linux/drivers/net/s2io.c
2006-03-04 12:07:07 -05:00

6819 lines
189 KiB
C

/************************************************************************
* s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
* Copyright(c) 2002-2005 Neterion Inc.
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* Credits:
* Jeff Garzik : For pointing out the improper error condition
* check in the s2io_xmit routine and also some
* issues in the Tx watch dog function. Also for
* patiently answering all those innumerable
* questions regaring the 2.6 porting issues.
* Stephen Hemminger : Providing proper 2.6 porting mechanism for some
* macros available only in 2.6 Kernel.
* Francois Romieu : For pointing out all code part that were
* deprecated and also styling related comments.
* Grant Grundler : For helping me get rid of some Architecture
* dependent code.
* Christopher Hellwig : Some more 2.6 specific issues in the driver.
*
* The module loadable parameters that are supported by the driver and a brief
* explaination of all the variables.
* rx_ring_num : This can be used to program the number of receive rings used
* in the driver.
* rx_ring_sz: This defines the number of descriptors each ring can have. This
* is also an array of size 8.
* rx_ring_mode: This defines the operation mode of all 8 rings. The valid
* values are 1, 2 and 3.
* tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
* tx_fifo_len: This too is an array of 8. Each element defines the number of
* Tx descriptors that can be associated with each corresponding FIFO.
************************************************************************/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/stddef.h>
#include <linux/ioctl.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/ethtool.h>
#include <linux/workqueue.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/tcp.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/div64.h>
/* local include */
#include "s2io.h"
#include "s2io-regs.h"
#define DRV_VERSION "2.0.11.2"
/* S2io Driver name & version. */
static char s2io_driver_name[] = "Neterion";
static char s2io_driver_version[] = DRV_VERSION;
static int rxd_size[4] = {32,48,48,64};
static int rxd_count[4] = {127,85,85,63};
static inline int RXD_IS_UP2DT(RxD_t *rxdp)
{
int ret;
ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
(GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
return ret;
}
/*
* Cards with following subsystem_id have a link state indication
* problem, 600B, 600C, 600D, 640B, 640C and 640D.
* macro below identifies these cards given the subsystem_id.
*/
#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
(dev_type == XFRAME_I_DEVICE) ? \
((((subid >= 0x600B) && (subid <= 0x600D)) || \
((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
#define PANIC 1
#define LOW 2
static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
{
int level = 0;
mac_info_t *mac_control;
mac_control = &sp->mac_control;
if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
level = LOW;
if (rxb_size <= rxd_count[sp->rxd_mode]) {
level = PANIC;
}
}
return level;
}
/* Ethtool related variables and Macros. */
static char s2io_gstrings[][ETH_GSTRING_LEN] = {
"Register test\t(offline)",
"Eeprom test\t(offline)",
"Link test\t(online)",
"RLDRAM test\t(offline)",
"BIST Test\t(offline)"
};
static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
{"tmac_frms"},
{"tmac_data_octets"},
{"tmac_drop_frms"},
{"tmac_mcst_frms"},
{"tmac_bcst_frms"},
{"tmac_pause_ctrl_frms"},
{"tmac_any_err_frms"},
{"tmac_vld_ip_octets"},
{"tmac_vld_ip"},
{"tmac_drop_ip"},
{"tmac_icmp"},
{"tmac_rst_tcp"},
{"tmac_tcp"},
{"tmac_udp"},
{"rmac_vld_frms"},
{"rmac_data_octets"},
{"rmac_fcs_err_frms"},
{"rmac_drop_frms"},
{"rmac_vld_mcst_frms"},
{"rmac_vld_bcst_frms"},
{"rmac_in_rng_len_err_frms"},
{"rmac_long_frms"},
{"rmac_pause_ctrl_frms"},
{"rmac_discarded_frms"},
{"rmac_usized_frms"},
{"rmac_osized_frms"},
{"rmac_frag_frms"},
{"rmac_jabber_frms"},
{"rmac_ip"},
{"rmac_ip_octets"},
{"rmac_hdr_err_ip"},
{"rmac_drop_ip"},
{"rmac_icmp"},
{"rmac_tcp"},
{"rmac_udp"},
{"rmac_err_drp_udp"},
{"rmac_pause_cnt"},
{"rmac_accepted_ip"},
{"rmac_err_tcp"},
{"\n DRIVER STATISTICS"},
{"single_bit_ecc_errs"},
{"double_bit_ecc_errs"},
("lro_aggregated_pkts"),
("lro_flush_both_count"),
("lro_out_of_sequence_pkts"),
("lro_flush_due_to_max_pkts"),
("lro_avg_aggr_pkts"),
};
#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
init_timer(&timer); \
timer.function = handle; \
timer.data = (unsigned long) arg; \
mod_timer(&timer, (jiffies + exp)) \
/* Add the vlan */
static void s2io_vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
nic_t *nic = dev->priv;
unsigned long flags;
spin_lock_irqsave(&nic->tx_lock, flags);
nic->vlgrp = grp;
spin_unlock_irqrestore(&nic->tx_lock, flags);
}
/* Unregister the vlan */
static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
{
nic_t *nic = dev->priv;
unsigned long flags;
spin_lock_irqsave(&nic->tx_lock, flags);
if (nic->vlgrp)
nic->vlgrp->vlan_devices[vid] = NULL;
spin_unlock_irqrestore(&nic->tx_lock, flags);
}
/*
* Constants to be programmed into the Xena's registers, to configure
* the XAUI.
