audioconvert: move dither and noise to fmt-ops

We need to do dithering and noise when converting f32 to the
target format. This is more natural because we can work in 32 bits
integers instead of floats.

This will also make it possible to actually calculate the error between
source and target values and implement some sort of feedback and
noise shaping later.
This commit is contained in:
Wim Taymans 2022-06-28 16:55:50 +02:00
parent 51f4f1fb69
commit 6b49bded3a
9 changed files with 555 additions and 571 deletions

View file

@ -49,7 +49,6 @@
#include "fmt-ops.h"
#include "channelmix-ops.h"
#include "resample.h"
#include "dither-ops.h"
#undef SPA_LOG_TOPIC_DEFAULT
#define SPA_LOG_TOPIC_DEFAULT log_topic
@ -210,7 +209,6 @@ struct impl {
struct channelmix mix;
struct resample resample;
struct volume volume;
struct dither dither;
double rate_scale;
uint32_t in_offset;
@ -634,7 +632,7 @@ static int impl_node_enum_params(void *object, int seq,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("dither.noise"),
SPA_PROP_INFO_description, SPA_POD_String("Add dithering noise"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(this->dither.noise, 0, 16),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(this->dir[1].conv.noise, 0, 16),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
default:
@ -704,7 +702,7 @@ static int impl_node_enum_params(void *object, int seq,
spa_pod_builder_string(&b, "resample.disable");
spa_pod_builder_bool(&b, p->resample_disabled);
spa_pod_builder_string(&b, "dither.noise");
spa_pod_builder_int(&b, this->dither.noise);
spa_pod_builder_int(&b, this->dir[1].conv.noise);
spa_pod_builder_pop(&b, &f[1]);
param = spa_pod_builder_pop(&b, &f[0]);
break;
@ -775,7 +773,7 @@ static int audioconvert_set_param(struct impl *this, const char *k, const char *
else if (spa_streq(k, "resample.disable"))
this->props.resample_disabled = spa_atob(s);
else if (spa_streq(k, "dither.noise"))
spa_atou32(s, &this->dither.noise, 0);
spa_atou32(s, &this->dir[1].conv.noise, 0);
else
return 0;
return 1;
@ -1408,6 +1406,7 @@ static int setup_out_convert(struct impl *this)
break;
}
}
out->conv.quantize = calc_width(&dst_info) * 8;
out->conv.src_fmt = src_info.info.raw.format;
out->conv.dst_fmt = dst_info.info.raw.format;
out->conv.n_channels = dst_info.info.raw.channels;
@ -1416,29 +1415,11 @@ static int setup_out_convert(struct impl *this)
if ((res = convert_init(&out->conv)) < 0)
return res;
spa_log_debug(this->log, "%p: got converter features %08x:%08x passthrough:%d", this,
this->cpu_flags, out->conv.cpu_flags, out->conv.is_passthrough);
spa_log_debug(this->log, "%p: got converter features %08x:%08x quant:%d:%d passthrough:%d %s", this,
this->cpu_flags, out->conv.cpu_flags,
out->conv.quantize, out->conv.noise,
out->conv.is_passthrough, out->conv.func_name);
return 0;
}
static int setup_dither(struct impl *this)
{
struct dir *out = &this->dir[SPA_DIRECTION_OUTPUT];
int res;
this->dither.quantize = calc_width(&out->format) * 8;
this->dither.n_channels = out->format.info.raw.channels;
this->dither.cpu_flags = this->cpu_flags;
if ((res = dither_init(&this->dither)) < 0)
return res;
spa_log_info(this->log, "%p: got dither %08x:%08x quantize:%d:%d passthrough:%d", this,
this->cpu_flags, this->dither.cpu_flags,
this->dither.quantize, this->dither.noise,
this->dither.is_passthrough);
return 0;
}
@ -1484,8 +1465,6 @@ static int setup_convert(struct impl *this)
return res;
if ((res = setup_out_convert(this)) < 0)
return res;
if ((res = setup_dither(this)) < 0)
return res;
for (i = 0; i < MAX_PORTS; i++) {
this->tmp_datas[0][i] = SPA_PTROFF(this->tmp, this->empty_size * i, void);
@ -2512,15 +2491,6 @@ static int impl_node_process(void *object)
}
this->out_offset += n_samples;
if (!this->dither.is_passthrough) {
in_datas = (const void**)out_datas;
if (out_passthrough)
out_datas = dst_datas;
else
out_datas = (void **)this->tmp_datas[(tmp++) & 1];
dither_process(&this->dither, out_datas, in_datas, n_samples);
in_empty = false;
}
if (!out_passthrough) {
in_datas = (const void**)out_datas;
spa_log_trace_fp(this->log, "%p: convert %d", this, n_samples);
@ -2652,8 +2622,6 @@ static int impl_clear(struct spa_handle *handle)
if (this->resample.free)
resample_free(&this->resample);
if (this->dither.free)
dither_free(&this->dither);
return 0;
}
@ -2702,8 +2670,6 @@ impl_init(const struct spa_handle_factory *factory,
this->mix.rear_delay = 12.0f;
this->mix.widen = 0.0f;
this->dither.log = this->log;
for (i = 0; info && i < info->n_items; i++) {
const char *k = info->items[i].key;
const char *s = info->items[i].value;

View file

@ -1,68 +0,0 @@
/* Spa
*
* Copyright © 2022 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "dither-ops.h"
/* 32 bit xorshift PRNG, see https://en.wikipedia.org/wiki/Xorshift */
static inline uint32_t
xorshift(uint32_t *state)
{
uint32_t x = *state;
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return (*state = x);
}
static inline void update_dither_c(struct dither *dt, uint32_t n_samples)
{
uint32_t n;
for (n = 0; n < n_samples; n++)
dt->dither[n] = ((int32_t)xorshift(&dt->random[0])) * dt->scale;
}
void dither_f32_c(struct dither *dt, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t i, n, m, chunk;
const float **s = (const float**)src;
float **d = (float**)dst;
float *dither = dt->dither;
chunk = SPA_MIN(n_samples, dt->dither_size);
update_dither_c(dt, chunk);
for (n = 0; n < n_samples; n += chunk) {
chunk = SPA_MIN(n_samples - n, dt->dither_size);
for (i = 0; i < dt->n_channels; i++) {
float *di = &d[i][n];
const float *si = &s[i][n];
for (m = 0; m < chunk; m++)
di[m] = si[m] + dither[m];
}
}
}

