qemu/hw/misc/mips_itu.c

583 lines
14 KiB
C
Raw Normal View History

/*
* Inter-Thread Communication Unit emulation.
*
* Copyright (c) 2016 Imagination Technologies
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "hw/misc/mips_itu.h"
#include "hw/qdev-properties.h"
#define ITC_TAG_ADDRSPACE_SZ (ITC_ADDRESSMAP_NUM * 8)
/* Initialize as 4kB area to fit all 32 cells with default 128B grain.
Storage may be resized by the software. */
#define ITC_STORAGE_ADDRSPACE_SZ 0x1000
#define ITC_FIFO_NUM_MAX 16
#define ITC_SEMAPH_NUM_MAX 16
#define ITC_AM1_NUMENTRIES_OFS 20
#define ITC_CELL_PV_MAX_VAL 0xFFFF
#define ITC_CELL_TAG_FIFO_DEPTH 28
#define ITC_CELL_TAG_FIFO_PTR 18
#define ITC_CELL_TAG_FIFO 17
#define ITC_CELL_TAG_T 16
#define ITC_CELL_TAG_F 1
#define ITC_CELL_TAG_E 0
#define ITC_AM0_BASE_ADDRESS_MASK 0xFFFFFC00ULL
#define ITC_AM0_EN_MASK 0x1
#define ITC_AM1_ADDR_MASK_MASK 0x1FC00
#define ITC_AM1_ENTRY_GRAIN_MASK 0x7
typedef enum ITCView {
ITCVIEW_BYPASS = 0,
ITCVIEW_CONTROL = 1,
ITCVIEW_EF_SYNC = 2,
ITCVIEW_EF_TRY = 3,
ITCVIEW_PV_SYNC = 4,
ITCVIEW_PV_TRY = 5,
ITCVIEW_PV_ICR0 = 15,
} ITCView;
#define ITC_ICR0_CELL_NUM 16
#define ITC_ICR0_BLK_GRAIN 8
#define ITC_ICR0_BLK_GRAIN_MASK 0x7
#define ITC_ICR0_ERR_AXI 2
#define ITC_ICR0_ERR_PARITY 1
#define ITC_ICR0_ERR_EXEC 0
MemoryRegion *mips_itu_get_tag_region(MIPSITUState *itu)
{
return &itu->tag_io;
}
static uint64_t itc_tag_read(void *opaque, hwaddr addr, unsigned size)
{
MIPSITUState *tag = (MIPSITUState *)opaque;
uint64_t index = addr >> 3;
if (index >= ITC_ADDRESSMAP_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "Read 0x%" PRIx64 "\n", addr);
return 0;
}
return tag->ITCAddressMap[index];
}
void itc_reconfigure(MIPSITUState *tag)
{
uint64_t *am = &tag->ITCAddressMap[0];
MemoryRegion *mr = &tag->storage_io;
hwaddr address = am[0] & ITC_AM0_BASE_ADDRESS_MASK;
uint64_t size = (1 * KiB) + (am[1] & ITC_AM1_ADDR_MASK_MASK);
bool is_enabled = (am[0] & ITC_AM0_EN_MASK) != 0;
if (tag->saar_present) {
address = ((*(uint64_t *) tag->saar) & 0xFFFFFFFFE000ULL) << 4;
size = 1ULL << ((*(uint64_t *) tag->saar >> 1) & 0x1f);
is_enabled = *(uint64_t *) tag->saar & 1;
}
memory_region_transaction_begin();
if (!(size & (size - 1))) {
memory_region_set_size(mr, size);
}
memory_region_set_address(mr, address);
memory_region_set_enabled(mr, is_enabled);
memory_region_transaction_commit();
}
static void itc_tag_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
MIPSITUState *tag = (MIPSITUState *)opaque;
uint64_t *am = &tag->ITCAddressMap[0];
uint64_t am_old, mask;
uint64_t index = addr >> 3;
switch (index) {
case 0:
mask = ITC_AM0_BASE_ADDRESS_MASK | ITC_AM0_EN_MASK;
break;
case 1:
mask = ITC_AM1_ADDR_MASK_MASK | ITC_AM1_ENTRY_GRAIN_MASK;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "Bad write 0x%" PRIx64 "\n", addr);
return;
}
am_old = am[index];
am[index] = (data & mask) | (am_old & ~mask);
if (am_old != am[index]) {
itc_reconfigure(tag);
}
}
static const MemoryRegionOps itc_tag_ops = {
.read = itc_tag_read,
.write = itc_tag_write,
.impl = {
.max_access_size = 8,
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static inline uint32_t get_num_cells(MIPSITUState *s)
{
return s->num_fifo + s->num_semaphores;
}
static inline ITCView get_itc_view(hwaddr addr)
{
return (addr >> 3) & 0xf;
}
static inline int get_cell_stride_shift(const MIPSITUState *s)