*/
#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
#define END_SIGN 0x0
static const u64 herc_act_dtx_cfg[] = {
/* Set address */
0x8000051536750000ULL, 0x80000515367500E0ULL,
/* Write data */
0x8000051536750004ULL, 0x80000515367500E4ULL,
/* Set address */
0x80010515003F0000ULL, 0x80010515003F00E0ULL,
/* Write data */
0x80010515003F0004ULL, 0x80010515003F00E4ULL,
/* Set address */
0x801205150D440000ULL, 0x801205150D4400E0ULL,
/* Write data */
0x801205150D440004ULL, 0x801205150D4400E4ULL,
/* Set address */
0x80020515F2100000ULL, 0x80020515F21000E0ULL,
/* Write data */
0x80020515F2100004ULL, 0x80020515F21000E4ULL,
/* Done */
END_SIGN
};
static const u64 xena_mdio_cfg[] = {
/* Reset PMA PLL */
0xC001010000000000ULL, 0xC0010100000000E0ULL,
0xC0010100008000E4ULL,
/* Remove Reset from PMA PLL */
0xC001010000000000ULL, 0xC0010100000000E0ULL,
0xC0010100000000E4ULL,
END_SIGN
};
static const u64 xena_dtx_cfg[] = {
0x8000051500000000ULL, 0x80000515000000E0ULL,
0x80000515D93500E4ULL, 0x8001051500000000ULL,
0x80010515000000E0ULL, 0x80010515001E00E4ULL,
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515F21000E4ULL,
/* Set PADLOOPBACKN */
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515B20000E4ULL, 0x8003051500000000ULL,
0x80030515000000E0ULL, 0x80030515B20000E4ULL,
0x8004051500000000ULL, 0x80040515000000E0ULL,
0x80040515B20000E4ULL, 0x8005051500000000ULL,
0x80050515000000E0ULL, 0x80050515B20000E4ULL,
SWITCH_SIGN,
/* Remove PADLOOPBACKN */
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515F20000E4ULL, 0x8003051500000000ULL,
0x80030515000000E0ULL, 0x80030515F20000E4ULL,
0x8004051500000000ULL, 0x80040515000000E0ULL,
0x80040515F20000E4ULL, 0x8005051500000000ULL,
0x80050515000000E0ULL, 0x80050515F20000E4ULL,
END_SIGN
};
/*
* Constants for Fixing the MacAddress problem seen mostly on
* Alpha machines.
*/
static const u64 fix_mac[] = {
0x0060000000000000ULL, 0x0060600000000000ULL,
0x0040600000000000ULL, 0x0000600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0000600000000000ULL,
0x0040600000000000ULL, 0x0060600000000000ULL,
END_SIGN
};
/* Module Loadable parameters. */
static unsigned int tx_fifo_num = 1;
static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
{[0 ...(MAX_TX_FIFOS - 1)] = 0 };
static unsigned int rx_ring_num = 1;
static unsigned int rx_ring_sz[MAX_RX_RINGS] =
{[0 ...(MAX_RX_RINGS - 1)] = 0 };
static unsigned int rts_frm_len[MAX_RX_RINGS] =
{[0 ...(MAX_RX_RINGS - 1)] = 0 };
static unsigned int rx_ring_mode = 1;
static unsigned int use_continuous_tx_intrs = 1;
static unsigned int rmac_pause_time = 65535;
static unsigned int mc_pause_threshold_q0q3 = 187;
static unsigned int mc_pause_threshold_q4q7 = 187;
static unsigned int shared_splits;
static unsigned int tmac_util_period = 5;
static unsigned int rmac_util_period = 5;
static unsigned int bimodal = 0;
static unsigned int l3l4hdr_size = 128;
#ifndef CONFIG_S2IO_NAPI
static unsigned int indicate_max_pkts;
#endif
/* Frequency of Rx desc syncs expressed as power of 2 */
static unsigned int rxsync_frequency = 3;
/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
static unsigned int intr_type = 0;
/* Large receive offload feature */
static unsigned int lro = 0;
/* Max pkts to be aggregated by LRO at one time. If not specified,
* aggregation happens until we hit max IP pkt size(64K)
*/
static unsigned int lro_max_pkts = 0xFFFF;
/*
* S2IO device table.
* This table lists all the devices that this driver supports.
*/
static struct pci_device_id s2io_tbl[] __devinitdata = {
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
PCI_ANY_ID, PCI_ANY_ID},
{0,}
};
MODULE_DEVICE_TABLE(pci, s2io_tbl);
static struct pci_driver s2io_driver = {
.name = "S2IO",
.id_table = s2io_tbl,
.probe = s2io_init_nic,
.remove = __devexit_p(s2io_rem_nic),
};
/* A simplifier macro used both by init and free shared_mem Fns(). */
#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
/**
* init_shared_mem - Allocation and Initialization of Memory
* @nic: Device private variable.
* Description: The function allocates all the memory areas shared
* between the NIC and the driver. This includes Tx descriptors,
* Rx descriptors and the statistics block.
*/
static int init_shared_mem(struct s2io_nic *nic)
{
u32 size;
void *tmp_v_addr, *tmp_v_addr_next;
dma_addr_t tmp_p_addr, tmp_p_addr_next;
RxD_block_t *pre_rxd_blk = NULL;
int i, j, blk_cnt, rx_sz, tx_sz;
int lst_size, lst_per_page;
struct net_device *dev = nic->dev;
unsigned long tmp;
buffAdd_t *ba;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* Allocation and initialization of TXDLs in FIOFs */
size = 0;
for (i = 0; i < config->tx_fifo_num; i++) {
size += config->tx_cfg[i].fifo_len;
}
if (size > MAX_AVAILABLE_TXDS) {
DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
__FUNCTION__);
DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
return FAILURE;
}
lst_size = (sizeof(TxD_t) * config->max_txds);
tx_sz = lst_size * size;
lst_per_page = PAGE_SIZE / lst_size;
for (i = 0; i < config->tx_fifo_num; i++) {
int fifo_len = config->tx_cfg[i].fifo_len;
int list_holder_size = fifo_len * sizeof(list_info_hold_t);
mac_control->fifos[i].list_info = kmalloc(list_holder_size,
GFP_KERNEL);
if (!mac_control->fifos[i].list_info) {
DBG_PRINT(ERR_DBG,
"Malloc failed for list_info\n");
return -ENOMEM;
}
memset(mac_control->fifos[i].list_info, 0, list_holder_size);
}
for (i = 0; i < config->tx_fifo_num; i++) {
int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
lst_per_page);
mac_control->fifos[i].tx_curr_put_info.offset = 0;
mac_control->fifos[i].tx_curr_put_info.fifo_len =
config->tx_cfg[i].fifo_len - 1;
mac_control->fifos[i].tx_curr_get_info.offset = 0;
mac_control->fifos[i].tx_curr_get_info.fifo_len =
config->tx_cfg[i].fifo_len - 1;
mac_control->fifos[i].fifo_no = i;
mac_control->fifos[i].nic = nic;
mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
for (j = 0; j < page_num; j++) {
int k = 0;
dma_addr_t tmp_p;
void *tmp_v;
tmp_v = pci_alloc_consistent(nic->pdev,
PAGE_SIZE, &tmp_p);
if (!tmp_v) {
DBG_PRINT(ERR_DBG,
"pci_alloc_consistent ");
DBG_PRINT(ERR_DBG, "failed for TxDL\n");
return -ENOMEM;
}
/* If we got a zero DMA address(can happen on
* certain platforms like PPC), reallocate.
