mirror of
https://gitlab.com/qemu-project/qemu
synced 2024-11-05 20:35:44 +00:00
261 lines
7.1 KiB
C
261 lines
7.1 KiB
C
|
/*
|
||
|
* Win32 implementation for mutex/cond/thread functions
|
||
|
*
|
||
|
* Copyright Red Hat, Inc. 2010
|
||
|
*
|
||
|
* Author:
|
||
|
* Paolo Bonzini <pbonzini@redhat.com>
|
||
|
*
|
||
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
||
|
* See the COPYING file in the top-level directory.
|
||
|
*
|
||
|
*/
|
||
|
#include "qemu-common.h"
|
||
|
#include "qemu-thread.h"
|
||
|
#include <process.h>
|
||
|
#include <assert.h>
|
||
|
#include <limits.h>
|
||
|
|
||
|
static void error_exit(int err, const char *msg)
|
||
|
{
|
||
|
char *pstr;
|
||
|
|
||
|
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
|
||
|
NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
|
||
|
fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
|
||
|
LocalFree(pstr);
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
void qemu_mutex_init(QemuMutex *mutex)
|
||
|
{
|
||
|
mutex->owner = 0;
|
||
|
InitializeCriticalSection(&mutex->lock);
|
||
|
}
|
||
|
|
||
|
void qemu_mutex_lock(QemuMutex *mutex)
|
||
|
{
|
||
|
EnterCriticalSection(&mutex->lock);
|
||
|
|
||
|
/* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not
|
||
|
* using them as such.
|
||
|
*/
|
||
|
assert(mutex->owner == 0);
|
||
|
mutex->owner = GetCurrentThreadId();
|
||
|
}
|
||
|
|
||
|
int qemu_mutex_trylock(QemuMutex *mutex)
|
||
|
{
|
||
|
int owned;
|
||
|
|
||
|
owned = TryEnterCriticalSection(&mutex->lock);
|
||
|
if (owned) {
|
||
|
assert(mutex->owner == 0);
|
||
|
mutex->owner = GetCurrentThreadId();
|
||
|
}
|
||
|
return !owned;
|
||
|
}
|
||
|
|
||
|
void qemu_mutex_unlock(QemuMutex *mutex)
|
||
|
{
|
||
|
assert(mutex->owner == GetCurrentThreadId());
|
||
|
mutex->owner = 0;
|
||
|
LeaveCriticalSection(&mutex->lock);
|
||
|
}
|
||
|
|
||
|
void qemu_cond_init(QemuCond *cond)
|
||
|
{
|
||
|
memset(cond, 0, sizeof(*cond));
|
||
|
|
||
|
cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
|
||
|
if (!cond->sema) {
|
||
|
error_exit(GetLastError(), __func__);
|
||
|
}
|
||
|
cond->continue_event = CreateEvent(NULL, /* security */
|
||
|
FALSE, /* auto-reset */
|
||
|
FALSE, /* not signaled */
|
||
|
NULL); /* name */
|
||
|
if (!cond->continue_event) {
|
||
|
error_exit(GetLastError(), __func__);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void qemu_cond_signal(QemuCond *cond)
|
||
|
{
|
||
|
DWORD result;
|
||
|
|
||
|
/*
|
||
|
* Signal only when there are waiters. cond->waiters is
|
||
|
* incremented by pthread_cond_wait under the external lock,
|
||
|
* so we are safe about that.
|
||
|
*/
|
||
|
if (cond->waiters == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Waiting threads decrement it outside the external lock, but
|
||
|
* only if another thread is executing pthread_cond_broadcast and
|
||
|
* has the mutex. So, it also cannot be decremented concurrently
|
||
|
* with this particular access.
|
||
|
*/
|
||
|
cond->target = cond->waiters - 1;
|
||
|
result = SignalObjectAndWait(cond->sema, cond->continue_event,
|
||
|
INFINITE, FALSE);
|
||
|
if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
|
||
|
error_exit(GetLastError(), __func__);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void qemu_cond_broadcast(QemuCond *cond)
|
||
|
{
|
||
|
BOOLEAN result;
|
||
|
/*
|
||
|
* As in pthread_cond_signal, access to cond->waiters and
|
||
|
* cond->target is locked via the external mutex.
|
||
|
*/
|
||
|
if (cond->waiters == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cond->target = 0;
|
||
|
result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
|
||
|
if (!result) {
|
||
|
error_exit(GetLastError(), __func__);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point all waiters continue. Each one takes its
|
||
|
* slice of the semaphore. Now it's our turn to wait: Since
|
||
|
* the external mutex is held, no thread can leave cond_wait,
|
||
|
* yet. For this reason, we can be sure that no thread gets
|
||
|
* a chance to eat *more* than one slice. OTOH, it means
|
||
|
* that the last waiter must send us a wake-up.
|
||
|
*/
|
||
|
WaitForSingleObject(cond->continue_event, INFINITE);
|
||
|
}
|
||
|
|
||
|
void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
|
||
|
{
|
||
|
/*
|
||
|
* This access is protected under the mutex.
