1
0
mirror of https://gitlab.com/qemu-project/qemu synced 2024-07-09 04:27:12 +00:00

disas/libvixl: Update to libvixl 1.4

Update our copy of libvixl to upstream's 1.4 release.
Note that we no longer need any local fixes for compilation
on 32 bit hosts -- they have all been integrated upstream.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1399040419-9227-1-git-send-email-peter.maydell@linaro.org
Acked-by: Richard Henderson <rth@twiddle.net>
This commit is contained in:
Peter Maydell 2014-05-13 16:09:35 +01:00
parent cd2b9b8680
commit 09319b3041
11 changed files with 628 additions and 342 deletions

File diff suppressed because it is too large Load Diff

View File

@ -116,6 +116,8 @@ V_(ImmCmpBranch, 23, 5, SignedBits) \
V_(ImmLLiteral, 23, 5, SignedBits) \
V_(ImmException, 20, 5, Bits) \
V_(ImmHint, 11, 5, Bits) \
V_(ImmBarrierDomain, 11, 10, Bits) \
V_(ImmBarrierType, 9, 8, Bits) \
\
/* System (MRS, MSR) */ \
V_(ImmSystemRegister, 19, 5, Bits) \
@ -181,7 +183,7 @@ enum Condition {
inline Condition InvertCondition(Condition cond) {
// Conditions al and nv behave identically, as "always true". They can't be
// inverted, because there is no "always false" condition.
ASSERT((cond != al) && (cond != nv));
VIXL_ASSERT((cond != al) && (cond != nv));
return static_cast<Condition>(cond ^ 1);
}
@ -246,6 +248,20 @@ enum SystemHint {
SEVL = 5
};
enum BarrierDomain {
OuterShareable = 0,
NonShareable = 1,
InnerShareable = 2,
FullSystem = 3
};
enum BarrierType {
BarrierOther = 0,
BarrierReads = 1,
BarrierWrites = 2,
BarrierAll = 3
};
// System/special register names.
// This information is not encoded as one field but as the concatenation of
// multiple fields (Op0<0>, Op1, Crn, Crm, Op2).
@ -274,7 +290,7 @@ enum SystemRegister {
//
// The enumerations can be used like this:
//
// ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
// VIXL_ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
// switch(instr->Mask(PCRelAddressingMask)) {
// case ADR: Format("adr 'Xd, 'AddrPCRelByte"); break;
// case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break;
@ -560,6 +576,15 @@ enum ExceptionOp {
DCPS3 = ExceptionFixed | 0x00A00003
};
enum MemBarrierOp {
MemBarrierFixed = 0xD503309F,
MemBarrierFMask = 0xFFFFF09F,
MemBarrierMask = 0xFFFFF0FF,
DSB = MemBarrierFixed | 0x00000000,
DMB = MemBarrierFixed | 0x00000020,
ISB = MemBarrierFixed | 0x00000040
};
// Any load or store.
enum LoadStoreAnyOp {
LoadStoreAnyFMask = 0x0a000000,
@ -927,17 +952,22 @@ enum FPDataProcessing1SourceOp {
FRINTN = FRINTN_s,
FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000,
FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000,
FRINTP = FRINTP_s,
FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000,
FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000,
FRINTM = FRINTM_s,
FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000,
FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000,
FRINTZ = FRINTZ_s,
FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000,
FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000,
FRINTA = FRINTA_s,
FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000,
FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000,
FRINTX = FRINTX_s,
FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000,
FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000
FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000,
FRINTI = FRINTI_s
};
// Floating point data processing 2 source.