* Store virtual address of page we don't want,
* to be freed later.
*/
if (!tmp_p) {
mac_control->zerodma_virt_addr = tmp_v;
DBG_PRINT(INIT_DBG,
"%s: Zero DMA address for TxDL. ", dev->name);
DBG_PRINT(INIT_DBG,
"Virtual address %p\n", tmp_v);
tmp_v = pci_alloc_consistent(nic->pdev,
PAGE_SIZE, &tmp_p);
if (!tmp_v) {
DBG_PRINT(ERR_DBG,
"pci_alloc_consistent ");
DBG_PRINT(ERR_DBG, "failed for TxDL\n");
return -ENOMEM;
}
}
while (k < lst_per_page) {
int l = (j * lst_per_page) + k;
if (l == config->tx_cfg[i].fifo_len)
break;
mac_control->fifos[i].list_info[l].list_virt_addr =
tmp_v + (k * lst_size);
mac_control->fifos[i].list_info[l].list_phy_addr =
tmp_p + (k * lst_size);
k++;
}
}
}
nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
if (!nic->ufo_in_band_v)
return -ENOMEM;
/* Allocation and initialization of RXDs in Rings */
size = 0;
for (i = 0; i < config->rx_ring_num; i++) {
if (config->rx_cfg[i].num_rxd %
(rxd_count[nic->rxd_mode] + 1)) {
DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
i);
DBG_PRINT(ERR_DBG, "RxDs per Block");
return FAILURE;
}
size += config->rx_cfg[i].num_rxd;
mac_control->rings[i].block_count =
config->rx_cfg[i].num_rxd /
(rxd_count[nic->rxd_mode] + 1 );
mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
mac_control->rings[i].block_count;
}
if (nic->rxd_mode == RXD_MODE_1)
size = (size * (sizeof(RxD1_t)));
else
size = (size * (sizeof(RxD3_t)));
rx_sz = size;
for (i = 0; i < config->rx_ring_num; i++) {
mac_control->rings[i].rx_curr_get_info.block_index = 0;
mac_control->rings[i].rx_curr_get_info.offset = 0;
mac_control->rings[i].rx_curr_get_info.ring_len =
config->rx_cfg[i].num_rxd - 1;
mac_control->rings[i].rx_curr_put_info.block_index = 0;
mac_control->rings[i].rx_curr_put_info.offset = 0;
mac_control->rings[i].rx_curr_put_info.ring_len =
config->rx_cfg[i].num_rxd - 1;
mac_control->rings[i].nic = nic;
mac_control->rings[i].ring_no = i;
blk_cnt = config->rx_cfg[i].num_rxd /
(rxd_count[nic->rxd_mode] + 1);
/* Allocating all the Rx blocks */
for (j = 0; j < blk_cnt; j++) {
rx_block_info_t *rx_blocks;
int l;
rx_blocks = &mac_control->rings[i].rx_blocks[j];
size = SIZE_OF_BLOCK; //size is always page size
tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
&tmp_p_addr);
if (tmp_v_addr == NULL) {
/*
* In case of failure, free_shared_mem()
* is called, which should free any
* memory that was alloced till the
* failure happened.
*/
rx_blocks->block_virt_addr = tmp_v_addr;
return -ENOMEM;
}
memset(tmp_v_addr, 0, size);
rx_blocks->block_virt_addr = tmp_v_addr;
rx_blocks->block_dma_addr = tmp_p_addr;
rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
rxd_count[nic->rxd_mode],
GFP_KERNEL);
for (l=0; l<rxd_count[nic->rxd_mode];l++) {
rx_blocks->rxds[l].virt_addr =
rx_blocks->block_virt_addr +
(rxd_size[nic->rxd_mode] * l);
rx_blocks->rxds[l].dma_addr =
rx_blocks->block_dma_addr +
(rxd_size[nic->rxd_mode] * l);
}
mac_control->rings[i].rx_blocks[j].block_virt_addr =
tmp_v_addr;
mac_control->rings[i].rx_blocks[j].block_dma_addr =
tmp_p_addr;
}
/* Interlinking all Rx Blocks */
for (j = 0; j < blk_cnt; j++) {
tmp_v_addr =
mac_control->rings[i].rx_blocks[j].block_virt_addr;
tmp_v_addr_next =
mac_control->rings[i].rx_blocks[(j + 1) %
blk_cnt].block_virt_addr;
tmp_p_addr =
mac_control->rings[i].rx_blocks[j].block_dma_addr;
tmp_p_addr_next =
mac_control->rings[i].rx_blocks[(j + 1) %
blk_cnt].block_dma_addr;
pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
pre_rxd_blk->reserved_2_pNext_RxD_block =
(unsigned long) tmp_v_addr_next;
pre_rxd_blk->pNext_RxD_Blk_physical =
(u64) tmp_p_addr_next;
}
}
if (nic->rxd_mode >= RXD_MODE_3A) {
/*
* Allocation of Storages for buffer addresses in 2BUFF mode
* and the buffers as well.
*/
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = config->rx_cfg[i].num_rxd /
(rxd_count[nic->rxd_mode]+ 1);
mac_control->rings[i].ba =
kmalloc((sizeof(buffAdd_t *) * blk_cnt),
GFP_KERNEL);
if (!mac_control->rings[i].ba)
return -ENOMEM;
for (j = 0; j < blk_cnt; j++) {
int k = 0;
mac_control->rings[i].ba[j] =
kmalloc((sizeof(buffAdd_t) *
(rxd_count[nic->rxd_mode] + 1)),
GFP_KERNEL);
if (!mac_control->rings[i].ba[j])
return -ENOMEM;
while (k != rxd_count[nic->rxd_mode]) {
ba = &mac_control->rings[i].ba[j][k];
ba->ba_0_org = (void *) kmalloc
(BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
if (!ba->ba_0_org)
return -ENOMEM;
tmp = (unsigned long)ba->ba_0_org;
tmp += ALIGN_SIZE;
tmp &= ~((unsigned long) ALIGN_SIZE);
ba->ba_0 = (void *) tmp;
ba->ba_1_org = (void *) kmalloc
(BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
if (!ba->ba_1_org)
return -ENOMEM;
tmp = (unsigned long) ba->ba_1_org;
tmp += ALIGN_SIZE;
tmp &= ~((unsigned long) ALIGN_SIZE);
ba->ba_1 = (void *) tmp;
k++;
}
}
}
}
/* Allocation and initialization of Statistics block */
size = sizeof(StatInfo_t);
mac_control->stats_mem = pci_alloc_consistent
(nic->pdev, size, &mac_control->stats_mem_phy);
if (!mac_control->stats_mem) {
/*
* In case of failure, free_shared_mem() is called, which
* should free any memory that was alloced till the
* failure happened.
