||||
uint64_t helper_cvtts (uint64_t a)
|
||||
{
|
||||
float64 fa;
|
||||
float32 fr;
|
||||
|
||||
fa = t_to_float64(a);
|
||||
fr = float64_to_float32(fa, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtst (uint64_t a)
|
||||
{
|
||||
float32 fa;
|
||||
float64 fr;
|
||||
|
||||
fa = s_to_float32(a);
|
||||
fr = float32_to_float64(fa, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtqs (uint64_t a)
|
||||
{
|
||||
float32 fr = int64_to_float32(a, &FP_STATUS);
|
||||
return float32_to_s(fr);
|
||||
}
|
||||
|
||||
/* Implement float64 to uint64 conversion without saturation -- we must
|
||||
supply the truncated result. This behaviour is used by the compiler
|
||||
to get unsigned conversion for free with the same instruction.
|
||||
|
||||
The VI flag is set when overflow or inexact exceptions should be raised. */
|
||||
|
||||
static inline uint64_t helper_cvttq_internal(uint64_t a, int roundmode, int VI)
|
||||
{
|
||||
uint64_t frac, ret = 0;
|
||||
uint32_t exp, sign, exc = 0;
|
||||
int shift;
|
||||
|
||||
sign = (a >> 63);
|
||||
exp = (uint32_t)(a >> 52) & 0x7ff;
|
||||
frac = a & 0xfffffffffffffull;
|
||||
|
||||
if (exp == 0) {
|
||||
if (unlikely(frac != 0)) {
|
||||
goto do_underflow;
|
||||
}
|
||||
} else if (exp == 0x7ff) {
|
||||
exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
|
||||
} else {
|
||||
/* Restore implicit bit. */
|
||||
frac |= 0x10000000000000ull;
|
||||
|
||||
shift = exp - 1023 - 52;
|
||||
if (shift >= 0) {
|
||||
/* In this case the number is so large that we must shift
|
||||
the fraction left. There is no rounding to do. */
|
||||
if (shift < 63) {
|
||||
ret = frac << shift;
|
||||
if (VI && (ret >> shift) != frac) {
|
||||
exc = float_flag_overflow;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
uint64_t round;
|
||||
|
||||
/* In this case the number is smaller than the fraction as
|
||||
represented by the 52 bit number. Here we must think
|
||||
about rounding the result. Handle this by shifting the
|
||||
fractional part of the number into the high bits of ROUND.
|
||||
This will let us efficiently handle round-to-nearest. */
|
||||
shift = -shift;
|
||||
if (shift < 63) {
|
||||
ret = frac >> shift;
|
||||
round = frac << (64 - shift);
|
||||
} else {
|
||||
/* The exponent is so small we shift out everything.
|
||||
Leave a sticky bit for proper rounding below. */
|
||||
do_underflow:
|
||||
round = 1;
|
||||
}
|
||||
|
||||
if (round) {
|
||||
exc = (VI ? float_flag_inexact : 0);
|
||||
switch (roundmode) {
|
||||
case float_round_nearest_even:
|
||||
if (round == (1ull << 63)) {
|
||||
/* Fraction is exactly 0.5; round to even. */
|
||||
ret += (ret & 1);
|
||||
} else if (round > (1ull << 63)) {
|
||||
ret += 1;
|
||||
}
|
||||
break;
|
||||
case float_round_to_zero:
|
||||
break;
|
||||
case float_round_up:
|
||||
ret += 1 - sign;
|
||||
break;
|
||||
case float_round_down:
|
||||
ret += sign;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (sign) {
|
||||
ret = -ret;
|
||||
}
|
||||
}
|
||||
if (unlikely(exc)) {
|
||||
float_raise(exc, &FP_STATUS);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
uint64_t helper_cvttq(uint64_t a)
|
||||
{
|
||||
return helper_cvttq_internal(a, FP_STATUS.float_rounding_mode, 1);
|
||||
}
|
||||
|
||||
uint64_t helper_cvttq_c(uint64_t a)