View File

@ -132,7 +132,7 @@ void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
}
// We reached the end of the list. The last element must be
// registered_visitor.
ASSERT(*it == registered_visitor);
VIXL_ASSERT(*it == registered_visitor);
visitors_.insert(it, new_visitor);
}
@ -150,7 +150,7 @@ void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
}
// We reached the end of the list. The last element must be
// registered_visitor.
ASSERT(*it == registered_visitor);
VIXL_ASSERT(*it == registered_visitor);
visitors_.push_back(new_visitor);
}
@ -161,16 +161,16 @@ void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
void Decoder::DecodePCRelAddressing(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x0);
VIXL_ASSERT(instr->Bits(27, 24) == 0x0);
// We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
// decode.
ASSERT(instr->Bit(28) == 0x1);
VIXL_ASSERT(instr->Bit(28) == 0x1);
VisitPCRelAddressing(instr);
}
void Decoder::DecodeBranchSystemException(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0x4) ||
VIXL_ASSERT((instr->Bits(27, 24) == 0x4) ||
(instr->Bits(27, 24) == 0x5) ||
(instr->Bits(27, 24) == 0x6) ||
(instr->Bits(27, 24) == 0x7) );
@ -271,7 +271,7 @@ void Decoder::DecodeBranchSystemException(Instruction* instr) {
void Decoder::DecodeLoadStore(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0x8) ||
VIXL_ASSERT((instr->Bits(27, 24) == 0x8) ||
(instr->Bits(27, 24) == 0x9) ||
(instr->Bits(27, 24) == 0xC) ||
(instr->Bits(27, 24) == 0xD) );
@ -390,7 +390,7 @@ void Decoder::DecodeLoadStore(Instruction* instr) {
void Decoder::DecodeLogical(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x2);
VIXL_ASSERT(instr->Bits(27, 24) == 0x2);
if (instr->Mask(0x80400000) == 0x00400000) {
VisitUnallocated(instr);
@ -409,7 +409,7 @@ void Decoder::DecodeLogical(Instruction* instr) {
void Decoder::DecodeBitfieldExtract(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x3);
VIXL_ASSERT(instr->Bits(27, 24) == 0x3);
if ((instr->Mask(0x80400000) == 0x80000000) ||
(instr->Mask(0x80400000) == 0x00400000) ||
@ -434,7 +434,7 @@ void Decoder::DecodeBitfieldExtract(Instruction* instr) {
void Decoder::DecodeAddSubImmediate(Instruction* instr) {
ASSERT(instr->Bits(27, 24) == 0x1);
VIXL_ASSERT(instr->Bits(27, 24) == 0x1);
if (instr->Bit(23) == 1) {
VisitUnallocated(instr);
} else {
@ -444,8 +444,8 @@ void Decoder::DecodeAddSubImmediate(Instruction* instr) {
void Decoder::DecodeDataProcessing(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0xA) ||
(instr->Bits(27, 24) == 0xB) );
VIXL_ASSERT((instr->Bits(27, 24) == 0xA) ||
(instr->Bits(27, 24) == 0xB));
if (instr->Bit(24) == 0) {
if (instr->Bit(28) == 0) {
@ -559,8 +559,8 @@ void Decoder::DecodeDataProcessing(Instruction* instr) {
void Decoder::DecodeFP(Instruction* instr) {
ASSERT((instr->Bits(27, 24) == 0xE) ||
(instr->Bits(27, 24) == 0xF) );
VIXL_ASSERT((instr->Bits(27, 24) == 0xE) ||
(instr->Bits(27, 24) == 0xF));
if (instr->Bit(28) == 0) {
DecodeAdvSIMDDataProcessing(instr);
@ -665,14 +665,14 @@ void Decoder::DecodeFP(Instruction* instr) {
VisitFPConditionalSelect(instr);
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
}
}
}
} else {
// Bit 30 == 1 has been handled earlier.
ASSERT(instr->Bit(30) == 0);
VIXL_ASSERT(instr->Bit(30) == 0);
if (instr->Mask(0xA0800000) != 0) {
VisitUnallocated(instr);
} else {
@ -687,21 +687,21 @@ void Decoder::DecodeFP(Instruction* instr) {
void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) {
// TODO: Implement Advanced SIMD load/store instruction decode.
ASSERT(instr->Bits(29, 25) == 0x6);
VIXL_ASSERT(instr->Bits(29, 25) == 0x6);
VisitUnimplemented(instr);
}
void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) {
// TODO: Implement Advanced SIMD data processing instruction decode.
ASSERT(instr->Bits(27, 25) == 0x7);
VIXL_ASSERT(instr->Bits(27, 25) == 0x7);
VisitUnimplemented(instr);
}
#define DEFINE_VISITOR_CALLERS(A) \
void Decoder::Visit##A(Instruction *instr) { \
ASSERT(instr->Mask(A##FMask) == A##Fixed); \
VIXL_ASSERT(instr->Mask(A##FMask) == A##Fixed); \
std::list<DecoderVisitor*>::iterator it; \
for (it = visitors_.begin(); it != visitors_.end(); it++) { \
(*it)->Visit##A(instr); \

