qemu/hw/net/imx_fec.c

712 lines
19 KiB
C
Raw Normal View History

/*
* i.MX Fast Ethernet Controller emulation.
*
* Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
*
* Based on Coldfire Fast Ethernet Controller emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/net/imx_fec.h"
#include "sysemu/dma.h"
/* For crc32 */
#include <zlib.h>
#ifndef DEBUG_IMX_FEC
#define DEBUG_IMX_FEC 0
#endif
#define FEC_PRINTF(fmt, args...) \
do { \
if (DEBUG_IMX_FEC) { \
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
__func__, ##args); \
} \
} while (0)
#ifndef DEBUG_IMX_PHY
#define DEBUG_IMX_PHY 0
#endif
#define PHY_PRINTF(fmt, args...) \
do { \
if (DEBUG_IMX_PHY) { \
fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
__func__, ##args); \
} \
} while (0)
static const VMStateDescription vmstate_imx_fec = {
.name = TYPE_IMX_FEC,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(irq_state, IMXFECState),
VMSTATE_UINT32(eir, IMXFECState),
VMSTATE_UINT32(eimr, IMXFECState),
VMSTATE_UINT32(rx_enabled, IMXFECState),
VMSTATE_UINT32(rx_descriptor, IMXFECState),
VMSTATE_UINT32(tx_descriptor, IMXFECState),
VMSTATE_UINT32(ecr, IMXFECState),
VMSTATE_UINT32(mmfr, IMXFECState),
VMSTATE_UINT32(mscr, IMXFECState),
VMSTATE_UINT32(mibc, IMXFECState),
VMSTATE_UINT32(rcr, IMXFECState),
VMSTATE_UINT32(tcr, IMXFECState),
VMSTATE_UINT32(tfwr, IMXFECState),
VMSTATE_UINT32(frsr, IMXFECState),
VMSTATE_UINT32(erdsr, IMXFECState),
VMSTATE_UINT32(etdsr, IMXFECState),
VMSTATE_UINT32(emrbr, IMXFECState),
VMSTATE_UINT32(miigsk_cfgr, IMXFECState),
VMSTATE_UINT32(miigsk_enr, IMXFECState),
VMSTATE_UINT32(phy_status, IMXFECState),
VMSTATE_UINT32(phy_control, IMXFECState),
VMSTATE_UINT32(phy_advertise, IMXFECState),
VMSTATE_UINT32(phy_int, IMXFECState),
VMSTATE_UINT32(phy_int_mask, IMXFECState),
VMSTATE_END_OF_LIST()
}
};
#define PHY_INT_ENERGYON (1 << 7)
#define PHY_INT_AUTONEG_COMPLETE (1 << 6)
#define PHY_INT_FAULT (1 << 5)
#define PHY_INT_DOWN (1 << 4)
#define PHY_INT_AUTONEG_LP (1 << 3)
#define PHY_INT_PARFAULT (1 << 2)
#define PHY_INT_AUTONEG_PAGE (1 << 1)
static void imx_fec_update(IMXFECState *s);
/*
* The MII phy could raise a GPIO to the processor which in turn
* could be handled as an interrpt by the OS.
* For now we don't handle any GPIO/interrupt line, so the OS will
* have to poll for the PHY status.