*/
return -ENOMEM;
}
mac_control->stats_mem_sz = size;
tmp_v_addr = mac_control->stats_mem;
mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
memset(tmp_v_addr, 0, size);
DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
(unsigned long long) tmp_p_addr);
return SUCCESS;
}
/**
* free_shared_mem - Free the allocated Memory
* @nic: Device private variable.
* Description: This function is to free all memory locations allocated by
* the init_shared_mem() function and return it to the kernel.
*/
static void free_shared_mem(struct s2io_nic *nic)
{
int i, j, blk_cnt, size;
void *tmp_v_addr;
dma_addr_t tmp_p_addr;
mac_info_t *mac_control;
struct config_param *config;
int lst_size, lst_per_page;
struct net_device *dev = nic->dev;
if (!nic)
return;
mac_control = &nic->mac_control;
config = &nic->config;
lst_size = (sizeof(TxD_t) * config->max_txds);
lst_per_page = PAGE_SIZE / lst_size;
for (i = 0; i < config->tx_fifo_num; i++) {
int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
lst_per_page);
for (j = 0; j < page_num; j++) {
int mem_blks = (j * lst_per_page);
if (!mac_control->fifos[i].list_info)
return;
if (!mac_control->fifos[i].list_info[mem_blks].
list_virt_addr)
break;
pci_free_consistent(nic->pdev, PAGE_SIZE,
mac_control->fifos[i].
list_info[mem_blks].
list_virt_addr,
mac_control->fifos[i].
list_info[mem_blks].
list_phy_addr);
}
/* If we got a zero DMA address during allocation,
* free the page now
*/
if (mac_control->zerodma_virt_addr) {
pci_free_consistent(nic->pdev, PAGE_SIZE,
mac_control->zerodma_virt_addr,
(dma_addr_t)0);
DBG_PRINT(INIT_DBG,
"%s: Freeing TxDL with zero DMA addr. ",
dev->name);
DBG_PRINT(INIT_DBG, "Virtual address %p\n",
mac_control->zerodma_virt_addr);
}
kfree(mac_control->fifos[i].list_info);
}
size = SIZE_OF_BLOCK;
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = mac_control->rings[i].block_count;
for (j = 0; j < blk_cnt; j++) {
tmp_v_addr = mac_control->rings[i].rx_blocks[j].
block_virt_addr;
tmp_p_addr = mac_control->rings[i].rx_blocks[j].
block_dma_addr;
if (tmp_v_addr == NULL)
break;
pci_free_consistent(nic->pdev, size,
tmp_v_addr, tmp_p_addr);
kfree(mac_control->rings[i].rx_blocks[j].rxds);
}
}
if (nic->rxd_mode >= RXD_MODE_3A) {
/* Freeing buffer storage addresses in 2BUFF mode. */
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = config->rx_cfg[i].num_rxd /
(rxd_count[nic->rxd_mode] + 1);
for (j = 0; j < blk_cnt; j++) {
int k = 0;
if (!mac_control->rings[i].ba[j])
continue;
while (k != rxd_count[nic->rxd_mode]) {
buffAdd_t *ba =
&mac_control->rings[i].ba[j][k];
kfree(ba->ba_0_org);
kfree(ba->ba_1_org);
k++;
}
kfree(mac_control->rings[i].ba[j]);
}
kfree(mac_control->rings[i].ba);
}
}
if (mac_control->stats_mem) {
pci_free_consistent(nic->pdev,
mac_control->stats_mem_sz,
mac_control->stats_mem,
mac_control->stats_mem_phy);
}
if (nic->ufo_in_band_v)
kfree(nic->ufo_in_band_v);
}
/**
* s2io_verify_pci_mode -
*/
static int s2io_verify_pci_mode(nic_t *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
int mode;
val64 = readq(&bar0->pci_mode);
mode = (u8)GET_PCI_MODE(val64);
if ( val64 & PCI_MODE_UNKNOWN_MODE)
return -1; /* Unknown PCI mode */
return mode;
}
/**
* s2io_print_pci_mode -
*/
static int s2io_print_pci_mode(nic_t *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
int mode;
struct config_param *config = &nic->config;
val64 = readq(&bar0->pci_mode);
mode = (u8)GET_PCI_MODE(val64);
if ( val64 & PCI_MODE_UNKNOWN_MODE)
return -1; /* Unknown PCI mode */
if (val64 & PCI_MODE_32_BITS) {
DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
} else {
DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
}
switch(mode) {
case PCI_MODE_PCI_33:
DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
config->bus_speed = 33;
break;
case PCI_MODE_PCI_66:
DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
config->bus_speed = 133;
break;
case PCI_MODE_PCIX_M1_66:
DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
config->bus_speed = 133; /* Herc doubles the clock rate */
break;
case PCI_MODE_PCIX_M1_100:
DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
config->bus_speed = 200;
break;
case PCI_MODE_PCIX_M1_133:
DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
config->bus_speed = 266;
break;
case PCI_MODE_PCIX_M2_66:
DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
config->bus_speed = 133;
break;
case PCI_MODE_PCIX_M2_100:
DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
config->bus_speed = 200;
break;
case PCI_MODE_PCIX_M2_133:
DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
config->bus_speed = 266;
break;
default:
return -1; /* Unsupported bus speed */
}
return mode;
}
/**
* init_nic - Initialization of hardware
* @nic: device peivate variable
* Description: The function sequentially configures every block
* of the H/W from their reset values.
* Return Value: SUCCESS on success and
* '-1' on failure (endian settings incorrect).
