hw/usb: Remove the USB bluetooth dongle device

We are going to remove the bluetooth backend, so the USB bluetooth
dongle can not work anymore. It's a completely optional device, no
board depends on it, so let's simply remove it now.

Message-Id: <20191120091014.16883-3-thuth@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
This commit is contained in:
Thomas Huth 2019-11-20 10:10:12 +01:00
parent 6da68df7f9
commit 43d68d0a94
4 changed files with 0 additions and 602 deletions

View file

@ -82,11 +82,6 @@ config USB_NETWORK
default y
depends on USB
config USB_BLUETOOTH
bool
default y
depends on USB
config USB_SMARTCARD
bool
default y

View file

@ -25,7 +25,6 @@ common-obj-$(CONFIG_USB_STORAGE_UAS) += dev-uas.o
common-obj-$(CONFIG_USB_AUDIO) += dev-audio.o
common-obj-$(CONFIG_USB_SERIAL) += dev-serial.o
common-obj-$(CONFIG_USB_NETWORK) += dev-network.o
common-obj-$(CONFIG_USB_BLUETOOTH) += dev-bluetooth.o
ifeq ($(CONFIG_USB_SMARTCARD),y)
common-obj-y += dev-smartcard-reader.o

View file

@ -1,581 +0,0 @@
/*
* QEMU Bluetooth HCI USB Transport Layer v1.0
*
* Copyright (C) 2007 OpenMoko, Inc.
* Copyright (C) 2008 Andrzej Zaborowski <balrog@zabor.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "hw/usb.h"
#include "migration/vmstate.h"
#include "desc.h"
#include "sysemu/bt.h"
#include "hw/bt.h"
struct USBBtState {
USBDevice dev;
struct HCIInfo *hci;
USBEndpoint *intr;
int config;
#define CFIFO_LEN_MASK 255
#define DFIFO_LEN_MASK 4095
struct usb_hci_in_fifo_s {
uint8_t data[(DFIFO_LEN_MASK + 1) * 2];
struct {
uint8_t *data;
int len;
} fifo[CFIFO_LEN_MASK + 1];
int dstart, dlen, dsize, start, len;
} evt, acl, sco;
struct usb_hci_out_fifo_s {
uint8_t data[4096];
int len;
} outcmd, outacl, outsco;
};
#define TYPE_USB_BT "usb-bt-dongle"
#define USB_BT(obj) OBJECT_CHECK(struct USBBtState, (obj), TYPE_USB_BT)
#define USB_EVT_EP 1
#define USB_ACL_EP 2
#define USB_SCO_EP 3
enum {
STR_MANUFACTURER = 1,
STR_SERIALNUMBER,
};
static const USBDescStrings desc_strings = {
[STR_MANUFACTURER] = "QEMU",
[STR_SERIALNUMBER] = "1",
};
static const USBDescIface desc_iface_bluetooth[] = {
{
.bInterfaceNumber = 0,
.bNumEndpoints = 3,
.bInterfaceClass = 0xe0, /* Wireless */
.bInterfaceSubClass = 0x01, /* Radio Frequency */
.bInterfaceProtocol = 0x01, /* Bluetooth */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_IN | USB_EVT_EP,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = 0x10,
.bInterval = 0x02,
},
{
.bEndpointAddress = USB_DIR_OUT | USB_ACL_EP,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 0x40,
.bInterval = 0x0a,
},
{
.bEndpointAddress = USB_DIR_IN | USB_ACL_EP,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 0x40,
.bInterval = 0x0a,
},
},
},{
.bInterfaceNumber = 1,
.bAlternateSetting = 0,
.bNumEndpoints = 2,
.bInterfaceClass = 0xe0, /* Wireless */
.bInterfaceSubClass = 0x01, /* Radio Frequency */
.bInterfaceProtocol = 0x01, /* Bluetooth */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_OUT | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0,
.bInterval = 0x01,
},
{
.bEndpointAddress = USB_DIR_IN | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0,
.bInterval = 0x01,
},
},
},{
.bInterfaceNumber = 1,
.bAlternateSetting = 1,
.bNumEndpoints = 2,
.bInterfaceClass = 0xe0, /* Wireless */
.bInterfaceSubClass = 0x01, /* Radio Frequency */
.bInterfaceProtocol = 0x01, /* Bluetooth */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_OUT | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x09,
.bInterval = 0x01,