*/
static void phy_update_irq(IMXFECState *s)
{
imx_fec_update(s);
}
static void phy_update_link(IMXFECState *s)
{
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
PHY_PRINTF("link is down\n");
s->phy_status &= ~0x0024;
s->phy_int |= PHY_INT_DOWN;
} else {
PHY_PRINTF("link is up\n");
s->phy_status |= 0x0024;
s->phy_int |= PHY_INT_ENERGYON;
s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
}
phy_update_irq(s);
}
static void imx_fec_set_link(NetClientState *nc)
{
phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
}
static void phy_reset(IMXFECState *s)
{
s->phy_status = 0x7809;
s->phy_control = 0x3000;
s->phy_advertise = 0x01e1;
s->phy_int_mask = 0;
s->phy_int = 0;
phy_update_link(s);
}
static uint32_t do_phy_read(IMXFECState *s, int reg)
{
uint32_t val;
if (reg > 31) {
/* we only advertise one phy */
return 0;
}
switch (reg) {
case 0: /* Basic Control */
val = s->phy_control;
break;
case 1: /* Basic Status */
val = s->phy_status;
break;
case 2: /* ID1 */
val = 0x0007;
break;
case 3: /* ID2 */
val = 0xc0d1;
break;
case 4: /* Auto-neg advertisement */
val = s->phy_advertise;
break;
case 5: /* Auto-neg Link Partner Ability */
val = 0x0f71;
break;
case 6: /* Auto-neg Expansion */
val = 1;
break;
case 29: /* Interrupt source. */
val = s->phy_int;
s->phy_int = 0;
phy_update_irq(s);
break;
case 30: /* Interrupt mask */
val = s->phy_int_mask;
break;
case 17:
case 18:
case 27:
case 31:
qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
TYPE_IMX_FEC, __func__, reg);
val = 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
TYPE_IMX_FEC, __func__, reg);
val = 0;
break;
}
PHY_PRINTF("read 0x%04x @ %d\n", val, reg);
return val;
}
static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
{
PHY_PRINTF("write 0x%04x @ %d\n", val, reg);
if (reg > 31) {
/* we only advertise one phy */
return;
}
switch (reg) {
case 0: /* Basic Control */
if (val & 0x8000) {
phy_reset(s);
} else {
s->phy_control = val & 0x7980;
/* Complete autonegotiation immediately. */
if (val & 0x1000) {
s->phy_status |= 0x0020;
}
}
break;
case 4: /* Auto-neg advertisement */
s->phy_advertise = (val & 0x2d7f) | 0x80;
break;
case 30: /* Interrupt mask */
s->phy_int_mask = val & 0xff;
phy_update_irq(s);
break;
case 17:
case 18:
case 27:
case 31:
qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
TYPE_IMX_FEC, __func__, reg);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
TYPE_IMX_FEC, __func__, reg);
break;
}
}
static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
{
dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
}
static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
{
dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
}
static void imx_fec_update(IMXFECState *s)
{
uint32_t active;
uint32_t changed;
active = s->eir & s->eimr;
changed = active ^ s->irq_state;
if (changed) {
qemu_set_irq(s->irq, active);
}
s->irq_state = active;
}
static void imx_fec_do_tx(IMXFECState *s)
{
int frame_size = 0;
uint8_t frame[FEC_MAX_FRAME_SIZE];
uint8_t *ptr = frame;
uint32_t addr = s->tx_descriptor;
while (1) {
IMXFECBufDesc bd;
int len;
imx_fec_read_bd(&bd, addr);
FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
addr, bd.flags, bd.length, bd.data);
if ((bd.flags & FEC_BD_R) == 0) {
/* Run out of descriptors to transmit. */
break;
}
len = bd.length;
if (frame_size + len > FEC_MAX_FRAME_SIZE) {
len = FEC_MAX_FRAME_SIZE - frame_size;
s->eir |= FEC_INT_BABT;
}
dma_memory_read(&address_space_memory, bd.data, ptr, len);
ptr += len;
frame_size += len;
if (bd.flags & FEC_BD_L) {
/* Last buffer in frame. */
qemu_send_packet(qemu_get_queue(s->nic), frame, len);
ptr = frame;
frame_size = 0;
s->eir |= FEC_INT_TXF;
}
s->eir |= FEC_INT_TXB;
bd.flags &= ~FEC_BD_R;
/* Write back the modified descriptor. */
imx_fec_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & FEC_BD_W) != 0) {
addr = s->etdsr;
} else {
addr += 8;
}
}
s->tx_descriptor = addr;
imx_fec_update(s);
}
static void imx_fec_enable_rx(IMXFECState *s)