*/
static int init_nic(struct s2io_nic *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
struct net_device *dev = nic->dev;
register u64 val64 = 0;
void __iomem *add;
u32 time;
int i, j;
mac_info_t *mac_control;
struct config_param *config;
int mdio_cnt = 0, dtx_cnt = 0;
unsigned long long mem_share;
int mem_size;
mac_control = &nic->mac_control;
config = &nic->config;
/* to set the swapper controle on the card */
if(s2io_set_swapper(nic)) {
DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
return -1;
}
/*
* Herc requires EOI to be removed from reset before XGXS, so..
*/
if (nic->device_type & XFRAME_II_DEVICE) {
val64 = 0xA500000000ULL;
writeq(val64, &bar0->sw_reset);
msleep(500);
val64 = readq(&bar0->sw_reset);
}
/* Remove XGXS from reset state */
val64 = 0;
writeq(val64, &bar0->sw_reset);
msleep(500);
val64 = readq(&bar0->sw_reset);
/* Enable Receiving broadcasts */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_RMAC_BCAST_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
/* Read registers in all blocks */
val64 = readq(&bar0->mac_int_mask);
val64 = readq(&bar0->mc_int_mask);
val64 = readq(&bar0->xgxs_int_mask);
/* Set MTU */
val64 = dev->mtu;
writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
/*
* Configuring the XAUI Interface of Xena.
* ***************************************
* To Configure the Xena's XAUI, one has to write a series
* of 64 bit values into two registers in a particular
* sequence. Hence a macro 'SWITCH_SIGN' has been defined
* which will be defined in the array of configuration values
* (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
* to switch writing from one regsiter to another. We continue
* writing these values until we encounter the 'END_SIGN' macro.
* For example, After making a series of 21 writes into
* dtx_control register the 'SWITCH_SIGN' appears and hence we
* start writing into mdio_control until we encounter END_SIGN.
*/
if (nic->device_type & XFRAME_II_DEVICE) {
while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
&bar0->dtx_control, UF);
if (dtx_cnt & 0x1)
msleep(1); /* Necessary!! */
dtx_cnt++;
}
} else {
while (1) {
dtx_cfg:
while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
dtx_cnt++;
goto mdio_cfg;
}
SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
&bar0->dtx_control, UF);
val64 = readq(&bar0->dtx_control);
dtx_cnt++;
}
mdio_cfg:
while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
mdio_cnt++;
goto dtx_cfg;
}
SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
&bar0->mdio_control, UF);
val64 = readq(&bar0->mdio_control);
mdio_cnt++;
}
if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
(xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
break;
} else {
goto dtx_cfg;
}
}
}
/* Tx DMA Initialization */
val64 = 0;
writeq(val64, &bar0->tx_fifo_partition_0);
writeq(val64, &bar0->tx_fifo_partition_1);
writeq(val64, &bar0->tx_fifo_partition_2);
writeq(val64, &bar0->tx_fifo_partition_3);
for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
val64 |=
vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
13) | vBIT(config->tx_cfg[i].fifo_priority,
((i * 32) + 5), 3);
if (i == (config->tx_fifo_num - 1)) {
if (i % 2 == 0)
i++;
}
switch (i) {
case 1:
writeq(val64, &bar0->tx_fifo_partition_0);
val64 = 0;
break;
case 3:
writeq(val64, &bar0->tx_fifo_partition_1);
val64 = 0;
break;
case 5:
writeq(val64, &bar0->tx_fifo_partition_2);
val64 = 0;
break;
case 7:
writeq(val64, &bar0->tx_fifo_partition_3);
break;
}
}
/* Enable Tx FIFO partition 0. */
val64 = readq(&bar0->tx_fifo_partition_0);
val64 |= BIT(0); /* To enable the FIFO partition. */
writeq(val64, &bar0->tx_fifo_partition_0);
/*
* Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
* SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
*/
if ((nic->device_type == XFRAME_I_DEVICE) &&
(get_xena_rev_id(nic->pdev) < 4))
writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
val64 = readq(&bar0->tx_fifo_partition_0);
DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
&bar0->tx_fifo_partition_0, (unsigned long long) val64);
/*
* Initialization of Tx_PA_CONFIG register to ignore packet
* integrity checking.
*/
val64 = readq(&bar0->tx_pa_cfg);
val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
writeq(val64, &bar0->tx_pa_cfg);
/* Rx DMA intialization. */
val64 = 0;
for (i = 0; i < config->rx_ring_num; i++) {
val64 |=
vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
3);
}
writeq(val64, &bar0->rx_queue_priority);
/*
* Allocating equal share of memory to all the
* configured Rings.
*/
val64 = 0;
if (nic->device_type & XFRAME_II_DEVICE)
mem_size = 32;
else
mem_size = 64;
for (i = 0; i < config->rx_ring_num; i++) {
switch (i) {
case 0:
mem_share = (mem_size / config->rx_ring_num +
mem_size % config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
continue;
case 1:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
continue;
case 2:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
continue;
case 3:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
continue;
case 4:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
continue;
case 5:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
continue;
case 6:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
continue;
case 7:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
continue;
}
}
writeq(val64, &bar0->rx_queue_cfg);
/*
* Filling Tx round robin registers
* as per the number of FIFOs
*/
switch (config->tx_fifo_num) {
case 1:
val64 = 0x0000000000000000ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
writeq(val64, &bar0->tx_w_round_robin_1);
writeq(val64, &bar0->tx_w_round_robin_2);
writeq(val64, &bar0->tx_w_round_robin_3);
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 2:
val64 = 0x0000010000010000ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0100000100000100ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0001000001000001ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0000010000010000ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0100000000000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 3:
val64 = 0x0001000102000001ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0001020000010001ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0200000100010200ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0001000102000001ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0001020000000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 4:
val64 = 0x0001020300010200ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0100000102030001ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0200010000010203ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0001020001000001ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0203000100000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 5:
val64 = 0x0001000203000102ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0001020001030004ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0001000203000102ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0001020001030004ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0001000000000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 6:
val64 = 0x0001020304000102ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0304050001020001ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0203000100000102ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0304000102030405ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0001000200000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 7:
val64 = 0x0001020001020300ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0102030400010203ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0405060001020001ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0304050000010200ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0102030000000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 8:
val64 = 0x0001020300040105ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0200030106000204ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0103000502010007ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0304010002060500ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0103020400000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
}
/* Filling the Rx round robin registers as per the
* number of Rings and steering based on QoS.