View file

@ -1,97 +0,0 @@
/* Spa
*
* Copyright © 2022 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "dither-ops.h"
#include <emmintrin.h>
static inline void update_dither_sse2(struct dither *dt, uint32_t n_samples)
{
uint32_t n;
const uint32_t *r = SPA_PTR_ALIGN(dt->random, 16, uint32_t);
float *dither = SPA_PTR_ALIGN(dt->dither, 16, float);
__m128 scale = _mm_set1_ps(dt->scale), out[1];
__m128i in[1], t[1];
for (n = 0; n < n_samples; n += 4) {
/* 32 bit xorshift PRNG, see https://en.wikipedia.org/wiki/Xorshift */
in[0] = _mm_load_si128((__m128i*)r);
t[0] = _mm_slli_epi32(in[0], 13);
in[0] = _mm_xor_si128(in[0], t[0]);
t[0] = _mm_srli_epi32(in[0], 17);
in[0] = _mm_xor_si128(in[0], t[0]);
t[0] = _mm_slli_epi32(in[0], 5);
in[0] = _mm_xor_si128(in[0], t[0]);
_mm_store_si128((__m128i*)r, in[0]);
out[0] = _mm_cvtepi32_ps(in[0]);
out[0] = _mm_mul_ps(out[0], scale);
_mm_store_ps(&dither[n], out[0]);
}
}
void dither_f32_sse2(struct dither *dt, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t i, n, m, chunk, unrolled;
const float **s = (const float**)src;
float **d = (float**)dst;
float *dither = SPA_PTR_ALIGN(dt->dither, 16, float);
__m128 in[4];
chunk = SPA_MIN(n_samples, dt->dither_size);
update_dither_sse2(dt, chunk);
for (n = 0; n < n_samples; n += chunk) {
chunk = SPA_MIN(n_samples - n, dt->dither_size);
for (i = 0; i < dt->n_channels; i++) {
float *di = &d[i][n];
const float *si = &s[i][n];
if (SPA_IS_ALIGNED(di, 16) &&
SPA_IS_ALIGNED(si, 16))
unrolled = chunk & ~15;
else
unrolled = 0;
for (m = 0; m < unrolled; m += 16) {
in[0] = _mm_load_ps(&si[m ]);
in[1] = _mm_load_ps(&si[m + 4]);
in[2] = _mm_load_ps(&si[m + 8]);
in[3] = _mm_load_ps(&si[m + 12]);
in[0] = _mm_add_ps(in[0], _mm_load_ps(&dither[m ]));
in[1] = _mm_add_ps(in[1], _mm_load_ps(&dither[m + 4]));
in[2] = _mm_add_ps(in[2], _mm_load_ps(&dither[m + 8]));
in[3] = _mm_add_ps(in[3], _mm_load_ps(&dither[m + 12]));
_mm_store_ps(&di[m ], in[0]);
_mm_store_ps(&di[m + 4], in[1]);
_mm_store_ps(&di[m + 8], in[2]);
_mm_store_ps(&di[m + 12], in[3]);
}
for (; m < chunk; m++)
di[m] = si[m] + dither[m];
}
}
}

View file

@ -1,105 +0,0 @@
/* Spa
*
* Copyright © 2022 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <math.h>
#include <spa/param/audio/format-utils.h>
#include <spa/support/cpu.h>
#include <spa/support/log.h>
#include <spa/utils/defs.h>
#include "dither-ops.h"
#define DITHER_SIZE (1<<10)
typedef void (*dither_func_t) (struct dither *d, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples);
static const struct dither_info {
dither_func_t process;
uint32_t cpu_flags;
} dither_table[] =
{
#if defined (HAVE_SSE2)
{ dither_f32_sse2, SPA_CPU_FLAG_SSE, },
#endif
{ dither_f32_c, 0 },
};
#define MATCH_CPU_FLAGS(a,b) ((a) == 0 || ((a) & (b)) == a)
static const struct dither_info *find_dither_info(uint32_t cpu_flags)
{
size_t i;
for (i = 0; i < SPA_N_ELEMENTS(dither_table); i++) {
if (!MATCH_CPU_FLAGS(dither_table[i].cpu_flags, cpu_flags))
continue;
return &dither_table[i];
}
return NULL;
}
static void impl_dither_free(struct dither *d)
{
d->process = NULL;
free(d->dither);
d->dither = NULL;
}
int dither_init(struct dither *d)
{
const struct dither_info *info;
size_t i;
uint32_t scale;
info = find_dither_info(d->cpu_flags);
if (info == NULL)
return -ENOTSUP;
scale = d->quantize;
scale -= SPA_MIN(scale, d->noise);
d->scale = 1.0f / powf(2.0f, 31 + scale);
d->dither_size = DITHER_SIZE;
d->dither = calloc(d->dither_size + DITHER_OPS_MAX_OVERREAD +
DITHER_OPS_MAX_ALIGN / sizeof(float), sizeof(float));
if (d->dither == NULL)
return -errno;
for (i = 0; i < SPA_N_ELEMENTS(d->random); i++)
d->random[i] = random();
d->cpu_flags = info->cpu_flags;
d->free = impl_dither_free;
d->process = info->process;
d->is_passthrough = d->noise == 0 && d->method == DITHER_METHOD_NONE;
return 0;
}

View file

@ -1,96 +0,0 @@
/* Spa
*
* Copyright © 2022 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include <stdio.h>
#include <spa/utils/defs.h>
#include <spa/utils/string.h>
#include <spa/param/audio/raw.h>
#define DITHER_OPS_MAX_ALIGN 16
#define DITHER_OPS_MAX_OVERREAD 16
struct dither {
uint32_t quantize;
uint32_t noise;
#define DITHER_METHOD_NONE 0
#define DITHER_METHOD_RECTANGULAR 2
#define DITHER_METHOD_TRIANGULAR 3
#define DITHER_METHOD_SHAPED_5 4
uint32_t method;
uint32_t n_channels;
uint32_t cpu_flags;
unsigned int is_passthrough:1;
struct spa_log *log;
void (*process) (struct dither *d, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples);
void (*free) (struct dither *d);
uint32_t random[16 + DITHER_OPS_MAX_ALIGN/sizeof(uint32_t)];
float *dither;
uint32_t dither_size;
float scale;
};
int dither_init(struct dither *d);
static const struct dither_method_info {
const char *label;
const char *description;
uint32_t method;
} dither_method_info[] = {
[DITHER_METHOD_NONE] = { "none", "Disabled", DITHER_METHOD_NONE },
[DITHER_METHOD_RECTANGULAR] = { "rectangular", "Rectangular dithering", DITHER_METHOD_RECTANGULAR },
[DITHER_METHOD_TRIANGULAR] = { "triangular", "Triangular dithering", DITHER_METHOD_TRIANGULAR },
[DITHER_METHOD_SHAPED_5] = { "shaped5", "Shaped 5 dithering", DITHER_METHOD_SHAPED_5 }
};
static inline uint32_t dither_method_from_label(const char *label)
{
uint32_t i;
for (i = 0; i < SPA_N_ELEMENTS(dither_method_info); i++) {
if (spa_streq(dither_method_info[i].label, label))
return dither_method_info[i].method;
}
return DITHER_METHOD_NONE;
}
#define dither_process(d,...) (d)->process(d, __VA_ARGS__)
#define dither_free(d) (d)->free(d)
#define DEFINE_FUNCTION(name,arch) \
void dither_##name##_##arch(struct dither *d, \
void * SPA_RESTRICT dst[], \
const void * SPA_RESTRICT src[], \
uint32_t n_samples);
DEFINE_FUNCTION(f32, c);
#if defined(HAVE_SSE2)
DEFINE_FUNCTION(f32, sse2);
#endif
#undef DEFINE_FUNCTION