View File

@ -95,7 +95,7 @@ void Disassembler::VisitAddSubImmediate(Instruction* instr) {
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -142,7 +142,7 @@ void Disassembler::VisitAddSubShifted(Instruction* instr) {
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -180,7 +180,7 @@ void Disassembler::VisitAddSubExtended(Instruction* instr) {
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -215,7 +215,7 @@ void Disassembler::VisitAddSubWithCarry(Instruction* instr) {
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -258,30 +258,30 @@ void Disassembler::VisitLogicalImmediate(Instruction* instr) {
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
ASSERT((reg_size == kXRegSize) ||
((reg_size == kWRegSize) && (value <= 0xffffffff)));
VIXL_ASSERT((reg_size == kXRegSize) ||
((reg_size == kWRegSize) && (value <= 0xffffffff)));
// Test for movz: 16 bits set at positions 0, 16, 32 or 48.
if (((value & 0xffffffffffff0000ULL) == 0ULL) ||
((value & 0xffffffff0000ffffULL) == 0ULL) ||
((value & 0xffff0000ffffffffULL) == 0ULL) ||
((value & 0x0000ffffffffffffULL) == 0ULL)) {
if (((value & UINT64_C(0xffffffffffff0000)) == 0) ||
((value & UINT64_C(0xffffffff0000ffff)) == 0) ||
((value & UINT64_C(0xffff0000ffffffff)) == 0) ||
((value & UINT64_C(0x0000ffffffffffff)) == 0)) {
return true;
}
// Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
if ((reg_size == kXRegSize) &&
(((value & 0xffffffffffff0000ULL) == 0xffffffffffff0000ULL) ||
((value & 0xffffffff0000ffffULL) == 0xffffffff0000ffffULL) ||
((value & 0xffff0000ffffffffULL) == 0xffff0000ffffffffULL) ||
((value & 0x0000ffffffffffffULL) == 0x0000ffffffffffffULL))) {
(((~value & UINT64_C(0xffffffffffff0000)) == 0) ||
((~value & UINT64_C(0xffffffff0000ffff)) == 0) ||
((~value & UINT64_C(0xffff0000ffffffff)) == 0) ||
((~value & UINT64_C(0x0000ffffffffffff)) == 0))) {
return true;
}
if ((reg_size == kWRegSize) &&
@ -337,7 +337,7 @@ void Disassembler::VisitLogicalShifted(Instruction* instr) {
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
@ -353,7 +353,7 @@ void Disassembler::VisitConditionalCompareRegister(Instruction* instr) {
case CCMN_x: mnemonic = "ccmn"; break;
case CCMP_w:
case CCMP_x: mnemonic = "ccmp"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -368,7 +368,7 @@ void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) {
case CCMN_x_imm: mnemonic = "ccmn"; break;
case CCMP_w_imm:
case CCMP_x_imm: mnemonic = "ccmp"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -421,7 +421,7 @@ void Disassembler::VisitConditionalSelect(Instruction* instr) {
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -520,7 +520,7 @@ void Disassembler::VisitExtract(Instruction* instr) {
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -538,7 +538,7 @@ void Disassembler::VisitPCRelAddressing(Instruction* instr) {
void Disassembler::VisitConditionalBranch(Instruction* instr) {
switch (instr->Mask(ConditionalBranchMask)) {
case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
}
@ -570,7 +570,7 @@ void Disassembler::VisitUnconditionalBranch(Instruction* instr) {
switch (instr->Mask(UnconditionalBranchMask)) {
case B: mnemonic = "b"; break;
case BL: mnemonic = "bl"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -591,7 +591,7 @@ void Disassembler::VisitDataProcessing1Source(Instruction* instr) {
FORMAT(CLS, "cls");
#undef FORMAT
case REV32_x: mnemonic = "rev32"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -690,7 +690,7 @@ void Disassembler::VisitDataProcessing3Source(Instruction* instr) {
form = form_xxx;
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -705,7 +705,7 @@ void Disassembler::VisitCompareBranch(Instruction* instr) {
case CBZ_x: mnemonic = "cbz"; break;
case CBNZ_w:
case CBNZ_x: mnemonic = "cbnz"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -722,7 +722,7 @@ void Disassembler::VisitTestBranch(Instruction* instr) {
switch (instr->Mask(TestBranchMask)) {
case TBZ: mnemonic = "tbz"; break;
case TBNZ: mnemonic = "tbnz"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -742,7 +742,7 @@ void Disassembler::VisitMoveWideImmediate(Instruction* instr) {
case MOVZ_x: mnemonic = "movz"; break;
case MOVK_w:
case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -981,7 +981,7 @@ void Disassembler::VisitFPConditionalSelect(Instruction* instr) {
switch (instr->Mask(FPConditionalSelectMask)) {
case FCSEL_s:
case FCSEL_d: mnemonic = "fcsel"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -1033,7 +1033,7 @@ void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) {
FORMAT(FMINNM, "fminnm");
FORMAT(FNMUL, "fnmul");
#undef FORMAT
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -1052,7 +1052,7 @@ void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) {
FORMAT(FNMADD, "fnmadd");
FORMAT(FNMSUB, "fnmsub");
#undef FORMAT
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -1065,7 +1065,7 @@ void Disassembler::VisitFPImmediate(Instruction* instr) {
switch (instr->Mask(FPImmediateMask)) {
case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -1082,6 +1082,14 @@ void Disassembler::VisitFPIntegerConvert(Instruction* instr) {
case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
case FMOV_sw:
case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
case FCVTAS_ws:
case FCVTAS_xs:
case FCVTAS_wd:
case FCVTAS_xd: mnemonic = "fcvtas"; form = form_rf; break;
case FCVTAU_ws:
case FCVTAU_xs:
case FCVTAU_wd:
case FCVTAU_xd: mnemonic = "fcvtau"; form = form_rf; break;
case FCVTMS_ws:
case FCVTMS_xs:
case FCVTMS_wd:
@ -1141,7 +1149,7 @@ void Disassembler::VisitFPFixedPointConvert(Instruction* instr) {
case UCVTF_sx_fixed:
case UCVTF_dw_fixed:
case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
Format(instr, mnemonic, form);
}
@ -1176,7 +1184,7 @@ void Disassembler::VisitSystem(Instruction* instr) {
}
}
} else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
ASSERT(instr->Mask(SystemHintMask) == HINT);
VIXL_ASSERT(instr->Mask(SystemHintMask) == HINT);
switch (instr->ImmHint()) {
case NOP: {
mnemonic = "nop";
@ -1184,6 +1192,24 @@ void Disassembler::VisitSystem(Instruction* instr) {
break;
}
}
} else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
switch (instr->Mask(MemBarrierMask)) {
case DMB: {
mnemonic = "dmb";
form = "'M";
break;
}
case DSB: {
mnemonic = "dsb";
form = "'M";
break;
}
case ISB: {
mnemonic = "isb";
form = NULL;
break;
}
}
}
Format(instr, mnemonic, form);
@ -1226,7 +1252,7 @@ void Disassembler::ProcessOutput(Instruction* /*instr*/) {
void Disassembler::Format(Instruction* instr, const char* mnemonic,
const char* format) {
ASSERT(mnemonic != NULL);
VIXL_ASSERT(mnemonic != NULL);
ResetOutput();
Substitute(instr, mnemonic);
if (format != NULL) {
@ -1268,8 +1294,9 @@ int Disassembler::SubstituteField(Instruction* instr, const char* format) {
case 'A': return SubstitutePCRelAddressField(instr, format);
case 'B': return SubstituteBranchTargetField(instr, format);
case 'O': return SubstituteLSRegOffsetField(instr, format);
case 'M': return SubstituteBarrierField(instr, format);
default: {
UNREACHABLE();
VIXL_UNREACHABLE();
return 1;
}
}
@ -1294,7 +1321,7 @@ int Disassembler::SubstituteRegisterField(Instruction* instr,
}
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
// Increase field length for registers tagged as stack.
@ -1331,7 +1358,7 @@ int Disassembler::SubstituteRegisterField(Instruction* instr,
int Disassembler::SubstituteImmediateField(Instruction* instr,
const char* format) {
ASSERT(format[0] == 'I');
VIXL_ASSERT(format[0] == 'I');
switch (format[1]) {
case 'M': { // IMoveImm or IMoveLSL.
@ -1339,10 +1366,10 @@ int Disassembler::SubstituteImmediateField(Instruction* instr,
uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide());
AppendToOutput("#0x%" PRIx64, imm);
} else {
ASSERT(format[5] == 'L');
VIXL_ASSERT(format[5] == 'L');
AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide());
if (instr->ShiftMoveWide() > 0) {
AppendToOutput(", lsl #%" PRId64, 16 * instr->ShiftMoveWide());
AppendToOutput(", lsl #%d", 16 * instr->ShiftMoveWide());
}
}
return 8;
@ -1384,14 +1411,14 @@ int Disassembler::SubstituteImmediateField(Instruction* instr,
return 6;
}
case 'A': { // IAddSub.
ASSERT(instr->ShiftAddSub() <= 1);
VIXL_ASSERT(instr->ShiftAddSub() <= 1);
int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
return 7;
}
case 'F': { // IFPSingle, IFPDouble or IFPFBits.
if (format[3] == 'F') { // IFPFbits.
AppendToOutput("#%" PRId64, 64 - instr->FPScale());
AppendToOutput("#%d", 64 - instr->FPScale());
return 8;
} else {
AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(),
@ -1412,27 +1439,27 @@ int Disassembler::SubstituteImmediateField(Instruction* instr,
return 5;
}
case 'P': { // IP - Conditional compare.
AppendToOutput("#%" PRId64, instr->ImmCondCmp());
AppendToOutput("#%d", instr->ImmCondCmp());
return 2;
}
case 'B': { // Bitfields.
return SubstituteBitfieldImmediateField(instr, format);
}
case 'E': { // IExtract.
AppendToOutput("#%" PRId64, instr->ImmS());
AppendToOutput("#%d", instr->ImmS());
return 8;
}
case 'S': { // IS - Test and branch bit.
AppendToOutput("#%" PRId64, (instr->ImmTestBranchBit5() << 5) |
instr->ImmTestBranchBit40());
AppendToOutput("#%d", (instr->ImmTestBranchBit5() << 5) |
instr->ImmTestBranchBit40());
return 2;
}
case 'D': { // IDebug - HLT and BRK instructions.
AppendToOutput("#0x%" PRIx64, instr->ImmException());
AppendToOutput("#0x%x", instr->ImmException());
return 6;
}
default: {
UNIMPLEMENTED();
VIXL_UNIMPLEMENTED();
return 0;
}
}
@ -1441,7 +1468,7 @@ int Disassembler::SubstituteImmediateField(Instruction* instr,
int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
const char* format) {
ASSERT((format[0] == 'I') && (format[1] == 'B'));
VIXL_ASSERT((format[0] == 'I') && (format[1] == 'B'));
unsigned r = instr->ImmR();
unsigned s = instr->ImmS();
@ -1455,19 +1482,19 @@ int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
AppendToOutput("#%d", s + 1);
return 5;
} else {
ASSERT(format[3] == '-');
VIXL_ASSERT(format[3] == '-');
AppendToOutput("#%d", s - r + 1);
return 7;
}
}
case 'Z': { // IBZ-r.
ASSERT((format[3] == '-') && (format[4] == 'r'));
VIXL_ASSERT((format[3] == '-') && (format[4] == 'r'));
unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize;
AppendToOutput("#%d", reg_size - r);
return 5;
}
default: {
UNREACHABLE();
VIXL_UNREACHABLE();
return 0;
}
}
@ -1476,7 +1503,7 @@ int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
int Disassembler::SubstituteLiteralField(Instruction* instr,
const char* format) {
ASSERT(strncmp(format, "LValue", 6) == 0);