|
||||
{
|
||||
return helper_cvttq_internal(a, float_round_to_zero, 0);
|
||||
}
|
||||
|
||||
uint64_t helper_cvttq_svic(uint64_t a)
|
||||
{
|
||||
return helper_cvttq_internal(a, float_round_to_zero, 1);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtqt (uint64_t a)
|
||||
{
|
||||
float64 fr = int64_to_float64(a, &FP_STATUS);
|
||||
return float64_to_t(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtqf (uint64_t a)
|
||||
{
|
||||
float32 fr = int64_to_float32(a, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtgf (uint64_t a)
|
||||
{
|
||||
float64 fa;
|
||||
float32 fr;
|
||||
|
||||
fa = g_to_float64(a);
|
||||
fr = float64_to_float32(fa, &FP_STATUS);
|
||||
return float32_to_f(fr);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtgq (uint64_t a)
|
||||
{
|
||||
float64 fa = g_to_float64(a);
|
||||
return float64_to_int64_round_to_zero(fa, &FP_STATUS);
|
||||
}
|
||||
|
||||
uint64_t helper_cvtqg (uint64_t a)
|
||||
{
|
||||
float64 fr;
|
||||
fr = int64_to_float64(a, &FP_STATUS);
|
||||
return float64_to_g(fr);
|
||||
}
|
||||
|
||||
/* PALcode support special instructions */
|
||||
#if !defined (CONFIG_USER_ONLY)
|
||||
void helper_hw_ret (uint64_t a)
|
||||
|
|
|
@ -611,7 +611,8 @@ static void gen_qual_roundmode(DisasContext *ctx, int fn11)
|
|||
tcg_gen_movi_i32(tmp, float_round_down);
|
||||
break;
|
||||
case QUAL_RM_D:
|
||||
tcg_gen_ld8u_i32(tmp, cpu_env, offsetof(CPUAlphaState, fpcr_dyn_round));
|
||||
tcg_gen_ld8u_i32(tmp, cpu_env,
|
||||
offsetof(CPUAlphaState, fpcr_dyn_round));
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -641,7 +642,8 @@ static void gen_qual_flushzero(DisasContext *ctx, int fn11)
|
|||
tmp = tcg_temp_new_i32();
|
||||
if (fn11) {
|
||||
/* Underflow is enabled, use the FPCR setting. */
|
||||
tcg_gen_ld8u_i32(tmp, cpu_env, offsetof(CPUAlphaState, fpcr_flush_to_zero));
|
||||
tcg_gen_ld8u_i32(tmp, cpu_env,
|
||||
offsetof(CPUAlphaState, fpcr_flush_to_zero));
|
||||
} else {
|
||||
/* Underflow is disabled, force flush-to-zero. */
|
||||
tcg_gen_movi_i32(tmp, 1);
|
||||
|
@ -663,11 +665,11 @@ static TCGv gen_ieee_input(int reg, int fn11, int is_cmp)
|
|||
if (reg == 31) {
|
||||
tcg_gen_movi_i64(val, 0);
|
||||
} else if (fn11 & QUAL_S) {
|
||||
gen_helper_ieee_input_s(val, cpu_fir[reg]);
|
||||
gen_helper_ieee_input_s(val, cpu_env, cpu_fir[reg]);
|
||||
} else if (is_cmp) {
|
||||
gen_helper_ieee_input_cmp(val, cpu_fir[reg]);
|
||||
gen_helper_ieee_input_cmp(val, cpu_env, cpu_fir[reg]);
|
||||
} else {
|
||||
gen_helper_ieee_input(val, cpu_fir[reg]);
|
||||
gen_helper_ieee_input(val, cpu_env, cpu_fir[reg]);
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
@ -680,7 +682,7 @@ static void gen_fp_exc_clear(void)
|
|||
offsetof(CPUAlphaState, fp_status.float_exception_flags));
|
||||
tcg_temp_free_i32(zero);
|
||||
#else
|
||||
gen_helper_fp_exc_clear();
|
||||
gen_helper_fp_exc_clear(cpu_env);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -698,7 +700,7 @@ static void gen_fp_exc_raise_ignore(int rc, int fn11, int ignore)
|
|||
tcg_gen_ld8u_i32(exc, cpu_env,
|
||||
offsetof(CPUAlphaState, fp_status.float_exception_flags));
|
||||
#else
|
||||
gen_helper_fp_exc_get(exc);
|
||||
gen_helper_fp_exc_get(exc, cpu_env);
|
||||
#endif
|
||||
|
||||
if (ignore) {
|
||||
|