{
/* Minimum interval (for EntryGain = 0) is 128 B */
if (s->saar_present) {
return 7 + ((s->icr0 >> ITC_ICR0_BLK_GRAIN) &
ITC_ICR0_BLK_GRAIN_MASK);
} else {
return 7 + (s->ITCAddressMap[1] & ITC_AM1_ENTRY_GRAIN_MASK);
}
}
static inline ITCStorageCell *get_cell(MIPSITUState *s,
hwaddr addr)
{
uint32_t cell_idx = addr >> get_cell_stride_shift(s);
uint32_t num_cells = get_num_cells(s);
if (cell_idx >= num_cells) {
cell_idx = num_cells - 1;
}
return &s->cell[cell_idx];
}
static void wake_blocked_threads(ITCStorageCell *c)
{
CPUState *cs;
CPU_FOREACH(cs) {
if (cs->halted && (c->blocked_threads & (1ULL << cs->cpu_index))) {
cpu_interrupt(cs, CPU_INTERRUPT_WAKE);
}
}
c->blocked_threads = 0;
}
static void QEMU_NORETURN block_thread_and_exit(ITCStorageCell *c)
{
c->blocked_threads |= 1ULL << current_cpu->cpu_index;
current_cpu->halted = 1;
current_cpu->exception_index = EXCP_HLT;
icount: fix cpu_restore_state_from_tb for non-tb-exit cases In icount mode, instructions that access io memory spaces in the middle of the translation block invoke TB recompilation. After recompilation, such instructions become last in the TB and are allowed to access io memory spaces. When the code includes instruction like i386 'xchg eax, 0xffffd080' which accesses APIC, QEMU goes into an infinite loop of the recompilation. This instruction includes two memory accesses - one read and one write. After the first access, APIC calls cpu_report_tpr_access, which restores the CPU state to get the current eip. But cpu_restore_state_from_tb resets the cpu->can_do_io flag which makes the second memory access invalid. Therefore the second memory access causes a recompilation of the block. Then these operations repeat again and again. This patch moves resetting cpu->can_do_io flag from cpu_restore_state_from_tb to cpu_loop_exit* functions. It also adds a parameter for cpu_restore_state which controls restoring icount. There is no need to restore icount when we only query CPU state without breaking the TB. Restoring it in such cases leads to the incorrect flow of the virtual time. In most cases new parameter is true (icount should be recalculated). But there are two cases in i386 and openrisc when the CPU state is only queried without the need to break the TB. This patch fixes both of these cases. Signed-off-by: Pavel Dovgalyuk <Pavel.Dovgaluk@ispras.ru> Message-Id: <20180409091320.12504.35329.stgit@pasha-VirtualBox> [rth: Make can_do_io setting unconditional; move from cpu_exec; make cpu_loop_exit_{noexc,restore} call cpu_loop_exit.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2018-04-09 09:13:20 +00:00
cpu_loop_exit_restore(current_cpu, current_cpu->mem_io_pc);
}
/* ITC Bypass View */
static inline uint64_t view_bypass_read(ITCStorageCell *c)
{
if (c->tag.FIFO) {
return c->data[c->fifo_out];
} else {
return c->data[0];
}
}
static inline void view_bypass_write(ITCStorageCell *c, uint64_t val)
{
if (c->tag.FIFO && (c->tag.FIFOPtr > 0)) {
int idx = (c->fifo_out + c->tag.FIFOPtr - 1) % ITC_CELL_DEPTH;
c->data[idx] = val;
}
/* ignore a write to the semaphore cell */
}
/* ITC Control View */
static inline uint64_t view_control_read(ITCStorageCell *c)
{
return ((uint64_t)c->tag.FIFODepth << ITC_CELL_TAG_FIFO_DEPTH) |
(c->tag.FIFOPtr << ITC_CELL_TAG_FIFO_PTR) |
(c->tag.FIFO << ITC_CELL_TAG_FIFO) |