View file

@ -736,6 +736,26 @@ conv_f64d_to_f32_c(struct convert *conv, void * SPA_RESTRICT dst[], const void *
}
}
/* 32 bit xorshift PRNG, see https://en.wikipedia.org/wiki/Xorshift */
static inline uint32_t
xorshift(uint32_t *state)
{
uint32_t x = *state;
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return (*state = x);
}
static inline void update_dither_c(struct convert *conv, uint32_t n_samples)
{
uint32_t n, mask = conv->mask;
int32_t offset = conv->offset + conv->bias;
for (n = 0; n < n_samples; n++)
conv->dither[n] = offset + (int32_t)(xorshift(&conv->random[0]) & mask);
}
void
conv_f32d_to_u8d_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -920,6 +940,29 @@ conv_f32d_to_s16d_c(struct convert *conv, void * SPA_RESTRICT dst[], const void
}
}
void
conv_f32d_to_s16d_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (i = 0; i < n_channels; i++) {
const float *s = src[i];
int16_t *d = dst[i];
int32_t v;
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
v = F32_TO_S32(s[j]) + conv->dither[k];
d[j] = v >> 16;
}
}
}
}
void
conv_f32_to_s16_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -962,6 +1005,28 @@ conv_f32d_to_s16_c(struct convert *conv, void * SPA_RESTRICT dst[], const void *
}
}
void
conv_f32d_to_s16_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float **s = (const float **) src;
int16_t *d = dst[0];
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
int32_t v;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
for (i = 0; i < n_channels; i++) {
v = F32_TO_S32(s[i][j]) + conv->dither[k];
*d++ = v >> 16;
}
}
}
}
void
conv_f32d_to_s16s_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -976,6 +1041,28 @@ conv_f32d_to_s16s_c(struct convert *conv, void * SPA_RESTRICT dst[], const void
}
}
void
conv_f32d_to_s16s_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float **s = (const float **) src;
int16_t *d = dst[0];
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
int32_t v;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
for (i = 0; i < n_channels; i++) {
v = F32_TO_S32(s[i][j]) + conv->dither[k];
*d++ = bswap_16(v >> 16);
}
}
}
}
void
conv_f32_to_u32_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -1019,6 +1106,26 @@ conv_f32d_to_s32d_c(struct convert *conv, void * SPA_RESTRICT dst[], const void
}
}
void
conv_f32d_to_s32d_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (i = 0; i < n_channels; i++) {
const float *s = src[i];
int32_t *d = dst[i];
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++)
d[j] = F32_TO_S32(s[j]) + conv->dither[k];
}
}
}
void
conv_f32_to_s32_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -1061,6 +1168,25 @@ conv_f32d_to_s32_c(struct convert *conv, void * SPA_RESTRICT dst[], const void *
}
}
void
conv_f32d_to_s32_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float **s = (const float **) src;
int32_t *d = dst[0];
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
for (i = 0; i < n_channels; i++)
*d++ = F32_TO_S32(s[i][j]) + conv->dither[k];
}
}
}
void
conv_f32d_to_s32s_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -1075,6 +1201,27 @@ conv_f32d_to_s32s_c(struct convert *conv, void * SPA_RESTRICT dst[], const void
}
}
void
conv_f32d_to_s32s_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float **s = (const float **) src;
int32_t *d = dst[0], v;
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
for (i = 0; i < n_channels; i++) {
v = F32_TO_S32(s[i][j]) + conv->dither[k];
*d++ = bswap_32(v);
}
}
}
}
void
conv_f32d_to_f64d_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -1195,6 +1342,30 @@ conv_f32d_to_s24d_c(struct convert *conv, void * SPA_RESTRICT dst[], const void
}
}
void
conv_f32d_to_s24d_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
int32_t v;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (i = 0; i < n_channels; i++) {
const float *s = src[i];
uint8_t *d = dst[i];
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
v = F32_TO_S32(s[j]) + conv->dither[k];
write_s24(d, v >> 8);
d += 3;
}
}
}
}
void
conv_f32_to_s24_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -1242,6 +1413,30 @@ conv_f32d_to_s24_c(struct convert *conv, void * SPA_RESTRICT dst[], const void *
}
}
void
conv_f32d_to_s24_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float **s = (const float **) src;
uint8_t *d = dst[0];
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
int32_t v;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
for (i = 0; i < n_channels; i++) {
v = F32_TO_S32(s[i][j]) + conv->dither[k];
write_s24(d, v >> 8);
d += 3;
}
}
}
}
void
conv_f32d_to_s24s_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -1258,6 +1453,28 @@ conv_f32d_to_s24s_c(struct convert *conv, void * SPA_RESTRICT dst[], const void
}
}
void
conv_f32d_to_s24s_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float **s = (const float **) src;
uint8_t *d = dst[0];
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
int32_t v;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
for (i = 0; i < n_channels; i++) {
v = F32_TO_S32(s[i][j]) + conv->dither[k];
write_s24s(d, v >> 8);
d += 3;
}
}
}
}
void
conv_f32d_to_s24_32d_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
@ -1274,6 +1491,29 @@ conv_f32d_to_s24_32d_c(struct convert *conv, void * SPA_RESTRICT dst[], const vo
}
}
void
conv_f32d_to_s24_32d_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
int32_t v;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (i = 0; i < n_channels; i++) {
const float *s = src[i];
int32_t *d = dst[i];
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
v = F32_TO_S32(s[j]) + conv->dither[k];
d[j] = v >> 8;
}
}
}
}
void
conv_f32_to_u24_32_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -1344,6 +1584,27 @@ conv_f32d_to_s24_32_c(struct convert *conv, void * SPA_RESTRICT dst[], const voi
}
}
void
conv_f32d_to_s24_32_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float **s = (const float **) src;
int32_t *d = dst[0], v;
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
for (i = 0; i < n_channels; i++) {
v = F32_TO_S32(s[i][j]) + conv->dither[k];
*d++ = v >> 8;
}
}
}
}
void
conv_f32d_to_s24_32s_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
@ -1358,6 +1619,27 @@ conv_f32d_to_s24_32s_c(struct convert *conv, void * SPA_RESTRICT dst[], const vo
}
}
void
conv_f32d_to_s24_32s_dither_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float **s = (const float **) src;
int32_t *d = dst[0], v;
uint32_t i, j, k, chunk, n_channels = conv->n_channels;
update_dither_c(conv, SPA_MIN(n_samples, conv->dither_size));
for (j = 0; j < n_samples;) {
chunk = SPA_MIN(n_samples - j, conv->dither_size);
for (k = 0; k < chunk; k++, j++) {
for (i = 0; i < n_channels; i++) {
v = F32_TO_S32(s[i][j]) + conv->dither[k];
*d++ = bswap_32(v >> 8);
}
}
}
}
void
conv_deinterleave_8_c(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)