VIXL_ASSERT(strncmp(format, "LValue", 6) == 0);
USE(format);
switch (instr->Mask(LoadLiteralMask)) {
@ -1484,7 +1511,7 @@ int Disassembler::SubstituteLiteralField(Instruction* instr,
case LDR_x_lit:
case LDR_s_lit:
case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); break;
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
return 6;
@ -1492,12 +1519,12 @@ int Disassembler::SubstituteLiteralField(Instruction* instr,
int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) {
ASSERT(format[0] == 'H');
ASSERT(instr->ShiftDP() <= 0x3);
VIXL_ASSERT(format[0] == 'H');
VIXL_ASSERT(instr->ShiftDP() <= 0x3);
switch (format[1]) {
case 'D': { // HDP.
ASSERT(instr->ShiftDP() != ROR);
VIXL_ASSERT(instr->ShiftDP() != ROR);
} // Fall through.
case 'L': { // HLo.
if (instr->ImmDPShift() != 0) {
@ -1508,7 +1535,7 @@ int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) {
return 3;
}
default:
UNIMPLEMENTED();
VIXL_UNIMPLEMENTED();
return 0;
}
}
@ -1516,7 +1543,7 @@ int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) {
int Disassembler::SubstituteConditionField(Instruction* instr,
const char* format) {
ASSERT(format[0] == 'C');
VIXL_ASSERT(format[0] == 'C');
const char* condition_code[] = { "eq", "ne", "hs", "lo",
"mi", "pl", "vs", "vc",
"hi", "ls", "ge", "lt",
@ -1538,27 +1565,27 @@ int Disassembler::SubstituteConditionField(Instruction* instr,
int Disassembler::SubstitutePCRelAddressField(Instruction* instr,
const char* format) {
USE(format);
ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
VIXL_ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
int offset = instr->ImmPCRel();
// Only ADR (AddrPCRelByte) is supported.
ASSERT(strcmp(format, "AddrPCRelByte") == 0);
VIXL_ASSERT(strcmp(format, "AddrPCRelByte") == 0);
char sign = '+';
if (offset < 0) {
offset = -offset;
sign = '-';
}
// TODO: Extend this to support printing the target address.
AppendToOutput("#%c0x%x", sign, offset);
VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
AppendToOutput("#%c0x%x (addr %p)", sign, offset, instr + offset);
return 13;
}
int Disassembler::SubstituteBranchTargetField(Instruction* instr,
const char* format) {
ASSERT(strncmp(format, "BImm", 4) == 0);
VIXL_ASSERT(strncmp(format, "BImm", 4) == 0);
int64_t offset = 0;
switch (format[5]) {
@ -1570,7 +1597,7 @@ int Disassembler::SubstituteBranchTargetField(Instruction* instr,
case 'm': offset = instr->ImmCmpBranch(); break;
// BImmTest - test and branch immediate.
case 'e': offset = instr->ImmTestBranch(); break;
default: UNIMPLEMENTED();
default: VIXL_UNIMPLEMENTED();
}
offset <<= kInstructionSizeLog2;
char sign = '+';
@ -1578,15 +1605,16 @@ int Disassembler::SubstituteBranchTargetField(Instruction* instr,
offset = -offset;
sign = '-';
}
AppendToOutput("#%c0x%" PRIx64, sign, offset);
VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, offset, instr + offset);
return 8;
}
int Disassembler::SubstituteExtendField(Instruction* instr,
const char* format) {
ASSERT(strncmp(format, "Ext", 3) == 0);
ASSERT(instr->ExtendMode() <= 7);
VIXL_ASSERT(strncmp(format, "Ext", 3) == 0);
VIXL_ASSERT(instr->ExtendMode() <= 7);
USE(format);
const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
@ -1598,12 +1626,12 @@ int Disassembler::SubstituteExtendField(Instruction* instr,
(((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
(instr->ExtendMode() == UXTX))) {
if (instr->ImmExtendShift() > 0) {
AppendToOutput(", lsl #%" PRId64, instr->ImmExtendShift());
AppendToOutput(", lsl #%d", instr->ImmExtendShift());
}
} else {
AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
if (instr->ImmExtendShift() > 0) {
AppendToOutput(" #%" PRId64, instr->ImmExtendShift());
AppendToOutput(" #%d", instr->ImmExtendShift());
}
}
return 3;
@ -1612,7 +1640,7 @@ int Disassembler::SubstituteExtendField(Instruction* instr,
int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
const char* format) {
ASSERT(strncmp(format, "Offsetreg", 9) == 0);
VIXL_ASSERT(strncmp(format, "Offsetreg", 9) == 0);
const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
"undefined", "undefined", "sxtw", "sxtx" };
USE(format);
@ -1632,7 +1660,7 @@ int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
if (!((ext == UXTX) && (shift == 0))) {
AppendToOutput(", %s", extend_mode[ext]);
if (shift != 0) {
AppendToOutput(" #%" PRId64, instr->SizeLS());
AppendToOutput(" #%d", instr->SizeLS());
}
}
return 9;
@ -1641,7 +1669,7 @@ int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
int Disassembler::SubstitutePrefetchField(Instruction* instr,
const char* format) {
ASSERT(format[0] == 'P');
VIXL_ASSERT(format[0] == 'P');
USE(format);
int prefetch_mode = instr->PrefetchMode();
@ -1654,6 +1682,23 @@ int Disassembler::SubstitutePrefetchField(Instruction* instr,
return 6;
}
int Disassembler::SubstituteBarrierField(Instruction* instr,
const char* format) {
VIXL_ASSERT(format[0] == 'M');
USE(format);
static const char* options[4][4] = {
{ "sy (0b0000)", "oshld", "oshst", "osh" },
{ "sy (0b0100)", "nshld", "nshst", "nsh" },
{ "sy (0b1000)", "ishld", "ishst", "ish" },
{ "sy (0b1100)", "ld", "st", "sy" }
};
int domain = instr->ImmBarrierDomain();
int type = instr->ImmBarrierType();
AppendToOutput("%s", options[domain][type]);
return 1;
}
void Disassembler::ResetOutput() {
buffer_pos_ = 0;