{
IMXFECBufDesc bd;
uint32_t tmp;
imx_fec_read_bd(&bd, s->rx_descriptor);
tmp = ((bd.flags & FEC_BD_E) != 0);
if (!tmp) {
FEC_PRINTF("RX buffer full\n");
} else if (!s->rx_enabled) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
s->rx_enabled = tmp;
}
static void imx_fec_reset(DeviceState *d)
{
IMXFECState *s = IMX_FEC(d);
/* Reset the FEC */
s->eir = 0;
s->eimr = 0;
s->rx_enabled = 0;
s->ecr = 0;
s->mscr = 0;
s->mibc = 0xc0000000;
s->rcr = 0x05ee0001;
s->tcr = 0;
s->tfwr = 0;
s->frsr = 0x500;
s->miigsk_cfgr = 0;
s->miigsk_enr = 0x6;
/* We also reset the PHY */
phy_reset(s);
}
static uint64_t imx_fec_read(void *opaque, hwaddr addr, unsigned size)
{
IMXFECState *s = IMX_FEC(opaque);
FEC_PRINTF("reading from @ 0x%" HWADDR_PRIx "\n", addr);
switch (addr & 0x3ff) {
case 0x004:
return s->eir;
case 0x008:
return s->eimr;
case 0x010:
return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
case 0x014:
return 0; /* TDAR */
case 0x024:
return s->ecr;
case 0x040:
return s->mmfr;
case 0x044:
return s->mscr;
case 0x064:
return s->mibc; /* MIBC */
case 0x084:
return s->rcr;
case 0x0c4:
return s->tcr;
case 0x0e4: /* PALR */
return (s->conf.macaddr.a[0] << 24)
| (s->conf.macaddr.a[1] << 16)
| (s->conf.macaddr.a[2] << 8)
| s->conf.macaddr.a[3];
break;
case 0x0e8: /* PAUR */
return (s->conf.macaddr.a[4] << 24)
| (s->conf.macaddr.a[5] << 16)
| 0x8808;
case 0x0ec:
return 0x10000; /* OPD */
case 0x118:
return 0;
case 0x11c:
return 0;
case 0x120:
return 0;
case 0x124:
return 0;
case 0x144:
return s->tfwr;
case 0x14c:
return 0x600;
case 0x150:
return s->frsr;
case 0x180:
return s->erdsr;
case 0x184:
return s->etdsr;
case 0x188:
return s->emrbr;
case 0x300:
return s->miigsk_cfgr;
case 0x308:
return s->miigsk_enr;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX_FEC, __func__, addr);
return 0;
}
}
static void imx_fec_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
IMXFECState *s = IMX_FEC(opaque);
FEC_PRINTF("writing 0x%08x @ 0x%" HWADDR_PRIx "\n", (int)value, addr);
switch (addr & 0x3ff) {
case 0x004: /* EIR */
s->eir &= ~value;
break;
case 0x008: /* EIMR */
s->eimr = value;
break;
case 0x010: /* RDAR */
if ((s->ecr & FEC_EN) && !s->rx_enabled) {
imx_fec_enable_rx(s);
}
break;
case 0x014: /* TDAR */
if (s->ecr & FEC_EN) {
imx_fec_do_tx(s);
}
break;
case 0x024: /* ECR */
s->ecr = value;
if (value & FEC_RESET) {
imx_fec_reset(DEVICE(s));
}
if ((s->ecr & FEC_EN) == 0) {
s->rx_enabled = 0;
}
break;
case 0x040: /* MMFR */
/* store the value */
s->mmfr = value;
if (extract32(value, 28, 1)) {
do_phy_write(s, extract32(value, 18, 9), extract32(value, 0, 16));
} else {
s->mmfr = do_phy_read(s, extract32(value, 18, 9));
}
/* raise the interrupt as the PHY operation is done */
s->eir |= FEC_INT_MII;
break;
case 0x044: /* MSCR */
s->mscr = value & 0xfe;
break;
case 0x064: /* MIBC */
/* TODO: Implement MIB. */
s->mibc = (value & 0x80000000) ? 0xc0000000 : 0;
break;
case 0x084: /* RCR */
s->rcr = value & 0x07ff003f;
/* TODO: Implement LOOP mode. */
break;
case 0x0c4: /* TCR */
/* We transmit immediately, so raise GRA immediately. */
s->tcr = value;
if (value & 1) {
s->eir |= FEC_INT_GRA;
}
break;
case 0x0e4: /* PALR */
s->conf.macaddr.a[0] = value >> 24;
s->conf.macaddr.a[1] = value >> 16;
s->conf.macaddr.a[2] = value >> 8;
s->conf.macaddr.a[3] = value;
break;
case 0x0e8: /* PAUR */
s->conf.macaddr.a[4] = value >> 24;
s->conf.macaddr.a[5] = value >> 16;
break;
case 0x0ec: /* OPDR */
break;
case 0x118: /* IAUR */
case 0x11c: /* IALR */
case 0x120: /* GAUR */
case 0x124: /* GALR */
/* TODO: implement MAC hash filtering. */
break;
case 0x144: /* TFWR */
s->tfwr = value & 3;
break;
case 0x14c: /* FRBR */
/* FRBR writes ignored. */
break;
case 0x150: /* FRSR */
s->frsr = (value & 0x3fc) | 0x400;
break;
case 0x180: /* ERDSR */
s->erdsr = value & ~3;
s->rx_descriptor = s->erdsr;
break;
case 0x184: /* ETDSR */
s->etdsr = value & ~3;
s->tx_descriptor = s->etdsr;
break;
case 0x188: /* EMRBR */