View file

@ -32,6 +32,8 @@
#include "fmt-ops.h"
#define DITHER_SIZE (1<<10)
typedef void (*convert_func_t) (struct convert *conv, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples);
@ -39,277 +41,301 @@ struct conv_info {
uint32_t src_fmt;
uint32_t dst_fmt;
uint32_t n_channels;
uint32_t cpu_flags;
convert_func_t process;
const char *name;
uint32_t cpu_flags;
#define CONV_DITHER (1<<0)
#define CONV_SHAPE (1<<1)
uint32_t dither_flags;
};
#define MAKE(fmt1,fmt2,chan,func,...) \
{ SPA_AUDIO_FORMAT_ ##fmt1, SPA_AUDIO_FORMAT_ ##fmt2, chan, func, #func , __VA_ARGS__ }
static struct conv_info conv_table[] =
{
/* to f32 */
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_F32, 0, 0, conv_u8_to_f32_c },
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_u8d_to_f32d_c },
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_u8_to_f32d_c },
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_u8d_to_f32_c },
MAKE(U8, F32, 0, conv_u8_to_f32_c),
MAKE(U8, F32, 0, conv_u8_to_f32_c),
MAKE(U8P, F32P, 0, conv_u8d_to_f32d_c),
MAKE(U8, F32P, 0, conv_u8_to_f32d_c),
MAKE(U8P, F32, 0, conv_u8d_to_f32_c),
{ SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s8_to_f32_c },
{ SPA_AUDIO_FORMAT_S8P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s8d_to_f32d_c },
{ SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s8_to_f32d_c },
{ SPA_AUDIO_FORMAT_S8P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s8d_to_f32_c },
MAKE(S8, F32, 0, conv_s8_to_f32_c),
MAKE(S8P, F32P, 0, conv_s8d_to_f32d_c),
MAKE(S8, F32P, 0, conv_s8_to_f32d_c),
MAKE(S8P, F32, 0, conv_s8d_to_f32_c),
{ SPA_AUDIO_FORMAT_ALAW, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_alaw_to_f32d_c },
{ SPA_AUDIO_FORMAT_ULAW, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_ulaw_to_f32d_c },
MAKE(ALAW, F32P, 0, conv_alaw_to_f32d_c),
MAKE(ULAW, F32P, 0, conv_ulaw_to_f32d_c),
{ SPA_AUDIO_FORMAT_U16, SPA_AUDIO_FORMAT_F32, 0, 0, conv_u16_to_f32_c },
{ SPA_AUDIO_FORMAT_U16, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_u16_to_f32d_c },
MAKE(U16, F32, 0, conv_u16_to_f32_c),
MAKE(U16, F32P, 0, conv_u16_to_f32d_c),
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s16_to_f32_c },
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s16d_to_f32d_c },
MAKE(S16, F32, 0, conv_s16_to_f32_c),
MAKE(S16P, F32P, 0, conv_s16d_to_f32d_c),
#if defined (HAVE_NEON)
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 2, SPA_CPU_FLAG_NEON, conv_s16_to_f32d_2_neon },
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_NEON, conv_s16_to_f32d_neon },
MAKE(S16, F32P, 2, conv_s16_to_f32d_2_neon, SPA_CPU_FLAG_NEON),
MAKE(S16, F32P, 0, conv_s16_to_f32d_neon, SPA_CPU_FLAG_NEON),
#endif
#if defined (HAVE_AVX2)
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 2, SPA_CPU_FLAG_AVX2, conv_s16_to_f32d_2_avx2 },
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_AVX2, conv_s16_to_f32d_avx2 },
MAKE(S16, F32P, 2, conv_s16_to_f32d_2_avx2, SPA_CPU_FLAG_AVX2),
MAKE(S16, F32P, 0, conv_s16_to_f32d_avx2, SPA_CPU_FLAG_AVX2),
#endif
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 2, SPA_CPU_FLAG_SSE2, conv_s16_to_f32d_2_sse2 },
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_SSE2, conv_s16_to_f32d_sse2 },
MAKE(S16, F32P, 2, conv_s16_to_f32d_2_sse2, SPA_CPU_FLAG_SSE2),
MAKE(S16, F32P, 0, conv_s16_to_f32d_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s16_to_f32d_c },
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s16d_to_f32_c },
MAKE(S16, F32P, 0, conv_s16_to_f32d_c),
MAKE(S16P, F32, 0, conv_s16d_to_f32_c),
{ SPA_AUDIO_FORMAT_S16_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s16s_to_f32d_c },
MAKE(S16_OE, F32P, 0, conv_s16s_to_f32d_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32, 0, 0, conv_copy32_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_copy32d_c },
MAKE(F32, F32, 0, conv_copy32_c),
MAKE(F32P, F32P, 0, conv_copy32d_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_deinterleave_32_sse2 },
MAKE(F32, F32P, 0, conv_deinterleave_32_sse2),
#endif
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_deinterleave_32_c },
MAKE(F32, F32P, 0, conv_deinterleave_32_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_interleave_32_sse2 },
MAKE(F32P, F32, 0, conv_interleave_32_sse2),
#endif
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_interleave_32_c },
MAKE(F32P, F32, 0, conv_interleave_32_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_deinterleave_32s_sse2 },
MAKE(F32_OE, F32P, 0, conv_deinterleave_32s_sse2),
#endif
{ SPA_AUDIO_FORMAT_F32_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_deinterleave_32s_c },
MAKE(F32_OE, F32P, 0, conv_deinterleave_32s_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32_OE, 0, 0, conv_interleave_32s_sse2 },
MAKE(F32P, F32_OE, 0, conv_interleave_32s_sse2),
#endif
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32_OE, 0, 0, conv_interleave_32s_c },
MAKE(F32P, F32_OE, 0, conv_interleave_32s_c),
{ SPA_AUDIO_FORMAT_U32, SPA_AUDIO_FORMAT_F32, 0, 0, conv_u32_to_f32_c },
{ SPA_AUDIO_FORMAT_U32, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_u32_to_f32d_c },
MAKE(U32, F32, 0, conv_u32_to_f32_c),
MAKE(U32, F32P, 0, conv_u32_to_f32d_c),
#if defined (HAVE_AVX2)
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_AVX2, conv_s32_to_f32d_avx2 },
MAKE(S32, F32P, 0, conv_s32_to_f32d_avx2, SPA_CPU_FLAG_AVX2),
#endif
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_SSE2, conv_s32_to_f32d_sse2 },
MAKE(S32, F32P, 0, conv_s32_to_f32d_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s32_to_f32_c },
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s32d_to_f32d_c },
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s32_to_f32d_c },
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s32d_to_f32_c },
MAKE(S32, F32, 0, conv_s32_to_f32_c),
MAKE(S32P, F32P, 0, conv_s32d_to_f32d_c),
MAKE(S32, F32P, 0, conv_s32_to_f32d_c),