View File

@ -64,6 +64,7 @@ class Disassembler: public DecoderVisitor {
int SubstituteBranchTargetField(Instruction* instr, const char* format);
int SubstituteLSRegOffsetField(Instruction* instr, const char* format);
int SubstitutePrefetchField(Instruction* instr, const char* format);
int SubstituteBarrierField(Instruction* instr, const char* format);
inline bool RdIsZROrSP(Instruction* instr) const {
return (instr->Rd() == kZeroRegCode);

View File

@ -33,20 +33,20 @@ namespace vixl {
static uint64_t RotateRight(uint64_t value,
unsigned int rotate,
unsigned int width) {
ASSERT(width <= 64);
VIXL_ASSERT(width <= 64);
rotate &= 63;
return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
(value >> rotate);
return ((value & ((UINT64_C(1) << rotate) - 1)) <<
(width - rotate)) | (value >> rotate);
}
static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
uint64_t value,
unsigned width) {
ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
(width == 32));
ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
uint64_t result = value & ((1UL << width) - 1UL);
VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
(width == 32));
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
uint64_t result = value & ((UINT64_C(1) << width) - 1);
for (unsigned i = width; i < reg_size; i *= 2) {
result |= (result << i);
}
@ -84,7 +84,7 @@ uint64_t Instruction::ImmLogical() {
if (imm_s == 0x3F) {
return 0;
}
uint64_t bits = (1UL << (imm_s + 1)) - 1;
uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
return RotateRight(bits, imm_r, 64);
} else {
if ((imm_s >> 1) == 0x1F) {
@ -96,14 +96,14 @@ uint64_t Instruction::ImmLogical() {
if ((imm_s & mask) == mask) {
return 0;
}
uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
return RepeatBitsAcrossReg(reg_size,
RotateRight(bits, imm_r & mask, width),
width);
}
}
}
UNREACHABLE();
VIXL_UNREACHABLE();
return 0;
}
@ -155,7 +155,7 @@ Instruction* Instruction::ImmPCOffsetTarget() {
offset = ImmPCRel();
} else {
// All PC-relative branches.
ASSERT(BranchType() != UnknownBranchType);
VIXL_ASSERT(BranchType() != UnknownBranchType);
// Relative branch offsets are instruction-size-aligned.
offset = ImmBranch() << kInstructionSizeLog2;
}
@ -169,7 +169,7 @@ inline int Instruction::ImmBranch() const {
case UncondBranchType: return ImmUncondBranch();
case CompareBranchType: return ImmCmpBranch();
case TestBranchType: return ImmTestBranch();
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
return 0;
}
@ -186,7 +186,7 @@ void Instruction::SetImmPCOffsetTarget(Instruction* target) {
void Instruction::SetPCRelImmTarget(Instruction* target) {
// ADRP is not supported, so 'this' must point to an ADR instruction.
ASSERT(Mask(PCRelAddressingMask) == ADR);
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
Instr imm = Assembler::ImmPCRelAddress(target - this);
@ -195,7 +195,7 @@ void Instruction::SetPCRelImmTarget(Instruction* target) {
void Instruction::SetBranchImmTarget(Instruction* target) {
ASSERT(((target - this) & 3) == 0);
VIXL_ASSERT(((target - this) & 3) == 0);
Instr branch_imm = 0;
uint32_t imm_mask = 0;
int offset = (target - this) >> kInstructionSizeLog2;
@ -220,14 +220,14 @@ void Instruction::SetBranchImmTarget(Instruction* target) {
imm_mask = ImmTestBranch_mask;
break;
}
default: UNREACHABLE();
default: VIXL_UNREACHABLE();
}
SetInstructionBits(Mask(~imm_mask) | branch_imm);
}
void Instruction::SetImmLLiteral(Instruction* source) {
ASSERT(((source - this) & 3) == 0);
VIXL_ASSERT(((source - this) & 3) == 0);
int offset = (source - this) >> kLiteralEntrySizeLog2;
Instr imm = Assembler::ImmLLiteral(offset);
Instr mask = ImmLLiteral_mask;

View File

@ -44,30 +44,36 @@ const unsigned kMaxLoadLiteralRange = 1 * MBytes;
const unsigned kWRegSize = 32;
const unsigned kWRegSizeLog2 = 5;
const unsigned kWRegSizeInBytes = kWRegSize / 8;
const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
const unsigned kXRegSize = 64;
const unsigned kXRegSizeLog2 = 6;
const unsigned kXRegSizeInBytes = kXRegSize / 8;
const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
const unsigned kSRegSize = 32;
const unsigned kSRegSizeLog2 = 5;
const unsigned kSRegSizeInBytes = kSRegSize / 8;
const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
const unsigned kDRegSize = 64;
const unsigned kDRegSizeLog2 = 6;
const unsigned kDRegSizeInBytes = kDRegSize / 8;
const int64_t kWRegMask = 0x00000000ffffffffLL;
const int64_t kXRegMask = 0xffffffffffffffffLL;
const int64_t kSRegMask = 0x00000000ffffffffLL;
const int64_t kDRegMask = 0xffffffffffffffffLL;
const int64_t kXSignMask = 0x1LL << 63;
const int64_t kWSignMask = 0x1LL << 31;
const int64_t kByteMask = 0xffL;
const int64_t kHalfWordMask = 0xffffL;
const int64_t kWordMask = 0xffffffffLL;
const uint64_t kXMaxUInt = 0xffffffffffffffffULL;
const uint64_t kWMaxUInt = 0xffffffffULL;
const int64_t kXMaxInt = 0x7fffffffffffffffLL;
const int64_t kXMinInt = 0x8000000000000000LL;
const int32_t kWMaxInt = 0x7fffffff;
const int32_t kWMinInt = 0x80000000;
const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
const uint64_t kWRegMask = UINT64_C(0xffffffff);
const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSRegMask = UINT64_C(0xffffffff);
const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSSignMask = UINT64_C(0x80000000);
const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
const uint64_t kWSignMask = UINT64_C(0x80000000);
const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
const uint64_t kByteMask = UINT64_C(0xff);
const uint64_t kHalfWordMask = UINT64_C(0xffff);
const uint64_t kWordMask = UINT64_C(0xffffffff);
const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
const int64_t kXMinInt = INT64_C(0x8000000000000000);
const int32_t kWMaxInt = INT32_C(0x7fffffff);
const int32_t kWMinInt = INT32_C(0x80000000);
const unsigned kLinkRegCode = 30;
const unsigned kZeroRegCode = 31;
const unsigned kSPRegInternalCode = 63;
@ -81,18 +87,28 @@ const unsigned kFloatExponentBits = 8;
const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000ULL);
const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000ULL);
const double kFP64PositiveInfinity =
rawbits_to_double(UINT64_C(0x7ff0000000000000));
const double kFP64NegativeInfinity =
rawbits_to_double(UINT64_C(0xfff0000000000000));
// This value is a signalling NaN as both a double and as a float (taking the
// least-significant word).
static const double kFP64SignallingNaN = rawbits_to_double(0x7ff000007f800001ULL);
static const double kFP64SignallingNaN =
rawbits_to_double(UINT64_C(0x7ff000007f800001));
static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
// A similar value, but as a quiet NaN.
static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001ULL);
static const double kFP64QuietNaN =
rawbits_to_double(UINT64_C(0x7ff800007fc00001));
static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
// The default NaN values (for FPCR.DN=1).
static const double kFP64DefaultNaN =
rawbits_to_double(UINT64_C(0x7ff8000000000000));
static const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
enum LSDataSize {
LSByte = 0,
LSHalfword = 1,
@ -325,7 +341,7 @@ class Instruction {
}
inline Instruction* InstructionAtOffset(int64_t offset) {
ASSERT(IsWordAligned(this + offset));
VIXL_ASSERT(IsWordAligned(this + offset));
return this + offset;
}