(c->tag.T << ITC_CELL_TAG_T) |
(c->tag.E << ITC_CELL_TAG_E) |
(c->tag.F << ITC_CELL_TAG_F);
}
static inline void view_control_write(ITCStorageCell *c, uint64_t val)
{
c->tag.T = (val >> ITC_CELL_TAG_T) & 1;
c->tag.E = (val >> ITC_CELL_TAG_E) & 1;
c->tag.F = (val >> ITC_CELL_TAG_F) & 1;
if (c->tag.E) {
c->tag.FIFOPtr = 0;
}
}
/* ITC Empty/Full View */
static uint64_t view_ef_common_read(ITCStorageCell *c, bool blocking)
{
uint64_t ret = 0;
if (!c->tag.FIFO) {
return 0;
}
c->tag.F = 0;
if (blocking && c->tag.E) {
block_thread_and_exit(c);
}
if (c->blocked_threads) {
wake_blocked_threads(c);
}
if (c->tag.FIFOPtr > 0) {
ret = c->data[c->fifo_out];
c->fifo_out = (c->fifo_out + 1) % ITC_CELL_DEPTH;
c->tag.FIFOPtr--;
}
if (c->tag.FIFOPtr == 0) {
c->tag.E = 1;
}
return ret;
}
static uint64_t view_ef_sync_read(ITCStorageCell *c)
{
return view_ef_common_read(c, true);
}
static uint64_t view_ef_try_read(ITCStorageCell *c)
{
return view_ef_common_read(c, false);
}
static inline void view_ef_common_write(ITCStorageCell *c, uint64_t val,
bool blocking)
{
if (!c->tag.FIFO) {
return;
}
c->tag.E = 0;
if (blocking && c->tag.F) {
block_thread_and_exit(c);
}
if (c->blocked_threads) {
wake_blocked_threads(c);
}
if (c->tag.FIFOPtr < ITC_CELL_DEPTH) {
int idx = (c->fifo_out + c->tag.FIFOPtr) % ITC_CELL_DEPTH;
c->data[idx] = val;
c->tag.FIFOPtr++;
}
if (c->tag.FIFOPtr == ITC_CELL_DEPTH) {
c->tag.F = 1;
}
}
static void view_ef_sync_write(ITCStorageCell *c, uint64_t val)
{
view_ef_common_write(c, val, true);
}
static void view_ef_try_write(ITCStorageCell *c, uint64_t val)
{
view_ef_common_write(c, val, false);
}
/* ITC P/V View */
static uint64_t view_pv_common_read(ITCStorageCell *c, bool blocking)
{
uint64_t ret = c->data[0];
if (c->tag.FIFO) {
return 0;
}
if (c->data[0] > 0) {
c->data[0]--;
} else if (blocking) {
block_thread_and_exit(c);
}
return ret;
}
static uint64_t view_pv_sync_read(ITCStorageCell *c)
{
return view_pv_common_read(c, true);
}
static uint64_t view_pv_try_read(ITCStorageCell *c)
{
return view_pv_common_read(c, false);
}
static inline void view_pv_common_write(ITCStorageCell *c)
{
if (c->tag.FIFO) {
return;
}
if (c->data[0] < ITC_CELL_PV_MAX_VAL) {
c->data[0]++;
}
if (c->blocked_threads) {
wake_blocked_threads(c);
}
}
static void view_pv_sync_write(ITCStorageCell *c)
{
view_pv_common_write(c);
}
static void view_pv_try_write(ITCStorageCell *c)
{
view_pv_common_write(c);
}
static void raise_exception(int excp)
{
current_cpu->exception_index = excp;
cpu_loop_exit(current_cpu);
}
static uint64_t itc_storage_read(void *opaque, hwaddr addr, unsigned size)
{
MIPSITUState *s = (MIPSITUState *)opaque;
ITCStorageCell *cell = get_cell(s, addr);
ITCView view = get_itc_view(addr);
uint64_t ret = -1;
switch (size) {
case 1:
case 2:
s->icr0 |= 1 << ITC_ICR0_ERR_AXI;
raise_exception(EXCP_DBE);
return 0;
}
switch (view) {
case ITCVIEW_BYPASS:
ret = view_bypass_read(cell);
break;
case ITCVIEW_CONTROL:
ret = view_control_read(cell);
break;
case ITCVIEW_EF_SYNC:
ret = view_ef_sync_read(cell);
break;
case ITCVIEW_EF_TRY:
ret = view_ef_try_read(cell);
break;
case ITCVIEW_PV_SYNC:
ret = view_pv_sync_read(cell);
break;
case ITCVIEW_PV_TRY:
ret = view_pv_try_read(cell);
break;
case ITCVIEW_PV_ICR0:
ret = s->icr0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"itc_storage_read: Bad ITC View %d\n", (int)view);