MAKE(S32P, F32, 0, conv_s32d_to_f32_c),
{ SPA_AUDIO_FORMAT_S32_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s32s_to_f32d_c },
MAKE(S32_OE, F32P, 0, conv_s32s_to_f32d_c),
{ SPA_AUDIO_FORMAT_U24, SPA_AUDIO_FORMAT_F32, 0, 0, conv_u24_to_f32_c },
{ SPA_AUDIO_FORMAT_U24, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_u24_to_f32d_c },
MAKE(U24, F32, 0, conv_u24_to_f32_c),
MAKE(U24, F32P, 0, conv_u24_to_f32d_c),
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s24_to_f32_c },
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s24d_to_f32d_c },
MAKE(S24, F32, 0, conv_s24_to_f32_c),
MAKE(S24P, F32P, 0, conv_s24d_to_f32d_c),
#if defined (HAVE_AVX2)
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_AVX2, conv_s24_to_f32d_avx2 },
MAKE(S24, F32P, 0, conv_s24_to_f32d_avx2, SPA_CPU_FLAG_AVX2),
#endif
#if defined (HAVE_SSSE3)
// { SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_SSSE3, conv_s24_to_f32d_ssse3 },
// MAKE(S24, F32P, 0, conv_s24_to_f32d_ssse3, SPA_CPU_FLAG_SSSE3),
#endif
#if defined (HAVE_SSE41)
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_SSE41, conv_s24_to_f32d_sse41 },
MAKE(S24, F32P, 0, conv_s24_to_f32d_sse41, SPA_CPU_FLAG_SSE41),
#endif
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32P, 0, SPA_CPU_FLAG_SSE2, conv_s24_to_f32d_sse2 },
MAKE(S24, F32P, 0, conv_s24_to_f32d_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s24_to_f32d_c },
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s24d_to_f32_c },
MAKE(S24, F32P, 0, conv_s24_to_f32d_c),
MAKE(S24P, F32, 0, conv_s24d_to_f32_c),
{ SPA_AUDIO_FORMAT_S24_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s24s_to_f32d_c },
MAKE(S24_OE, F32P, 0, conv_s24s_to_f32d_c),
{ SPA_AUDIO_FORMAT_U24_32, SPA_AUDIO_FORMAT_F32, 0, 0, conv_u24_32_to_f32_c },
{ SPA_AUDIO_FORMAT_U24_32, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_u24_32_to_f32d_c },
MAKE(U24_32, F32, 0, conv_u24_32_to_f32_c),
MAKE(U24_32, F32P, 0, conv_u24_32_to_f32d_c),
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s24_32_to_f32_c },
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s24_32d_to_f32d_c },
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s24_32_to_f32d_c },
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_s24_32d_to_f32_c },
MAKE(S24_32, F32, 0, conv_s24_32_to_f32_c),
MAKE(S24_32P, F32P, 0, conv_s24_32d_to_f32d_c),
MAKE(S24_32, F32P, 0, conv_s24_32_to_f32d_c),
MAKE(S24_32P, F32, 0, conv_s24_32d_to_f32_c),
{ SPA_AUDIO_FORMAT_S24_32_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_s24_32s_to_f32d_c },
MAKE(S24_32_OE, F32P, 0, conv_s24_32s_to_f32d_c),
{ SPA_AUDIO_FORMAT_F64, SPA_AUDIO_FORMAT_F32, 0, 0, conv_f64_to_f32_c },
{ SPA_AUDIO_FORMAT_F64P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_f64d_to_f32d_c },
{ SPA_AUDIO_FORMAT_F64, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_f64_to_f32d_c },
{ SPA_AUDIO_FORMAT_F64P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_f64d_to_f32_c },
MAKE(F64, F32, 0, conv_f64_to_f32_c),
MAKE(F64P, F32P, 0, conv_f64d_to_f32d_c),
MAKE(F64, F32P, 0, conv_f64_to_f32d_c),
MAKE(F64P, F32, 0, conv_f64d_to_f32_c),
{ SPA_AUDIO_FORMAT_F64_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_f64s_to_f32d_c },
MAKE(F64_OE, F32P, 0, conv_f64s_to_f32d_c),
/* from f32 */
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U8, 0, 0, conv_f32_to_u8_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U8P, 0, 0, conv_f32d_to_u8d_c },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U8P, 0, 0, conv_f32_to_u8d_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U8, 0, 0, conv_f32d_to_u8_c },
MAKE(F32, U8, 0, conv_f32_to_u8_c),
MAKE(F32P, U8P, 0, conv_f32d_to_u8d_c),
MAKE(F32, U8P, 0, conv_f32_to_u8d_c),
MAKE(F32P, U8, 0, conv_f32d_to_u8_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S8, 0, 0, conv_f32_to_s8_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S8P, 0, 0, conv_f32d_to_s8d_c },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S8P, 0, 0, conv_f32_to_s8d_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S8, 0, 0, conv_f32d_to_s8_c },
MAKE(F32, S8, 0, conv_f32_to_s8_c),
MAKE(F32P, S8P, 0, conv_f32d_to_s8d_c),
MAKE(F32, S8P, 0, conv_f32_to_s8d_c),
MAKE(F32P, S8, 0, conv_f32d_to_s8_c),
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_ALAW, 0, 0, conv_f32d_to_alaw_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_ULAW, 0, 0, conv_f32d_to_ulaw_c },
MAKE(F32P, ALAW, 0, conv_f32d_to_alaw_c),
MAKE(F32P, ULAW, 0, conv_f32d_to_ulaw_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U16, 0, 0, conv_f32_to_u16_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U16, 0, 0, conv_f32d_to_u16_c },
MAKE(F32, U16, 0, conv_f32_to_u16_c),
MAKE(F32P, U16, 0, conv_f32d_to_u16_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S16, 0, SPA_CPU_FLAG_SSE2, conv_f32_to_s16_sse2 },
MAKE(F32, S16, 0, conv_f32_to_s16_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S16, 0, 0, conv_f32_to_s16_c },
MAKE(F32, S16, 0, conv_f32_to_s16_c),
MAKE(F32P, S16P, 0, conv_f32d_to_s16d_dither_c, 0, CONV_DITHER),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16P, 0, SPA_CPU_FLAG_SSE2, conv_f32d_to_s16d_sse2 },
MAKE(F32P, S16P, 0, conv_f32d_to_s16d_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16P, 0, 0, conv_f32d_to_s16d_c },
MAKE(F32P, S16P, 0, conv_f32d_to_s16d_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S16P, 0, 0, conv_f32_to_s16d_c },
MAKE(F32, S16P, 0, conv_f32_to_s16d_c),
MAKE(F32P, S16, 0, conv_f32d_to_s16_dither_c, 0, CONV_DITHER),
#if defined (HAVE_NEON)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 0, SPA_CPU_FLAG_NEON, conv_f32d_to_s16_neon },
MAKE(F32P, S16, 0, conv_f32d_to_s16_neon, SPA_CPU_FLAG_NEON),
#endif