*/
switch (config->rx_ring_num) {
case 1:
val64 = 0x8080808080808080ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 2:
val64 = 0x0000010000010000ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0100000100000100ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0001000001000001ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0000010000010000ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0100000000000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080808040404040ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 3:
val64 = 0x0001000102000001ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0001020000010001ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0200000100010200ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0001000102000001ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0001020000000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080804040402020ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 4:
val64 = 0x0001020300010200ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0100000102030001ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0200010000010203ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0001020001000001ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0203000100000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080404020201010ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 5:
val64 = 0x0001000203000102ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0001020001030004ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0001000203000102ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0001020001030004ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0001000000000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080404020201008ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 6:
val64 = 0x0001020304000102ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0304050001020001ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0203000100000102ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0304000102030405ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0001000200000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080404020100804ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 7:
val64 = 0x0001020001020300ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0102030400010203ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0405060001020001ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0304050000010200ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0102030000000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080402010080402ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 8:
val64 = 0x0001020300040105ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0200030106000204ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0103000502010007ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0304010002060500ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0103020400000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8040201008040201ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
}
/* UDP Fix */
val64 = 0;
for (i = 0; i < 8; i++)
writeq(val64, &bar0->rts_frm_len_n[i]);
/* Set the default rts frame length for the rings configured */
val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
for (i = 0 ; i < config->rx_ring_num ; i++)
writeq(val64, &bar0->rts_frm_len_n[i]);
/* Set the frame length for the configured rings
* desired by the user
*/
for (i = 0; i < config->rx_ring_num; i++) {
/* If rts_frm_len[i] == 0 then it is assumed that user not
* specified frame length steering.
* If the user provides the frame length then program
* the rts_frm_len register for those values or else
* leave it as it is.
*/
if (rts_frm_len[i] != 0) {
writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
&bar0->rts_frm_len_n[i]);
}
}
/* Program statistics memory */
writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
if (nic->device_type == XFRAME_II_DEVICE) {
val64 = STAT_BC(0x320);
writeq(val64, &bar0->stat_byte_cnt);
}
/*
* Initializing the sampling rate for the device to calculate the
* bandwidth utilization.
*/
val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
MAC_RX_LINK_UTIL_VAL(rmac_util_period);
writeq(val64, &bar0->mac_link_util);
/*
* Initializing the Transmit and Receive Traffic Interrupt
* Scheme.
*/
/*
* TTI Initialization. Default Tx timer gets us about
* 250 interrupts per sec. Continuous interrupts are enabled
* by default.
*/
if (nic->device_type == XFRAME_II_DEVICE) {
int count = (nic->config.bus_speed * 125)/2;
val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
} else {
val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
}
val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
TTI_DATA1_MEM_TX_URNG_B(0x10) |
TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
if (use_continuous_tx_intrs)
val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
writeq(val64, &bar0->tti_data1_mem);
val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
TTI_DATA2_MEM_TX_UFC_B(0x20) |
TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
writeq(val64, &bar0->tti_data2_mem);
val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
writeq(val64, &bar0->tti_command_mem);
/*
* Once the operation completes, the Strobe bit of the command
* register will be reset. We poll for this particular condition
* We wait for a maximum of 500ms for the operation to complete,
* if it's not complete by then we return error.
*/
time = 0;
while (TRUE) {
val64 = readq(&bar0->tti_command_mem);
if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
break;
}
if (time > 10) {
DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
dev->name);
return -1;
}
msleep(50);
time++;
}
if (nic->config.bimodal) {
int k = 0;
for (k = 0; k < config->rx_ring_num; k++) {
val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
writeq(val64, &bar0->tti_command_mem);
/*
* Once the operation completes, the Strobe bit of the command
* register will be reset. We poll for this particular condition
* We wait for a maximum of 500ms for the operation to complete,
* if it's not complete by then we return error.
*/
time = 0;
while (TRUE) {
val64 = readq(&bar0->tti_command_mem);
if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
break;
}
if (time > 10) {
DBG_PRINT(ERR_DBG,
"%s: TTI init Failed\n",
dev->name);
return -1;
}
time++;
msleep(50);
}
}
} else {
/* RTI Initialization */
if (nic->device_type == XFRAME_II_DEVICE) {
/*
* Programmed to generate Apprx 500 Intrs per
* second
*/
int count = (nic->config.bus_speed * 125)/4;
val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
} else {
val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
}
val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
RTI_DATA1_MEM_RX_URNG_B(0x10) |
RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
writeq(val64, &bar0->rti_data1_mem);
val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
RTI_DATA2_MEM_RX_UFC_B(0x2) ;
if (nic->intr_type == MSI_X)
val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
RTI_DATA2_MEM_RX_UFC_D(0x40));
else
val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
RTI_DATA2_MEM_RX_UFC_D(0x80));
writeq(val64, &bar0->rti_data2_mem);
for (i = 0; i < config->rx_ring_num; i++) {
val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
| RTI_CMD_MEM_OFFSET(i);
writeq(val64, &bar0->rti_command_mem);
/*
* Once the operation completes, the Strobe bit of the
* command register will be reset. We poll for this
* particular condition. We wait for a maximum of 500ms
* for the operation to complete, if it's not complete
* by then we return error.
*/
time = 0;
while (TRUE) {
val64 = readq(&bar0->rti_command_mem);
if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
break;
}
if (time > 10) {
DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
dev->name);
return -1;
}
time++;
msleep(50);
}
}
}
/*
* Initializing proper values as Pause threshold into all
* the 8 Queues on Rx side.
*/
writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
/* Disable RMAC PAD STRIPPING */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64), add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
/* Enable FCS stripping by adapter */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_CFG_RMAC_STRIP_FCS;
if (nic->device_type == XFRAME_II_DEVICE)
writeq(val64, &bar0->mac_cfg);
else {
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64), add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
}
/*
* Set the time value to be inserted in the pause frame
* generated by xena.
*/
val64 = readq(&bar0->rmac_pause_cfg);
val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
writeq(val64, &bar0->rmac_pause_cfg);
/*
* Set the Threshold Limit for Generating the pause frame
* If the amount of data in any Queue exceeds ratio of
* (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
* pause frame is generated
*/
val64 = 0;
for (i = 0; i < 4; i++) {
val64 |=
(((u64) 0xFF00 | nic->mac_control.
mc_pause_threshold_q0q3)
<< (i * 2 * 8));
}
writeq(val64, &bar0->mc_pause_thresh_q0q3);
val64 = 0;
for (i = 0; i < 4; i++) {
val64 |=
(((u64) 0xFF00 | nic->mac_control.
mc_pause_threshold_q4q7)
<< (i * 2 * 8));
}
writeq(val64, &bar0->mc_pause_thresh_q4q7);
/*
* TxDMA will stop Read request if the number of read split has
* exceeded the limit pointed by shared_splits
*/
val64 = readq(&bar0->pic_control);
val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
writeq(val64, &bar0->pic_control);
/*
* Programming the Herc to split every write transaction
* that does not start on an ADB to reduce disconnects.