View File

@ -27,8 +27,20 @@
#ifndef VIXL_GLOBALS_H
#define VIXL_GLOBALS_H
// Get the standard printf format macros for C99 stdint types.
// Get standard C99 macros for integer types.
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS
#endif
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <stdint.h>
#include <inttypes.h>
#include <assert.h>
@ -45,21 +57,29 @@ typedef uint8_t byte;
const int KBytes = 1024;
const int MBytes = 1024 * KBytes;
#define ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort()
#define VIXL_ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort()
#ifdef DEBUG
#define ASSERT(condition) assert(condition)
#define CHECK(condition) ASSERT(condition)
#define UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); ABORT()
#define UNREACHABLE() printf("UNREACHABLE\t"); ABORT()
#define VIXL_ASSERT(condition) assert(condition)
#define VIXL_CHECK(condition) VIXL_ASSERT(condition)
#define VIXL_UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); VIXL_ABORT()
#define VIXL_UNREACHABLE() printf("UNREACHABLE\t"); VIXL_ABORT()
#else
#define ASSERT(condition) ((void) 0)
#define CHECK(condition) assert(condition)
#define UNIMPLEMENTED() ((void) 0)
#define UNREACHABLE() ((void) 0)
#define VIXL_ASSERT(condition) ((void) 0)
#define VIXL_CHECK(condition) assert(condition)
#define VIXL_UNIMPLEMENTED() ((void) 0)
#define VIXL_UNREACHABLE() ((void) 0)
#endif
// This is not as powerful as template based assertions, but it is simple.
// It assumes that the descriptions are unique. If this starts being a problem,
// we can switch to a different implemention.
#define VIXL_CONCAT(a, b) a##b
#define VIXL_STATIC_ASSERT_LINE(line, condition) \
typedef char VIXL_CONCAT(STATIC_ASSERT_LINE_, line)[(condition) ? 1 : -1] \
__attribute__((unused))
#define VIXL_STATIC_ASSERT(condition) VIXL_STATIC_ASSERT_LINE(__LINE__, condition) //NOLINT
template <typename T> inline void USE(T) {}
#define ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); ABORT()
#define VIXL_ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); VIXL_ABORT()
#endif // VIXL_GLOBALS_H

View File

@ -34,9 +34,7 @@ namespace vixl {
// Currently we assume running the simulator implies running on x86 hardware.
inline void HostBreakpoint() { asm("int3"); }
#else
inline void HostBreakpoint() {
// TODO: Implement HostBreakpoint on a64.
}
inline void HostBreakpoint() { asm("brk"); }
#endif
} // namespace vixl