@ -713,9 +715,9 @@ static void gen_fp_exc_raise_ignore(int rc, int fn11, int ignore)
|
|||
reg = tcg_const_i32(rc + 32);
|
||||
|
||||
if (fn11 & QUAL_S) {
|
||||
gen_helper_fp_exc_raise_s(exc, reg);
|
||||
gen_helper_fp_exc_raise_s(cpu_env, exc, reg);
|
||||
} else {
|
||||
gen_helper_fp_exc_raise(exc, reg);
|
||||
gen_helper_fp_exc_raise(cpu_env, exc, reg);
|
||||
}
|
||||
|
||||
tcg_temp_free_i32(reg);
|
||||
|
@ -784,20 +786,20 @@ static void gen_fcvtql_v(DisasContext *ctx, int rb, int rc)
|
|||
gen_fcvtql(rb, rc);
|
||||
}
|
||||
|
||||
#define FARITH2(name) \
|
||||
static inline void glue(gen_f, name)(int rb, int rc) \
|
||||
{ \
|
||||
if (unlikely(rc == 31)) { \
|
||||
return; \
|
||||
} \
|
||||
if (rb != 31) { \
|
||||
gen_helper_ ## name (cpu_fir[rc], cpu_fir[rb]); \
|
||||
} else { \
|
||||
TCGv tmp = tcg_const_i64(0); \
|
||||
gen_helper_ ## name (cpu_fir[rc], tmp); \
|
||||
tcg_temp_free(tmp); \
|
||||
} \
|
||||
}
|
||||
#define FARITH2(name) \
|
||||
static inline void glue(gen_f, name)(int rb, int rc) \
|
||||
{ \
|
||||
if (unlikely(rc == 31)) { \
|
||||
return; \
|
||||
} \
|
||||
if (rb != 31) { \
|
||||
gen_helper_ ## name(cpu_fir[rc], cpu_env, cpu_fir[rb]); \
|
||||
} else { \
|
||||
TCGv tmp = tcg_const_i64(0); \
|
||||
gen_helper_ ## name(cpu_fir[rc], cpu_env, tmp); \
|
||||
tcg_temp_free(tmp); \
|
||||
} \
|
||||
}
|
||||
|
||||
/* ??? VAX instruction qualifiers ignored. */
|
||||
FARITH2(sqrtf)
|
||||
|
@ -807,7 +809,8 @@ FARITH2(cvtgq)
|
|||
FARITH2(cvtqf)
|
||||
FARITH2(cvtqg)
|
||||
|
||||
static void gen_ieee_arith2(DisasContext *ctx, void (*helper)(TCGv, TCGv),
|
||||
static void gen_ieee_arith2(DisasContext *ctx,
|
||||
void (*helper)(TCGv, TCGv_ptr, TCGv),
|
||||
int rb, int rc, int fn11)
|
||||
{
|
||||
TCGv vb;
|
||||
|
@ -823,7 +826,7 @@ static void gen_ieee_arith2(DisasContext *ctx, void (*helper)(TCGv, TCGv),
|
|||
gen_fp_exc_clear();
|
||||
|
||||
vb = gen_ieee_input(rb, fn11, 0);
|
||||
helper(cpu_fir[rc], vb);
|
||||
helper(cpu_fir[rc], cpu_env, vb);
|
||||
tcg_temp_free(vb);
|
||||
|
||||
gen_fp_exc_raise(rc, fn11);
|
||||
|
@ -859,18 +862,18 @@ static void gen_fcvttq(DisasContext *ctx, int rb, int rc, int fn11)
|
|||
also do not have integer overflow enabled. Special case that. */
|
||||
switch (fn11) {
|
||||
case QUAL_RM_C:
|
||||
gen_helper_cvttq_c(cpu_fir[rc], vb);
|
||||
gen_helper_cvttq_c(cpu_fir[rc], cpu_env, vb);
|
||||
break;
|
||||
case QUAL_V | QUAL_RM_C:
|
||||
case QUAL_S | QUAL_V | QUAL_RM_C:
|
||||
ignore = float_flag_inexact;
|
||||
/* FALLTHRU */
|
||||
case QUAL_S | QUAL_V | QUAL_I | QUAL_RM_C:
|
||||
gen_helper_cvttq_svic(cpu_fir[rc], vb);
|
||||
gen_helper_cvttq_svic(cpu_fir[rc], cpu_env, vb);
|
||||
break;
|
||||
default:
|
||||
gen_qual_roundmode(ctx, fn11);
|
||||
gen_helper_cvttq(cpu_fir[rc], vb);
|
||||
gen_helper_cvttq(cpu_fir[rc], cpu_env, vb);
|
||||
ignore |= (fn11 & QUAL_V ? 0 : float_flag_overflow);
|
||||
ignore |= (fn11 & QUAL_I ? 0 : float_flag_inexact);
|
||||
break;
|
||||
|
@ -880,7 +883,8 @@ static void gen_fcvttq(DisasContext *ctx, int rb, int rc, int fn11)
|
|||
gen_fp_exc_raise_ignore(rc, fn11, ignore);
|
||||
}
|
||||
|
||||
static void gen_ieee_intcvt(DisasContext *ctx, void (*helper)(TCGv, TCGv),
|
||||
static void gen_ieee_intcvt(DisasContext *ctx,
|
||||