*/
if (nic->device_type == XFRAME_II_DEVICE) {
val64 = WREQ_SPLIT_MASK_SET_MASK(255);
writeq(val64, &bar0->wreq_split_mask);
}
/* Setting Link stability period to 64 ms */
if (nic->device_type == XFRAME_II_DEVICE) {
val64 = MISC_LINK_STABILITY_PRD(3);
writeq(val64, &bar0->misc_control);
}
return SUCCESS;
}
#define LINK_UP_DOWN_INTERRUPT 1
#define MAC_RMAC_ERR_TIMER 2
static int s2io_link_fault_indication(nic_t *nic)
{
if (nic->intr_type != INTA)
return MAC_RMAC_ERR_TIMER;
if (nic->device_type == XFRAME_II_DEVICE)
return LINK_UP_DOWN_INTERRUPT;
else
return MAC_RMAC_ERR_TIMER;
}
/**
* en_dis_able_nic_intrs - Enable or Disable the interrupts
* @nic: device private variable,
* @mask: A mask indicating which Intr block must be modified and,
* @flag: A flag indicating whether to enable or disable the Intrs.
* Description: This function will either disable or enable the interrupts
* depending on the flag argument. The mask argument can be used to
* enable/disable any Intr block.
* Return Value: NONE.
*/
static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64 = 0, temp64 = 0;
/* Top level interrupt classification */
/* PIC Interrupts */
if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
/* Enable PIC Intrs in the general intr mask register */
val64 = TXPIC_INT_M | PIC_RX_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* If Hercules adapter enable GPIO otherwise
* disabled all PCIX, Flash, MDIO, IIC and GPIO
* interrupts for now.
* TODO
*/
if (s2io_link_fault_indication(nic) ==
LINK_UP_DOWN_INTERRUPT ) {
temp64 = readq(&bar0->pic_int_mask);
temp64 &= ~((u64) PIC_INT_GPIO);
writeq(temp64, &bar0->pic_int_mask);
temp64 = readq(&bar0->gpio_int_mask);
temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
writeq(temp64, &bar0->gpio_int_mask);
} else {
writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
}
/*
* No MSI Support is available presently, so TTI and
* RTI interrupts are also disabled.
*/
} else if (flag == DISABLE_INTRS) {
/*
* Disable PIC Intrs in the general
* intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* DMA Interrupts */
/* Enabling/Disabling Tx DMA interrupts */
if (mask & TX_DMA_INTR) {
/* Enable TxDMA Intrs in the general intr mask register */
val64 = TXDMA_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* Keep all interrupts other than PFC interrupt
* and PCC interrupt disabled in DMA level.
*/
val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
TXDMA_PCC_INT_M);
writeq(val64, &bar0->txdma_int_mask);
/*
* Enable only the MISC error 1 interrupt in PFC block
*/
val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
writeq(val64, &bar0->pfc_err_mask);
/*
* Enable only the FB_ECC error interrupt in PCC block
*/
val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
writeq(val64, &bar0->pcc_err_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable TxDMA Intrs in the general intr mask
* register
*/
writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Enabling/Disabling Rx DMA interrupts */
if (mask & RX_DMA_INTR) {
/* Enable RxDMA Intrs in the general intr mask register */
val64 = RXDMA_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* All RxDMA block interrupts are disabled for now
* TODO
*/
writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable RxDMA Intrs in the general intr mask
* register
*/
writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* MAC Interrupts */
/* Enabling/Disabling MAC interrupts */
if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
val64 = TXMAC_INT_M | RXMAC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* All MAC block error interrupts are disabled for now
* TODO
*/
} else if (flag == DISABLE_INTRS) {
/*
* Disable MAC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
writeq(DISABLE_ALL_INTRS,
&bar0->mac_rmac_err_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* XGXS Interrupts */
if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
val64 = TXXGXS_INT_M | RXXGXS_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* All XGXS block error interrupts are disabled for now
* TODO
*/
writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable MC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Memory Controller(MC) interrupts */
if (mask & MC_INTR) {
val64 = MC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* Enable all MC Intrs.
*/
writeq(0x0, &bar0->mc_int_mask);
writeq(0x0, &bar0->mc_err_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable MC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Tx traffic interrupts */
if (mask & TX_TRAFFIC_INTR) {
val64 = TXTRAFFIC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* Enable all the Tx side interrupts
* writing 0 Enables all 64 TX interrupt levels
*/
writeq(0x0, &bar0->tx_traffic_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable Tx Traffic Intrs in the general intr mask
* register.
*/
writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Rx traffic interrupts */
if (mask & RX_TRAFFIC_INTR) {
val64 = RXTRAFFIC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* writing 0 Enables all 8 RX interrupt levels */
writeq(0x0, &bar0->rx_traffic_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable Rx Traffic Intrs in the general intr mask
* register.
*/
writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
}
static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
{
int ret = 0;
if (flag == FALSE) {
if ((!herc && (rev_id >= 4)) || herc) {
if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
ret = 1;
}
}else {
if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
ret = 1;
}
}
} else {
if ((!herc && (rev_id >= 4)) || herc) {
if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
ADAPTER_STATUS_RMAC_PCC_IDLE) &&
(!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
ret = 1;
}
} else {
if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
(!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
ret = 1;
}
}
}
return ret;
}
/**
* verify_xena_quiescence - Checks whether the H/W is ready
* @val64 : Value read from adapter status register.
* @flag : indicates if the adapter enable bit was ever written once
* before.
* Description: Returns whether the H/W is ready to go or not. Depending
* on whether adapter enable bit was written or not the comparison
* differs and the calling function passes the input argument flag to
* indicate this.
* Return: 1 If xena is quiescence
* 0 If Xena is not quiescence
*/
static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
{
int ret = 0, herc;
u64 tmp64 = ~((u64) val64);
int rev_id = get_xena_rev_id(sp->pdev);
herc = (sp->device_type == XFRAME_II_DEVICE);
if (!