},
{
.bEndpointAddress = USB_DIR_IN | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x09,
.bInterval = 0x01,
},
},
},{
.bInterfaceNumber = 1,
.bAlternateSetting = 2,
.bNumEndpoints = 2,
.bInterfaceClass = 0xe0, /* Wireless */
.bInterfaceSubClass = 0x01, /* Radio Frequency */
.bInterfaceProtocol = 0x01, /* Bluetooth */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_OUT | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x11,
.bInterval = 0x01,
},
{
.bEndpointAddress = USB_DIR_IN | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x11,
.bInterval = 0x01,
},
},
},{
.bInterfaceNumber = 1,
.bAlternateSetting = 3,
.bNumEndpoints = 2,
.bInterfaceClass = 0xe0, /* Wireless */
.bInterfaceSubClass = 0x01, /* Radio Frequency */
.bInterfaceProtocol = 0x01, /* Bluetooth */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_OUT | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x19,
.bInterval = 0x01,
},
{
.bEndpointAddress = USB_DIR_IN | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x19,
.bInterval = 0x01,
},
},
},{
.bInterfaceNumber = 1,
.bAlternateSetting = 4,
.bNumEndpoints = 2,
.bInterfaceClass = 0xe0, /* Wireless */
.bInterfaceSubClass = 0x01, /* Radio Frequency */
.bInterfaceProtocol = 0x01, /* Bluetooth */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_OUT | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x21,
.bInterval = 0x01,
},
{
.bEndpointAddress = USB_DIR_IN | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x21,
.bInterval = 0x01,
},
},
},{
.bInterfaceNumber = 1,
.bAlternateSetting = 5,
.bNumEndpoints = 2,
.bInterfaceClass = 0xe0, /* Wireless */
.bInterfaceSubClass = 0x01, /* Radio Frequency */
.bInterfaceProtocol = 0x01, /* Bluetooth */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_OUT | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x31,
.bInterval = 0x01,
},
{
.bEndpointAddress = USB_DIR_IN | USB_SCO_EP,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = 0x31,
.bInterval = 0x01,
},
},
}
};
static const USBDescDevice desc_device_bluetooth = {
.bcdUSB = 0x0110,
.bDeviceClass = 0xe0, /* Wireless */
.bDeviceSubClass = 0x01, /* Radio Frequency */
.bDeviceProtocol = 0x01, /* Bluetooth */
.bMaxPacketSize0 = 64,
.bNumConfigurations = 1,
.confs = (USBDescConfig[]) {
{
.bNumInterfaces = 2,
.bConfigurationValue = 1,
.bmAttributes = USB_CFG_ATT_ONE | USB_CFG_ATT_SELFPOWER,
.bMaxPower = 0,
.nif = ARRAY_SIZE(desc_iface_bluetooth),
.ifs = desc_iface_bluetooth,
},
},
};
static const USBDesc desc_bluetooth = {
.id = {
.idVendor = 0x0a12,
.idProduct = 0x0001,
.bcdDevice = 0x1958,
.iManufacturer = STR_MANUFACTURER,
.iProduct = 0,
.iSerialNumber = STR_SERIALNUMBER,
},
.full = &desc_device_bluetooth,
.str = desc_strings,
};
static void usb_bt_fifo_reset(struct usb_hci_in_fifo_s *fifo)
{
fifo->dstart = 0;
fifo->dlen = 0;
fifo->dsize = DFIFO_LEN_MASK + 1;
fifo->start = 0;
fifo->len = 0;
}
static void usb_bt_fifo_enqueue(struct usb_hci_in_fifo_s *fifo,
const uint8_t *data, int len)
{
int off = fifo->dstart + fifo->dlen;
uint8_t *buf;
fifo->dlen += len;
if (off <= DFIFO_LEN_MASK) {
if (off + len > DFIFO_LEN_MASK + 1 &&
(fifo->dsize = off + len) > (DFIFO_LEN_MASK + 1) * 2) {
fprintf(stderr, "%s: can't alloc %i bytes\n", __func__, len);
exit(-1);
}
buf = fifo->data + off;
} else {
if (fifo->dlen > fifo->dsize) {
fprintf(stderr, "%s: can't alloc %i bytes\n", __func__, len);
exit(-1);
}
buf = fifo->data + off - fifo->dsize;
}
off = (fifo->start + fifo->len ++) & CFIFO_LEN_MASK;