#if defined (HAVE_AVX2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 4, SPA_CPU_FLAG_AVX2, conv_f32d_to_s16_4_avx2 },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 2, SPA_CPU_FLAG_AVX2, conv_f32d_to_s16_2_avx2 },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 0, SPA_CPU_FLAG_AVX2, conv_f32d_to_s16_avx2 },
MAKE(F32P, S16, 4, conv_f32d_to_s16_4_avx2, SPA_CPU_FLAG_AVX2),
MAKE(F32P, S16, 2, conv_f32d_to_s16_2_avx2, SPA_CPU_FLAG_AVX2),
MAKE(F32P, S16, 0, conv_f32d_to_s16_avx2, SPA_CPU_FLAG_AVX2),
#endif
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 2, SPA_CPU_FLAG_SSE2, conv_f32d_to_s16_2_sse2 },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 0, SPA_CPU_FLAG_SSE2, conv_f32d_to_s16_sse2 },
MAKE(F32P, S16, 2, conv_f32d_to_s16_2_sse2, SPA_CPU_FLAG_SSE2),
MAKE(F32P, S16, 0, conv_f32d_to_s16_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 0, 0, conv_f32d_to_s16_c },
MAKE(F32P, S16, 0, conv_f32d_to_s16_c),
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16_OE, 0, 0, conv_f32d_to_s16s_c },
MAKE(F32P, S16_OE, 0, conv_f32d_to_s16s_dither_c, 0, CONV_DITHER),
MAKE(F32P, S16_OE, 0, conv_f32d_to_s16s_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U32, 0, 0, conv_f32_to_u32_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U32, 0, 0, conv_f32d_to_u32_c },
MAKE(F32, U32, 0, conv_f32_to_u32_c),
MAKE(F32P, U32, 0, conv_f32d_to_u32_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S32, 0, 0, conv_f32_to_s32_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32P, 0, 0, conv_f32d_to_s32d_c },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S32P, 0, 0, conv_f32_to_s32d_c },
MAKE(F32, S32, 0, conv_f32_to_s32_c),
MAKE(F32P, S32P, 0, conv_f32d_to_s32d_dither_c, 0, CONV_DITHER),
MAKE(F32P, S32P, 0, conv_f32d_to_s32d_c),
MAKE(F32, S32P, 0, conv_f32_to_s32d_c),
MAKE(F32P, S32, 0, conv_f32d_to_s32_dither_c, 0, CONV_DITHER),
#if defined (HAVE_AVX2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32, 0, SPA_CPU_FLAG_AVX2, conv_f32d_to_s32_avx2 },
MAKE(F32P, S32, 0, conv_f32d_to_s32_avx2, SPA_CPU_FLAG_AVX2),
#endif
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32, 0, SPA_CPU_FLAG_SSE2, conv_f32d_to_s32_sse2 },
MAKE(F32P, S32, 0, conv_f32d_to_s32_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32, 0, 0, conv_f32d_to_s32_c },
MAKE(F32P, S32, 0, conv_f32d_to_s32_c),
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32_OE, 0, 0, conv_f32d_to_s32s_c },
MAKE(F32P, S32_OE, 0, conv_f32d_to_s32s_dither_c, 0, CONV_DITHER),
MAKE(F32P, S32_OE, 0, conv_f32d_to_s32s_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U24, 0, 0, conv_f32_to_u24_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U24, 0, 0, conv_f32d_to_u24_c },
MAKE(F32, U24, 0, conv_f32_to_u24_c),
MAKE(F32P, U24, 0, conv_f32d_to_u24_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24, 0, 0, conv_f32_to_s24_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24P, 0, 0, conv_f32d_to_s24d_c },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24P, 0, 0, conv_f32_to_s24d_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24, 0, 0, conv_f32d_to_s24_c },
MAKE(F32, S24, 0, conv_f32_to_s24_c),
MAKE(F32P, S24P, 0, conv_f32d_to_s24d_dither_c, 0, CONV_DITHER),
MAKE(F32P, S24P, 0, conv_f32d_to_s24d_c),
MAKE(F32, S24P, 0, conv_f32_to_s24d_c),
MAKE(F32P, S24, 0, conv_f32d_to_s24_dither_c, 0, CONV_DITHER),
MAKE(F32P, S24, 0, conv_f32d_to_s24_c),
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24_OE, 0, 0, conv_f32d_to_s24s_c },
MAKE(F32P, S24_OE, 0, conv_f32d_to_s24s_dither_c, 0, CONV_DITHER),
MAKE(F32P, S24_OE, 0, conv_f32d_to_s24s_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U24_32, 0, 0, conv_f32_to_u24_32_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U24_32, 0, 0, conv_f32d_to_u24_32_c },
MAKE(F32, U24_32, 0, conv_f32_to_u24_32_c),
MAKE(F32P, U24_32, 0, conv_f32d_to_u24_32_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24_32, 0, 0, conv_f32_to_s24_32_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24_32P, 0, 0, conv_f32d_to_s24_32d_c },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24_32P, 0, 0, conv_f32_to_s24_32d_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24_32, 0, 0, conv_f32d_to_s24_32_c },
MAKE(F32, S24_32, 0, conv_f32_to_s24_32_c),
MAKE(F32P, S24_32P, 0, conv_f32d_to_s24_32d_dither_c, 0, CONV_DITHER),
MAKE(F32P, S24_32P, 0, conv_f32d_to_s24_32d_c),
MAKE(F32, S24_32P, 0, conv_f32_to_s24_32d_c),
MAKE(F32P, S24_32, 0, conv_f32d_to_s24_32_dither_c, 0, CONV_DITHER),
MAKE(F32P, S24_32, 0, conv_f32d_to_s24_32_c),
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24_32_OE, 0, 0, conv_f32d_to_s24_32s_c },
MAKE(F32P, S24_32_OE, 0, conv_f32d_to_s24_32s_dither_c, 0, CONV_DITHER),
MAKE(F32P, S24_32_OE, 0, conv_f32d_to_s24_32s_c),
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F64, 0, 0, conv_f32_to_f64_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F64P, 0, 0, conv_f32d_to_f64d_c },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F64P, 0, 0, conv_f32_to_f64d_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F64, 0, 0, conv_f32d_to_f64_c },
MAKE(F32, F64, 0, conv_f32_to_f64_c),
MAKE(F32P, F64P, 0, conv_f32d_to_f64d_c),
MAKE(F32, F64P, 0, conv_f32_to_f64d_c),
MAKE(F32P, F64, 0, conv_f32d_to_f64_c),
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F64_OE, 0, 0, conv_f32d_to_f64s_c },
MAKE(F32P, F64_OE, 0, conv_f32d_to_f64s_c),
/* u8 */
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8, 0, 0, conv_copy8_c },
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_U8P, 0, 0, conv_copy8d_c },
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, 0, 0, conv_deinterleave_8_c },
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_U8, 0, 0, conv_interleave_8_c },
MAKE(U8, U8, 0, conv_copy8_c),
MAKE(U8P, U8P, 0, conv_copy8d_c),
MAKE(U8, U8P, 0, conv_deinterleave_8_c),
MAKE(U8P, U8, 0, conv_interleave_8_c),
/* s8 */
{ SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_S8, 0, 0, conv_copy8_c },
{ SPA_AUDIO_FORMAT_S8P, SPA_AUDIO_FORMAT_S8P, 0, 0, conv_copy8d_c },
{ SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_S8P, 0, 0, conv_deinterleave_8_c },
{ SPA_AUDIO_FORMAT_S8P, SPA_AUDIO_FORMAT_S8, 0, 0, conv_interleave_8_c },
MAKE(S8, S8, 0, conv_copy8_c),
MAKE(S8P, S8P, 0, conv_copy8d_c),
MAKE(S8, S8P, 0, conv_deinterleave_8_c),
MAKE(S8P, S8, 0, conv_interleave_8_c),
/* alaw */
{ SPA_AUDIO_FORMAT_ALAW, SPA_AUDIO_FORMAT_ALAW, 0, 0, conv_copy8_c },
MAKE(ALAW, ALAW, 0, conv_copy8_c),
/* ulaw */
{ SPA_AUDIO_FORMAT_ULAW, SPA_AUDIO_FORMAT_ULAW, 0, 0, conv_copy8_c },
MAKE(ULAW, ULAW, 0, conv_copy8_c),
/* s16 */
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_S16, 0, 0, conv_copy16_c },
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_S16P, 0, 0, conv_copy16d_c },
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_S16P, 0, 0, conv_deinterleave_16_c },
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_S16, 0, 0, conv_interleave_16_c },
MAKE(S16, S16, 0, conv_copy16_c),
MAKE(S16P, S16P, 0, conv_copy16d_c),
MAKE(S16, S16P, 0, conv_deinterleave_16_c),
MAKE(S16P, S16, 0, conv_interleave_16_c),
/* s32 */
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32, 0, 0, conv_copy32_c },
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32P, 0, 0, conv_copy32d_c },
MAKE(S32, S32, 0, conv_copy32_c),
MAKE(S32P, S32P, 0, conv_copy32d_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32P, 0, 0, conv_deinterleave_32_sse2 },
MAKE(S32, S32P, 0, conv_deinterleave_32_sse2),
#endif
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32P, 0, 0, conv_deinterleave_32_c },
MAKE(S32, S32P, 0, conv_deinterleave_32_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32, 0, 0, conv_interleave_32_sse2 },
MAKE(S32P, S32, 0, conv_interleave_32_sse2),
#endif
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32, 0, 0, conv_interleave_32_c },
MAKE(S32P, S32, 0, conv_interleave_32_c),
/* s24 */
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_S24, 0, 0, conv_copy24_c },
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_S24P, 0, 0, conv_copy24d_c },
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_S24P, 0, 0, conv_deinterleave_24_c },
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_S24, 0, 0, conv_interleave_24_c },
MAKE(S24, S24, 0, conv_copy24_c),
MAKE(S24P, S24P, 0, conv_copy24d_c),
MAKE(S24, S24P, 0, conv_deinterleave_24_c),
MAKE(S24P, S24, 0, conv_interleave_24_c),
/* s24_32 */
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32, 0, 0, conv_copy32_c },
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32P, 0, 0, conv_copy32d_c },
MAKE(S24_32, S24_32, 0, conv_copy32_c),
MAKE(S24_32P, S24_32P, 0, conv_copy32d_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32P, 0, 0, conv_deinterleave_32_sse2 },
MAKE(S24_32, S24_32P, 0, conv_deinterleave_32_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32P, 0, 0, conv_deinterleave_32_c },
MAKE(S24_32, S24_32P, 0, conv_deinterleave_32_c),
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32, 0, 0, conv_interleave_32_sse2 },
MAKE(S24_32P, S24_32, 0, conv_interleave_32_sse2, SPA_CPU_FLAG_SSE2),
#endif
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32, 0, 0, conv_interleave_32_c },
MAKE(S24_32P, S24_32, 0, conv_interleave_32_c),
/* F64 */
{ SPA_AUDIO_FORMAT_F64, SPA_AUDIO_FORMAT_F64, 0, 0, conv_copy64_c },
{ SPA_AUDIO_FORMAT_F64P, SPA_AUDIO_FORMAT_F64P, 0, 0, conv_copy64d_c },
{ SPA_AUDIO_FORMAT_F64, SPA_AUDIO_FORMAT_F64P, 0, 0, conv_deinterleave_64_c },
{ SPA_AUDIO_FORMAT_F64P, SPA_AUDIO_FORMAT_F64, 0, 0, conv_interleave_64_c },
MAKE(F64, F64, 0, conv_copy64_c),
MAKE(F64P, F64P, 0, conv_copy64d_c),
MAKE(F64, F64P, 0, conv_deinterleave_64_c),
MAKE(F64P, F64, 0, conv_interleave_64_c),
};
#undef MAKE
#define MATCH_CHAN(a,b) ((a) == 0 || (a) == (b))
#define MATCH_CPU_FLAGS(a,b) ((a) == 0 || ((a) & (b)) == a)
#define MATCH_DITHER(a,b) ((a) == 0 || ((a) & (b)) == a)
static const struct conv_info *find_conv_info(uint32_t src_fmt, uint32_t dst_fmt,
uint32_t n_channels, uint32_t cpu_flags)
uint32_t n_channels, uint32_t cpu_flags, uint32_t dither_flags)
{
size_t i;
@ -317,7 +343,8 @@ static const struct conv_info *find_conv_info(uint32_t src_fmt, uint32_t dst_fmt
if (conv_table[i].src_fmt == src_fmt &&
conv_table[i].dst_fmt == dst_fmt &&
MATCH_CHAN(conv_table[i].n_channels, n_channels) &&
MATCH_CPU_FLAGS(conv_table[i].cpu_flags, cpu_flags))
MATCH_CPU_FLAGS(conv_table[i].cpu_flags, cpu_flags) &&
MATCH_DITHER(conv_table[i].dither_flags, dither_flags))
return &conv_table[i];
}
return NULL;
@ -326,20 +353,47 @@ static const struct conv_info *find_conv_info(uint32_t src_fmt, uint32_t dst_fmt
static void impl_convert_free(struct convert *conv)
{
conv->process = NULL;
free(conv->dither);
conv->dither = NULL;
}
int convert_init(struct convert *conv)
{
const struct conv_info *info;
uint32_t i, shift, dither_flags;
info = find_conv_info(conv->src_fmt, conv->dst_fmt, conv->n_channels, conv->cpu_flags);
shift = 32u - SPA_MIN(conv->quantize, 32u);
shift += conv->noise;
conv->mask = (1ULL << (shift + 1)) - 1;
conv->offset = shift < 32 ? -(1ULL << shift) : 0;
conv->bias = shift > 0 ? 1 << (shift - 1) : 0;
dither_flags = 0;
if (conv->method != DITHER_METHOD_NONE || conv->noise)
dither_flags |= CONV_DITHER;
if (conv->method == DITHER_METHOD_SHAPED_5)
dither_flags |= CONV_SHAPE;
info = find_conv_info(conv->src_fmt, conv->dst_fmt, conv->n_channels,
conv->cpu_flags, dither_flags);
if (info == NULL)
return -ENOTSUP;
conv->dither_size = DITHER_SIZE;
conv->dither = calloc(conv->dither_size + 16 +
FMT_OPS_MAX_ALIGN / sizeof(float), sizeof(float));
if (conv->dither == NULL)
return -errno;
for (i = 0; i < SPA_N_ELEMENTS(conv->random); i++)
conv->random[i] = random();
conv->is_passthrough = conv->src_fmt == conv->dst_fmt;
conv->cpu_flags = info->cpu_flags;
conv->process = info->process;
conv->free = impl_convert_free;
conv->func_name = info->name;
return 0;
}