View File

@ -58,9 +58,9 @@ double rawbits_to_double(uint64_t bits) {
int CountLeadingZeros(uint64_t value, int width) {
ASSERT((width == 32) || (width == 64));
VIXL_ASSERT((width == 32) || (width == 64));
int count = 0;
uint64_t bit_test = 1UL << (width - 1);
uint64_t bit_test = UINT64_C(1) << (width - 1);
while ((count < width) && ((bit_test & value) == 0)) {
count++;
bit_test >>= 1;
@ -70,7 +70,7 @@ int CountLeadingZeros(uint64_t value, int width) {
int CountLeadingSignBits(int64_t value, int width) {
ASSERT((width == 32) || (width == 64));
VIXL_ASSERT((width == 32) || (width == 64));
if (value >= 0) {
return CountLeadingZeros(value, width) - 1;
} else {
@ -80,7 +80,7 @@ int CountLeadingSignBits(int64_t value, int width) {
int CountTrailingZeros(uint64_t value, int width) {
ASSERT((width == 32) || (width == 64));
VIXL_ASSERT((width == 32) || (width == 64));
int count = 0;
while ((count < width) && (((value >> count) & 1) == 0)) {
count++;
@ -92,10 +92,10 @@ int CountTrailingZeros(uint64_t value, int width) {
int CountSetBits(uint64_t value, int width) {
// TODO: Other widths could be added here, as the implementation already
// supports them.
ASSERT((width == 32) || (width == 64));
VIXL_ASSERT((width == 32) || (width == 64));
// Mask out unused bits to ensure that they are not counted.
value &= (0xffffffffffffffffULL >> (64-width));
value &= (UINT64_C(0xffffffffffffffff) >> (64-width));
// Add up the set bits.
// The algorithm works by adding pairs of bit fields together iteratively,
@ -108,18 +108,19 @@ int CountSetBits(uint64_t value, int width) {
// value = h+g+f+e d+c+b+a
// \ |
// value = h+g+f+e+d+c+b+a
value = ((value >> 1) & 0x5555555555555555ULL) +
(value & 0x5555555555555555ULL);
value = ((value >> 2) & 0x3333333333333333ULL) +
(value & 0x3333333333333333ULL);
value = ((value >> 4) & 0x0f0f0f0f0f0f0f0fULL) +
(value & 0x0f0f0f0f0f0f0f0fULL);
value = ((value >> 8) & 0x00ff00ff00ff00ffULL) +
(value & 0x00ff00ff00ff00ffULL);
value = ((value >> 16) & 0x0000ffff0000ffffULL) +
(value & 0x0000ffff0000ffffULL);
value = ((value >> 32) & 0x00000000ffffffffULL) +
(value & 0x00000000ffffffffULL);
const uint64_t kMasks[] = {
UINT64_C(0x5555555555555555),
UINT64_C(0x3333333333333333),
UINT64_C(0x0f0f0f0f0f0f0f0f),
UINT64_C(0x00ff00ff00ff00ff),
UINT64_C(0x0000ffff0000ffff),
UINT64_C(0x00000000ffffffff),
};
for (unsigned i = 0; i < (sizeof(kMasks) / sizeof(kMasks[0])); i++) {
int shift = 1 << i;
value = ((value >> shift) & kMasks[i]) + (value & kMasks[i]);
}
return value;
}

View File

@ -27,7 +27,7 @@
#ifndef VIXL_UTILS_H
#define VIXL_UTILS_H
#include <math.h>
#include <string.h>
#include "globals.h"
@ -35,19 +35,19 @@ namespace vixl {
// Check number width.
inline bool is_intn(unsigned n, int64_t x) {
ASSERT((0 < n) && (n < 64));
int64_t limit = 1ULL << (n - 1);
VIXL_ASSERT((0 < n) && (n < 64));
int64_t limit = INT64_C(1) << (n - 1);
return (-limit <= x) && (x < limit);
}
inline bool is_uintn(unsigned n, int64_t x) {
ASSERT((0 < n) && (n < 64));
VIXL_ASSERT((0 < n) && (n < 64));
return !(x >> n);
}
inline unsigned truncate_to_intn(unsigned n, int64_t x) {
ASSERT((0 < n) && (n < 64));
return (x & ((1ULL << n) - 1));
VIXL_ASSERT((0 < n) && (n < 64));
return (x & ((INT64_C(1) << n) - 1));
}
#define INT_1_TO_63_LIST(V) \
@ -90,13 +90,67 @@ inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
return (x << (63 - msb)) >> (lsb + 63 - msb);
}
// floating point representation
// Floating point representation.
uint32_t float_to_rawbits(float value);
uint64_t double_to_rawbits(double value);
float rawbits_to_float(uint32_t bits);
double rawbits_to_double(uint64_t bits);
// Bits counting.
// NaN tests.
inline bool IsSignallingNaN(double num) {
const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
uint64_t raw = double_to_rawbits(num);
if (isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
return true;
}
return false;
}
inline bool IsSignallingNaN(float num) {
const uint32_t kFP32QuietNaNMask = 0x00400000;
uint32_t raw = float_to_rawbits(num);
if (isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
return true;
}
return false;
}
template <typename T>
inline bool IsQuietNaN(T num) {
return isnan(num) && !IsSignallingNaN(num);
}
// Convert the NaN in 'num' to a quiet NaN.
inline double ToQuietNaN(double num) {
const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
VIXL_ASSERT(isnan(num));
return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
}
inline float ToQuietNaN(float num) {
const uint32_t kFP32QuietNaNMask = 0x00400000;
VIXL_ASSERT(isnan(num));
return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
}
// Fused multiply-add.
inline double FusedMultiplyAdd(double op1, double op2, double a) {
return fma(op1, op2, a);
}
inline float FusedMultiplyAdd(float op1, float op2, float a) {
return fmaf(op1, op2, a);
}
// Bit counting.
int CountLeadingZeros(uint64_t value, int width);
int CountLeadingSignBits(int64_t value, int width);
int CountTrailingZeros(uint64_t value, int width);
@ -106,20 +160,30 @@ int CountSetBits(uint64_t value, int width);
// TODO: rename/refactor to make it specific to instructions.
template<typename T>
bool IsWordAligned(T pointer) {
ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof)
VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof)
return (reinterpret_cast<intptr_t>(pointer) & 3) == 0;
}
// Increment a pointer until it has the specified alignment.
template<class T>
T AlignUp(T pointer, size_t alignment) {
ASSERT(sizeof(pointer) == sizeof(uintptr_t));
VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
size_t align_step = (alignment - pointer_raw) % alignment;
ASSERT((pointer_raw + align_step) % alignment == 0);
VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
return reinterpret_cast<T>(pointer_raw + align_step);
}
// Decrement a pointer until it has the specified alignment.
template<class T>
T AlignDown(T pointer, size_t alignment) {
VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
size_t align_step = pointer_raw % alignment;
VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
return reinterpret_cast<T>(pointer_raw - align_step);
}
} // namespace vixl