break;
}
return ret;
}
static void itc_storage_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
MIPSITUState *s = (MIPSITUState *)opaque;
ITCStorageCell *cell = get_cell(s, addr);
ITCView view = get_itc_view(addr);
switch (size) {
case 1:
case 2:
s->icr0 |= 1 << ITC_ICR0_ERR_AXI;
raise_exception(EXCP_DBE);
return;
}
switch (view) {
case ITCVIEW_BYPASS:
view_bypass_write(cell, data);
break;
case ITCVIEW_CONTROL:
view_control_write(cell, data);
break;
case ITCVIEW_EF_SYNC:
view_ef_sync_write(cell, data);
break;
case ITCVIEW_EF_TRY:
view_ef_try_write(cell, data);
break;
case ITCVIEW_PV_SYNC:
view_pv_sync_write(cell);
break;
case ITCVIEW_PV_TRY:
view_pv_try_write(cell);
break;
case ITCVIEW_PV_ICR0:
if (data & 0x7) {
/* clear ERROR bits */
s->icr0 &= ~(data & 0x7);
}
/* set BLK_GRAIN */
s->icr0 &= ~0x700;
s->icr0 |= data & 0x700;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"itc_storage_write: Bad ITC View %d\n", (int)view);
break;
}
}
static const MemoryRegionOps itc_storage_ops = {
.read = itc_storage_read,
.write = itc_storage_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void itc_reset_cells(MIPSITUState *s)
{
int i;
memset(s->cell, 0, get_num_cells(s) * sizeof(s->cell[0]));
for (i = 0; i < s->num_fifo; i++) {
s->cell[i].tag.E = 1;
s->cell[i].tag.FIFO = 1;
s->cell[i].tag.FIFODepth = ITC_CELL_DEPTH_SHIFT;
}
}
static void mips_itu_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
MIPSITUState *s = MIPS_ITU(obj);
memory_region_init_io(&s->storage_io, OBJECT(s), &itc_storage_ops, s,
"mips-itc-storage", ITC_STORAGE_ADDRSPACE_SZ);
sysbus_init_mmio(sbd, &s->storage_io);
memory_region_init_io(&s->tag_io, OBJECT(s), &itc_tag_ops, s,
"mips-itc-tag", ITC_TAG_ADDRSPACE_SZ);
}
static void mips_itu_realize(DeviceState *dev, Error **errp)
{
MIPSITUState *s = MIPS_ITU(dev);
if (s->num_fifo > ITC_FIFO_NUM_MAX) {
error_setg(errp, "Exceed maximum number of FIFO cells: %d",
s->num_fifo);
return;
}
if (s->num_semaphores > ITC_SEMAPH_NUM_MAX) {
error_setg(errp, "Exceed maximum number of Semaphore cells: %d",
s->num_semaphores);
return;
}
s->cell = g_new(ITCStorageCell, get_num_cells(s));
}
static void mips_itu_reset(DeviceState *dev)
{
MIPSITUState *s = MIPS_ITU(dev);
if (s->saar_present) {
*(uint64_t *) s->saar = 0x11 << 1;
s->icr0 = get_num_cells(s) << ITC_ICR0_CELL_NUM;
} else {
s->ITCAddressMap[0] = 0;
s->ITCAddressMap[1] =
((ITC_STORAGE_ADDRSPACE_SZ - 1) & ITC_AM1_ADDR_MASK_MASK) |
(get_num_cells(s) << ITC_AM1_NUMENTRIES_OFS);
}
itc_reconfigure(s);
itc_reset_cells(s);
}
static Property mips_itu_properties[] = {
DEFINE_PROP_INT32("num-fifo", MIPSITUState, num_fifo,
ITC_FIFO_NUM_MAX),
DEFINE_PROP_INT32("num-semaphores", MIPSITUState, num_semaphores,
ITC_SEMAPH_NUM_MAX),
DEFINE_PROP_BOOL("saar-present", MIPSITUState, saar_present, false),
DEFINE_PROP_END_OF_LIST(),
};
static void mips_itu_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->props = mips_itu_properties;
dc->realize = mips_itu_realize;
dc->reset = mips_itu_reset;
}
static const TypeInfo mips_itu_info = {
.name = TYPE_MIPS_ITU,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MIPSITUState),
.instance_init = mips_itu_init,
.class_init = mips_itu_class_init,
};
static void mips_itu_register_types(void)
{
type_register_static(&mips_itu_info);
}
type_init(mips_itu_register_types)