fifo->fifo[off].data = memcpy(buf, data, len);
fifo->fifo[off].len = len;
}
static inline void usb_bt_fifo_dequeue(struct usb_hci_in_fifo_s *fifo,
USBPacket *p)
{
int len;
assert(fifo->len != 0);
len = MIN(p->iov.size, fifo->fifo[fifo->start].len);
usb_packet_copy(p, fifo->fifo[fifo->start].data, len);
if (len == p->iov.size) {
fifo->fifo[fifo->start].len -= len;
fifo->fifo[fifo->start].data += len;
} else {
fifo->start ++;
fifo->start &= CFIFO_LEN_MASK;
fifo->len --;
}
fifo->dstart += len;
fifo->dlen -= len;
if (fifo->dstart >= fifo->dsize) {
fifo->dstart = 0;
fifo->dsize = DFIFO_LEN_MASK + 1;
}
}
static inline void usb_bt_fifo_out_enqueue(struct USBBtState *s,
struct usb_hci_out_fifo_s *fifo,
void (*send)(struct HCIInfo *, const uint8_t *, int),
int (*complete)(const uint8_t *, int),
USBPacket *p)
{
usb_packet_copy(p, fifo->data + fifo->len, p->iov.size);
fifo->len += p->iov.size;
if (complete(fifo->data, fifo->len)) {
send(s->hci, fifo->data, fifo->len);
fifo->len = 0;
}
/* TODO: do we need to loop? */
}
static int usb_bt_hci_cmd_complete(const uint8_t *data, int len)
{
len -= HCI_COMMAND_HDR_SIZE;
return len >= 0 &&
len >= ((struct hci_command_hdr *) data)->plen;
}
static int usb_bt_hci_acl_complete(const uint8_t *data, int len)
{
len -= HCI_ACL_HDR_SIZE;
return len >= 0 &&
len >= le16_to_cpu(((struct hci_acl_hdr *) data)->dlen);
}
static int usb_bt_hci_sco_complete(const uint8_t *data, int len)
{
len -= HCI_SCO_HDR_SIZE;
return len >= 0 &&
len >= ((struct hci_sco_hdr *) data)->dlen;
}
static void usb_bt_handle_reset(USBDevice *dev)
{
struct USBBtState *s = (struct USBBtState *) dev->opaque;
usb_bt_fifo_reset(&s->evt);
usb_bt_fifo_reset(&s->acl);
usb_bt_fifo_reset(&s->sco);
s->outcmd.len = 0;
s->outacl.len = 0;
s->outsco.len = 0;
}
static void usb_bt_handle_control(USBDevice *dev, USBPacket *p,
int request, int value, int index, int length, uint8_t *data)
{
struct USBBtState *s = (struct USBBtState *) dev->opaque;
int ret;
ret = usb_desc_handle_control(dev, p, request, value, index, length, data);
if (ret >= 0) {
switch (request) {
case DeviceRequest | USB_REQ_GET_CONFIGURATION:
s->config = 0;
break;
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
s->config = 1;
usb_bt_fifo_reset(&s->evt);
usb_bt_fifo_reset(&s->acl);
usb_bt_fifo_reset(&s->sco);
break;
}
return;
}
switch (request) {
case InterfaceRequest | USB_REQ_GET_STATUS:
case EndpointRequest | USB_REQ_GET_STATUS:
data[0] = 0x00;
data[1] = 0x00;
p->actual_length = 2;
break;
case InterfaceOutRequest | USB_REQ_CLEAR_FEATURE:
case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
goto fail;
case InterfaceOutRequest | USB_REQ_SET_FEATURE:
case EndpointOutRequest | USB_REQ_SET_FEATURE:
goto fail;
break;
case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_DEVICE) << 8):
if (s->config)
usb_bt_fifo_out_enqueue(s, &s->outcmd, s->hci->cmd_send,
usb_bt_hci_cmd_complete, p);
break;
default:
fail:
p->status = USB_RET_STALL;
break;
}
}
static void usb_bt_handle_data(USBDevice *dev, USBPacket *p)
{
struct USBBtState *s = (struct USBBtState *) dev->opaque;
if (!s->config)
goto fail;
switch (p->pid) {
case USB_TOKEN_IN:
switch (p->ep->nr) {
case USB_EVT_EP:
if (s->evt.len == 0) {
p->status = USB_RET_NAK;
break;
}
usb_bt_fifo_dequeue(&s->evt, p);
break;
case USB_ACL_EP:
if (s->evt.len == 0) {
p->status = USB_RET_STALL;
break;
}
usb_bt_fifo_dequeue(&s->acl, p);
break;
case USB_SCO_EP:
if (s->evt.len == 0) {
p->status = USB_RET_STALL;
break;
}
usb_bt_fifo_dequeue(&s->sco, p);
break;