|
||
|
*/
|
||
|
cond->waiters++;
|
||
|
|
||
|
/*
|
||
|
* Unlock external mutex and wait for signal.
|
||
|
* NOTE: we've held mutex locked long enough to increment
|
||
|
* waiters count above, so there's no problem with
|
||
|
* leaving mutex unlocked before we wait on semaphore.
|
||
|
*/
|
||
|
qemu_mutex_unlock(mutex);
|
||
|
WaitForSingleObject(cond->sema, INFINITE);
|
||
|
|
||
|
/* Now waiters must rendez-vous with the signaling thread and
|
||
|
* let it continue. For cond_broadcast this has heavy contention
|
||
|
* and triggers thundering herd. So goes life.
|
||
|
*
|
||
|
* Decrease waiters count. The mutex is not taken, so we have
|
||
|
* to do this atomically.
|
||
|
*
|
||
|
* All waiters contend for the mutex at the end of this function
|
||
|
* until the signaling thread relinquishes it. To ensure
|
||
|
* each waiter consumes exactly one slice of the semaphore,
|
||
|
* the signaling thread stops until it is told by the last
|
||
|
* waiter that it can go on.
|
||
|
*/
|
||
|
if (InterlockedDecrement(&cond->waiters) == cond->target) {
|
||
|
SetEvent(cond->continue_event);
|
||
|
}
|
||
|
|
||
|
qemu_mutex_lock(mutex);
|
||
|
}
|
||
|
|
||
|
struct QemuThreadData {
|
||
|
QemuThread *thread;
|
||
|
void *(*start_routine)(void *);
|
||
|
void *arg;
|
||
|
};
|
||
|
|
||
|
static int qemu_thread_tls_index = TLS_OUT_OF_INDEXES;
|
||
|
|
||
|
static unsigned __stdcall win32_start_routine(void *arg)
|
||
|
{
|
||
|
struct QemuThreadData data = *(struct QemuThreadData *) arg;
|
||
|
QemuThread *thread = data.thread;
|
||
|
|
||
|
free(arg);
|
||
|
TlsSetValue(qemu_thread_tls_index, thread);
|
||
|
|
||
|
/*
|
||
|
* Use DuplicateHandle instead of assigning thread->thread in the
|
||
|
* creating thread to avoid races. It's simpler this way than with
|
||
|
* synchronization.
|
||
|
*/
|
||
|
DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
|
||
|
GetCurrentProcess(), &thread->thread,
|
||
|
0, FALSE, DUPLICATE_SAME_ACCESS);
|
||
|
|
||
|
qemu_thread_exit(data.start_routine(data.arg));
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
void qemu_thread_exit(void *arg)
|
||
|
{
|
||
|
QemuThread *thread = TlsGetValue(qemu_thread_tls_index);
|
||
|
thread->ret = arg;
|
||
|
CloseHandle(thread->thread);
|
||
|
thread->thread = NULL;
|
||
|
ExitThread(0);
|
||
|
}
|
||
|
|
||
|
static inline void qemu_thread_init(void)
|
||
|
{
|
||
|
if (qemu_thread_tls_index == TLS_OUT_OF_INDEXES) {
|
||
|
qemu_thread_tls_index = TlsAlloc();
|
||
|
if (qemu_thread_tls_index == TLS_OUT_OF_INDEXES) {
|
||
|
error_exit(ERROR_NO_SYSTEM_RESOURCES, __func__);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void qemu_thread_create(QemuThread *thread,
|
||
|
void *(*start_routine)(void *),
|
||
|
void *arg)
|
||
|
{
|
||
|
HANDLE hThread;
|
||
|
|
||
|
struct QemuThreadData *data;
|
||
|
qemu_thread_init();
|
||
|
data = qemu_malloc(sizeof *data);
|
||
|
data->thread = thread;
|
||
|
data->start_routine = start_routine;
|
||
|
data->arg = arg;
|
||
|
|
||
|
hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
|
||
|
data, 0, NULL);
|
||
|
if (!hThread) {
|
||
|
error_exit(GetLastError(), __func__);
|
||
|
}
|
||
|
CloseHandle(hThread);
|
||
|
}
|
||
|
|
||
|
void qemu_thread_get_self(QemuThread *thread)
|
||
|
{
|
||
|
if (!thread->thread) {
|
||
|
/* In the main thread of the process. Initialize the QemuThread
|
||
|
pointer in TLS, and use the dummy GetCurrentThread handle as
|
||
|
the identifier for qemu_thread_is_self. */
|
||
|
qemu_thread_init();
|
||
|
TlsSetValue(qemu_thread_tls_index, thread);
|
||
|
thread->thread = GetCurrentThread();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int qemu_thread_is_self(QemuThread *thread)
|
||
|
{
|
||
|
QemuThread *this_thread = TlsGetValue(qemu_thread_tls_index);
|
||
|
return this_thread->thread == thread->thread;
|
||
|
}
|