s->emrbr = value & 0x7f0;
break;
case 0x300: /* MIIGSK_CFGR */
s->miigsk_cfgr = value & 0x53;
break;
case 0x308: /* MIIGSK_ENR */
s->miigsk_enr = (value & 0x2) ? 0x6 : 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX_FEC, __func__, addr);
break;
}
imx_fec_update(s);
}
static int imx_fec_can_receive(NetClientState *nc)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
return s->rx_enabled;
}
static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
size_t len)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
IMXFECBufDesc bd;
uint32_t flags = 0;
uint32_t addr;
uint32_t crc;
uint32_t buf_addr;
uint8_t *crc_ptr;
unsigned int buf_len;
size_t size = len;
FEC_PRINTF("len %d\n", (int)size);
if (!s->rx_enabled) {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
TYPE_IMX_FEC, __func__);
return 0;
}
/* 4 bytes for the CRC. */
size += 4;
crc = cpu_to_be32(crc32(~0, buf, size));
crc_ptr = (uint8_t *) &crc;
/* Huge frames are truncted. */
if (size > FEC_MAX_FRAME_SIZE) {
size = FEC_MAX_FRAME_SIZE;
flags |= FEC_BD_TR | FEC_BD_LG;
}
/* Frames larger than the user limit just set error flags. */
if (size > (s->rcr >> 16)) {
flags |= FEC_BD_LG;
}
addr = s->rx_descriptor;
while (size > 0) {
imx_fec_read_bd(&bd, addr);
if ((bd.flags & FEC_BD_E) == 0) {
/* No descriptors available. Bail out. */
/*
* FIXME: This is wrong. We should probably either
* save the remainder for when more RX buffers are
* available, or flag an error.
*/
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
TYPE_IMX_FEC, __func__);
break;
}
buf_len = (size <= s->emrbr) ? size : s->emrbr;
bd.length = buf_len;
size -= buf_len;
FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
/* The last 4 bytes are the CRC. */
if (size < 4) {
buf_len += size - 4;
}
buf_addr = bd.data;
dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
buf += buf_len;
if (size < 4) {
dma_memory_write(&address_space_memory, buf_addr + buf_len,
crc_ptr, 4 - size);
crc_ptr += 4 - size;
}
bd.flags &= ~FEC_BD_E;
if (size == 0) {
/* Last buffer in frame. */
bd.flags |= flags | FEC_BD_L;
FEC_PRINTF("rx frame flags %04x\n", bd.flags);
s->eir |= FEC_INT_RXF;
} else {
s->eir |= FEC_INT_RXB;
}
imx_fec_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & FEC_BD_W) != 0) {
addr = s->erdsr;
} else {
addr += 8;
}
}
s->rx_descriptor = addr;
imx_fec_enable_rx(s);
imx_fec_update(s);
return len;
}
static const MemoryRegionOps imx_fec_ops = {
.read = imx_fec_read,
.write = imx_fec_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void imx_fec_cleanup(NetClientState *nc)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
s->nic = NULL;
}
static NetClientInfo net_imx_fec_info = {
.type = NET_CLIENT_OPTIONS_KIND_NIC,
.size = sizeof(NICState),
.can_receive = imx_fec_can_receive,
.receive = imx_fec_receive,
.cleanup = imx_fec_cleanup,
.link_status_changed = imx_fec_set_link,
};
static void imx_fec_realize(DeviceState *dev, Error **errp)
{
IMXFECState *s = IMX_FEC(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
memory_region_init_io(&s->iomem, OBJECT(dev), &imx_fec_ops, s,
TYPE_IMX_FEC, 0x400);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->conf.peers.ncs[0] = nd_table[0].netdev;
s->nic = qemu_new_nic(&net_imx_fec_info, &s->conf,
object_get_typename(OBJECT(dev)), DEVICE(dev)->id,
s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static Property imx_fec_properties[] = {
DEFINE_NIC_PROPERTIES(IMXFECState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void imx_fec_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_imx_fec;
dc->reset = imx_fec_reset;
dc->props = imx_fec_properties;
dc->realize = imx_fec_realize;
dc->desc = "i.MX FEC Ethernet Controller";
}
static const TypeInfo imx_fec_info = {
.name = TYPE_IMX_FEC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXFECState),
.class_init = imx_fec_class_init,
};
static void imx_fec_register_types(void)
{
type_register_static(&imx_fec_info);
}
type_init(imx_fec_register_types)