View file

@ -33,6 +33,9 @@
#endif
#include <spa/utils/defs.h>
#include <spa/utils/string.h>
#define FMT_OPS_MAX_ALIGN 32
#define U8_MIN 0
#define U8_MAX 255
@ -176,12 +179,29 @@ static inline void write_s24s(void *dst, int32_t val)
#define MAX_NS 64
struct convert {
uint32_t quantize;
uint32_t noise;
#define DITHER_METHOD_NONE 0
#define DITHER_METHOD_RECTANGULAR 1
#define DITHER_METHOD_TRIANGULAR 2
#define DITHER_METHOD_SHAPED_5 3
uint32_t method;
uint32_t src_fmt;
uint32_t dst_fmt;
uint32_t n_channels;
uint32_t cpu_flags;
const char *func_name;
unsigned int is_passthrough:1;
int32_t bias;
int32_t offset;
uint32_t mask;
uint32_t random[16 + FMT_OPS_MAX_ALIGN/4];
int32_t *dither;
uint32_t dither_size;
float ns_data[MAX_NS];
uint32_t ns_idx;
uint32_t ns_size;
@ -193,6 +213,27 @@ struct convert {
int convert_init(struct convert *conv);
static const struct dither_method_info {
const char *label;
const char *description;
uint32_t method;
} dither_method_info[] = {
[DITHER_METHOD_NONE] = { "none", "Disabled", DITHER_METHOD_NONE },
[DITHER_METHOD_RECTANGULAR] = { "rectangular", "Rectangular dithering", DITHER_METHOD_RECTANGULAR },
[DITHER_METHOD_TRIANGULAR] = { "triangular", "Triangular dithering", DITHER_METHOD_TRIANGULAR },
[DITHER_METHOD_SHAPED_5] = { "shaped5", "Shaped 5 dithering", DITHER_METHOD_SHAPED_5 }
};
static inline uint32_t dither_method_from_label(const char *label)
{
uint32_t i;
for (i = 0; i < SPA_N_ELEMENTS(dither_method_info); i++) {
if (spa_streq(dither_method_info[i].label, label))
return dither_method_info[i].method;
}
return DITHER_METHOD_NONE;
}
#define convert_process(conv,...) (conv)->process(conv, __VA_ARGS__)
#define convert_free(conv) (conv)->free(conv)
@ -200,8 +241,6 @@ int convert_init(struct convert *conv);
void conv_##name##_##arch(struct convert *conv, void * SPA_RESTRICT dst[], \
const void * SPA_RESTRICT src[], uint32_t n_samples) \
#define FMT_OPS_MAX_ALIGN 32
DEFINE_FUNCTION(copy8d, c);
DEFINE_FUNCTION(copy8, c);
DEFINE_FUNCTION(copy16d, c);
@ -268,31 +307,43 @@ DEFINE_FUNCTION(f32d_to_ulaw, c);
DEFINE_FUNCTION(f32_to_u16, c);
DEFINE_FUNCTION(f32d_to_u16, c);
DEFINE_FUNCTION(f32d_to_s16d, c);
DEFINE_FUNCTION(f32d_to_s16d_dither, c);
DEFINE_FUNCTION(f32_to_s16, c);
DEFINE_FUNCTION(f32_to_s16d, c);
DEFINE_FUNCTION(f32d_to_s16, c);
DEFINE_FUNCTION(f32d_to_s16_dither, c);
DEFINE_FUNCTION(f32d_to_s16s, c);
DEFINE_FUNCTION(f32d_to_s16s_dither, c);
DEFINE_FUNCTION(f32_to_u32, c);
DEFINE_FUNCTION(f32d_to_u32, c);
DEFINE_FUNCTION(f32d_to_s32d, c);
DEFINE_FUNCTION(f32d_to_s32d_dither, c);
DEFINE_FUNCTION(f32_to_s32, c);
DEFINE_FUNCTION(f32_to_s32d, c);
DEFINE_FUNCTION(f32d_to_s32, c);
DEFINE_FUNCTION(f32d_to_s32_dither, c);
DEFINE_FUNCTION(f32d_to_s32s, c);
DEFINE_FUNCTION(f32d_to_s32s_dither, c);
DEFINE_FUNCTION(f32_to_u24, c);
DEFINE_FUNCTION(f32d_to_u24, c);
DEFINE_FUNCTION(f32d_to_s24d, c);
DEFINE_FUNCTION(f32d_to_s24d_dither, c);
DEFINE_FUNCTION(f32_to_s24, c);
DEFINE_FUNCTION(f32_to_s24d, c);
DEFINE_FUNCTION(f32d_to_s24, c);
DEFINE_FUNCTION(f32d_to_s24_dither, c);
DEFINE_FUNCTION(f32d_to_s24s, c);
DEFINE_FUNCTION(f32d_to_s24s_dither, c);
DEFINE_FUNCTION(f32_to_u24_32, c);
DEFINE_FUNCTION(f32d_to_u24_32, c);
DEFINE_FUNCTION(f32d_to_s24_32d, c);
DEFINE_FUNCTION(f32d_to_s24_32d_dither, c);
DEFINE_FUNCTION(f32_to_s24_32, c);
DEFINE_FUNCTION(f32_to_s24_32d, c);
DEFINE_FUNCTION(f32d_to_s24_32, c);
DEFINE_FUNCTION(f32d_to_s24_32_dither, c);
DEFINE_FUNCTION(f32d_to_s24_32s, c);
DEFINE_FUNCTION(f32d_to_s24_32s_dither, c);
DEFINE_FUNCTION(f32d_to_f64d, c);
DEFINE_FUNCTION(f32_to_f64, c);
DEFINE_FUNCTION(f32_to_f64d, c);

View file

@ -22,8 +22,7 @@ if have_sse
endif
if have_sse2
audioconvert_sse2 = static_library('audioconvert_sse2',
['fmt-ops-sse2.c',
'dither-ops-sse2.c' ],
['fmt-ops-sse2.c' ],
c_args : [sse2_args, '-O3', '-DHAVE_SSE2'],
dependencies : [ spa_dep ],
install : false
@ -95,9 +94,7 @@ audioconvert_lib = static_library('audioconvert',
'resample-peaks.c',
'fmt-ops-c.c',
'volume-ops.c',
'volume-ops-c.c',
'dither-ops.c',
'dither-ops-c.c' ],
'volume-ops-c.c' ],
c_args : [ simd_cargs, '-O3'],
link_with : simd_dependencies,
include_directories : [configinc],