void (*helper)(TCGv, TCGv_ptr, TCGv),
|
||||
int rb, int rc, int fn11)
|
||||
{
|
||||
TCGv vb;
|
||||
|
@ -904,10 +908,10 @@ static void gen_ieee_intcvt(DisasContext *ctx, void (*helper)(TCGv, TCGv),
|
|||
inexact handling is requested. */
|
||||
if (fn11 & QUAL_I) {
|
||||
gen_fp_exc_clear();
|
||||
helper(cpu_fir[rc], vb);
|
||||
helper(cpu_fir[rc], cpu_env, vb);
|
||||
gen_fp_exc_raise(rc, fn11);
|
||||
} else {
|
||||
helper(cpu_fir[rc], vb);
|
||||
helper(cpu_fir[rc], cpu_env, vb);
|
||||
}
|
||||
|
||||
if (rb == 31) {
|
||||
|
@ -999,34 +1003,34 @@ static inline void gen_fcpyse(int ra, int rb, int rc)
|
|||
gen_cpys_internal(ra, rb, rc, 0, 0xFFF0000000000000ULL);
|
||||
}
|
||||
|
||||
#define FARITH3(name) \
|
||||
static inline void glue(gen_f, name)(int ra, int rb, int rc) \
|
||||
{ \
|
||||
TCGv va, vb; \
|
||||
\
|
||||
if (unlikely(rc == 31)) { \
|
||||
return; \
|
||||
} \
|
||||
if (ra == 31) { \
|
||||
va = tcg_const_i64(0); \
|
||||
} else { \
|
||||
va = cpu_fir[ra]; \
|
||||
} \
|
||||
if (rb == 31) { \
|
||||
vb = tcg_const_i64(0); \
|
||||
} else { \
|
||||
vb = cpu_fir[rb]; \
|
||||
} \
|
||||
\
|
||||
gen_helper_ ## name (cpu_fir[rc], va, vb); \
|
||||
\
|
||||
if (ra == 31) { \
|
||||
tcg_temp_free(va); \
|
||||
} \
|
||||
if (rb == 31) { \
|
||||
tcg_temp_free(vb); \
|
||||
} \
|
||||
}
|
||||
#define FARITH3(name) \
|
||||
static inline void glue(gen_f, name)(int ra, int rb, int rc) \
|
||||
{ \
|
||||
TCGv va, vb; \
|
||||
\
|
||||
if (unlikely(rc == 31)) { \
|
||||
return; \
|
||||
} \
|
||||
if (ra == 31) { \
|
||||
va = tcg_const_i64(0); \
|
||||
} else { \
|
||||
va = cpu_fir[ra]; \
|
||||
} \
|
||||
if (rb == 31) { \
|
||||
vb = tcg_const_i64(0); \
|
||||
} else { \
|
||||
vb = cpu_fir[rb]; \
|
||||
} \
|
||||
\
|
||||
gen_helper_ ## name(cpu_fir[rc], cpu_env, va, vb); \
|
||||
\
|
||||
if (ra == 31) { \
|
||||
tcg_temp_free(va); \
|
||||
} \
|
||||
if (rb == 31) { \
|
||||
tcg_temp_free(vb); \
|
||||
} \
|
||||
}
|
||||
|
||||
/* ??? VAX instruction qualifiers ignored. */
|
||||
FARITH3(addf)
|
||||
|
@ -1042,7 +1046,7 @@ FARITH3(cmpglt)
|
|||
FARITH3(cmpgle)
|
||||
|
||||
static void gen_ieee_arith3(DisasContext *ctx,
|
||||
void (*helper)(TCGv, TCGv, TCGv),
|
||||
void (*helper)(TCGv, TCGv_ptr, TCGv, TCGv),
|
||||
int ra, int rb, int rc, int fn11)
|
||||
{
|
||||
TCGv va, vb;
|
||||
|
@ -1059,7 +1063,7 @@ static void gen_ieee_arith3(DisasContext *ctx,
|
|||
|
||||
va = gen_ieee_input(ra, fn11, 0);
|
||||
vb = gen_ieee_input(rb, fn11, 0);
|
||||
helper(cpu_fir[rc], va, vb);
|
||||
helper(cpu_fir[rc], cpu_env, va, vb);
|
||||
tcg_temp_free(va);
|
||||
tcg_temp_free(vb);
|
||||
|
||||
|
@ -1082,7 +1086,7 @@ IEEE_ARITH3(mult)
|
|||
IEEE_ARITH3(divt)
|
||||
|
||||
static void gen_ieee_compare(DisasContext *ctx,
|
||||
void (*helper)(TCGv, TCGv, TCGv),
|
||||
void (*helper)(TCGv, TCGv_ptr, TCGv, TCGv),
|
||||
int ra, int rb, int rc, int fn11)
|
||||
{
|
||||
TCGv va, vb;
|
||||
|
@ -1097,7 +1101,7 @@ static void gen_ieee_compare(DisasContext *ctx,
|
|||
|
||||
va = gen_ieee_input(ra, fn11, 1);
|
||||
vb = gen_ieee_input(rb, fn11, 1);
|
||||
helper(cpu_fir[rc], va, vb);
|
||||
helper(cpu_fir[rc], cpu_env, va, vb);
|
||||
tcg_temp_free(va);
|
||||
tcg_temp_free(vb);
|
||||
|
||||
|
|
Loading…
Reference in a new issue