default:
goto fail;
}
break;
case USB_TOKEN_OUT:
switch (p->ep->nr) {
case USB_ACL_EP:
usb_bt_fifo_out_enqueue(s, &s->outacl, s->hci->acl_send,
usb_bt_hci_acl_complete, p);
break;
case USB_SCO_EP:
usb_bt_fifo_out_enqueue(s, &s->outsco, s->hci->sco_send,
usb_bt_hci_sco_complete, p);
break;
default:
goto fail;
}
break;
default:
fail:
p->status = USB_RET_STALL;
break;
}
}
static void usb_bt_out_hci_packet_event(void *opaque,
const uint8_t *data, int len)
{
struct USBBtState *s = (struct USBBtState *) opaque;
if (s->evt.len == 0) {
usb_wakeup(s->intr, 0);
}
usb_bt_fifo_enqueue(&s->evt, data, len);
}
static void usb_bt_out_hci_packet_acl(void *opaque,
const uint8_t *data, int len)
{
struct USBBtState *s = (struct USBBtState *) opaque;
usb_bt_fifo_enqueue(&s->acl, data, len);
}
static void usb_bt_unrealize(USBDevice *dev, Error **errp)
{
struct USBBtState *s = (struct USBBtState *) dev->opaque;
s->hci->opaque = NULL;
s->hci->evt_recv = NULL;
s->hci->acl_recv = NULL;
}
static void usb_bt_realize(USBDevice *dev, Error **errp)
{
struct USBBtState *s = USB_BT(dev);
usb_desc_create_serial(dev);
usb_desc_init(dev);
s->dev.opaque = s;
if (!s->hci) {
s->hci = bt_new_hci(qemu_find_bt_vlan(0));
}
s->hci->opaque = s;
s->hci->evt_recv = usb_bt_out_hci_packet_event;
s->hci->acl_recv = usb_bt_out_hci_packet_acl;
usb_bt_handle_reset(&s->dev);
s->intr = usb_ep_get(dev, USB_TOKEN_IN, USB_EVT_EP);
}
static USBDevice *usb_bt_init(USBBus *bus, const char *cmdline)
{
USBDevice *dev;
struct USBBtState *s;
HCIInfo *hci;
const char *name = TYPE_USB_BT;
if (*cmdline) {
hci = hci_init(cmdline);
} else {
hci = bt_new_hci(qemu_find_bt_vlan(0));
}
if (!hci)
return NULL;
dev = usb_create(bus, name);
s = USB_BT(dev);
s->hci = hci;
return dev;
}
static const VMStateDescription vmstate_usb_bt = {
.name = "usb-bt",
.unmigratable = 1,
};
static void usb_bt_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
USBDeviceClass *uc = USB_DEVICE_CLASS(klass);
uc->realize = usb_bt_realize;
uc->product_desc = "QEMU BT dongle";
uc->usb_desc = &desc_bluetooth;
uc->handle_reset = usb_bt_handle_reset;
uc->handle_control = usb_bt_handle_control;
uc->handle_data = usb_bt_handle_data;
uc->unrealize = usb_bt_unrealize;
dc->vmsd = &vmstate_usb_bt;
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
}
static const TypeInfo bt_info = {
.name = TYPE_USB_BT,
.parent = TYPE_USB_DEVICE,
.instance_size = sizeof(struct USBBtState),
.class_init = usb_bt_class_initfn,
};
static void usb_bt_register_types(void)
{
type_register_static(&bt_info);
usb_legacy_register(TYPE_USB_BT, "bt", usb_bt_init);
}
type_init(usb_bt_register_types)

View file

@ -983,21 +983,6 @@ For instance, user-mode networking can be used with
Smartcard reader device
@item usb-audio
USB audio device
@item usb-bt-dongle
Bluetooth dongle for the transport layer of HCI. It is connected to HCI
scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
Note that the syntax for the @code{-device usb-bt-dongle} option is not as
useful yet as it was with the legacy @code{-usbdevice} option. So to
configure an USB bluetooth device, you might need to use
"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
bluetooth dongle whose type is specified in the same format as with
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
This USB device implements the USB Transport Layer of HCI. Example
usage:
@example
@command{@value{qemu_system}} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
@end example
@end table
@node host_usb_devices