(tmp64 &
(ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
ADAPTER_STATUS_P_PLL_LOCK))) {
ret = check_prc_pcc_state(val64, flag, rev_id, herc);
}
return ret;
}
/**
* fix_mac_address - Fix for Mac addr problem on Alpha platforms
* @sp: Pointer to device specifc structure
* Description :
* New procedure to clear mac address reading problems on Alpha platforms
*
*/
static void fix_mac_address(nic_t * sp)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
int i = 0;
while (fix_mac[i] != END_SIGN) {
writeq(fix_mac[i++], &bar0->gpio_control);
udelay(10);
val64 = readq(&bar0->gpio_control);
}
}
/**
* start_nic - Turns the device on
* @nic : device private variable.
* Description:
* This function actually turns the device on. Before this function is
* called,all Registers are configured from their reset states
* and shared memory is allocated but the NIC is still quiescent. On
* calling this function, the device interrupts are cleared and the NIC is
* literally switched on by writing into the adapter control register.
* Return Value:
* SUCCESS on success and -1 on failure.
*/
static int start_nic(struct s2io_nic *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
struct net_device *dev = nic->dev;
register u64 val64 = 0;
u16 interruptible;
u16 subid, i;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* PRC Initialization and configuration */
for (i = 0; i < config->rx_ring_num; i++) {
writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
&bar0->prc_rxd0_n[i]);
val64 = readq(&bar0->prc_ctrl_n[i]);
if (nic->config.bimodal)
val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
if (nic->rxd_mode == RXD_MODE_1)
val64 |= PRC_CTRL_RC_ENABLED;
else
val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
writeq(val64, &bar0->prc_ctrl_n[i]);
}
if (nic->rxd_mode == RXD_MODE_3B) {
/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
val64 = readq(&bar0->rx_pa_cfg);
val64 |= RX_PA_CFG_IGNORE_L2_ERR;
writeq(val64, &bar0->rx_pa_cfg);
}
/*
* Enabling MC-RLDRAM. After enabling the device, we timeout
* for around 100ms, which is approximately the time required
* for the device to be ready for operation.
*/
val64 = readq(&bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
val64 = readq(&bar0->mc_rldram_mrs);
msleep(100); /* Delay by around 100 ms. */
/* Enabling ECC Protection. */
val64 = readq(&bar0->adapter_control);
val64 &= ~ADAPTER_ECC_EN;
writeq(val64, &bar0->adapter_control);
/*
* Clearing any possible Link state change interrupts that
* could have popped up just before Enabling the card.
*/
val64 = readq(&bar0->mac_rmac_err_reg);
if (val64)
writeq(val64, &bar0->mac_rmac_err_reg);
/*
* Verify if the device is ready to be enabled, if so enable
* it.
*/
val64 = readq(&bar0->adapter_status);
if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
(unsigned long long) val64);
return FAILURE;
}
/* Enable select interrupts */
if (nic->intr_type != INTA)
en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
else {
interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
interruptible |= TX_PIC_INTR | RX_PIC_INTR;
interruptible |= TX_MAC_INTR | RX_MAC_INTR;
en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
}
/*
* With some switches, link might be already up at this point.
* Because of this weird behavior, when we enable laser,
* we may not get link. We need to handle this. We cannot
* figure out which switch is misbehaving. So we are forced to
* make a global change.
*/
/* Enabling Laser. */
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_EOI_TX_ON;
writeq(val64, &bar0->adapter_control);
/* SXE-002: Initialize link and activity LED */
subid = nic->pdev->subsystem_device;
if (((subid & 0xFF) >= 0x07) &&
(nic->device_type == XFRAME_I_DEVICE)) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *)bar0 + 0x2700);
}
/*
* Don't see link state interrupts on certain switches, so
* directly scheduling a link state task from here.
*/
schedule_work(&nic->set_link_task);
return SUCCESS;
}
/**
* s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
*/
static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
{
nic_t *nic = fifo_data->nic;
struct sk_buff *skb;
TxD_t *txds;
u16 j, frg_cnt;
txds = txdlp;
if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
pci_unmap_single(nic->pdev, (dma_addr_t)
txds->Buffer_Pointer, sizeof(u64),
PCI_DMA_TODEVICE);
txds++;
}
skb = (struct sk_buff *) ((unsigned long)
txds->Host_Control);
if (!skb) {
memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
return NULL;
}
pci_unmap_single(nic->pdev, (dma_addr_t)
txds->Buffer_Pointer,
skb->len - skb->data_len,
PCI_DMA_TODEVICE);
frg_cnt = skb_shinfo(skb)->nr_frags;
if (frg_cnt) {
txds++;
for (j = 0; j < frg_cnt; j++, txds++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
if (!txds->Buffer_Pointer)
break;
pci_unmap_page(nic->pdev, (dma_addr_t)
txds->Buffer_Pointer,
frag->size, PCI_DMA_TODEVICE);
}
}
txdlp->Host_Control = 0;
return(skb);
}
/**
* free_tx_buffers - Free all queued Tx buffers
* @nic : device private variable.
* Description:
* Free all queued Tx buffers.
* Return Value: void
*/
static void free_tx_buffers(struct s2io_nic *nic)
{
struct net_device *dev = nic->dev;
struct sk_buff *skb;
TxD_t *txdp;
int i, j;
mac_info_t *mac_control;
struct config_param *config;
int cnt = 0;
mac_control = &nic->mac_control;
config = &nic->config;
for (i = 0; i < config->tx_fifo_num; i++) {
for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
list_virt_addr;
skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
if (skb) {
dev_kfree_skb(skb);
cnt++;
}
}
DBG_PRINT(INTR_DBG,
"%s:forcibly freeing %d skbs on FIFO%d\n",
dev->name, cnt, i);
mac_control->fifos[i].tx_curr_get_info.offset = 0;
mac_control->fifos[i].tx_curr_put_info.offset = 0;
}
}
/**
* stop_nic - To stop the nic
* @nic ; device private variable.
* Description:
* This function does exactly the opposite of what the start_nic()
* function does. This function is called to stop the device.
* Return Value:
* void.
*/
static void stop_nic(struct s2io_nic *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
u16 interruptible, i;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* Disable all interrupts */
interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
interruptible |= TX_PIC_INTR | RX_PIC_INTR;
interruptible |= TX_MAC_INTR | RX_MAC_INTR;
en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
/* Disable PRCs */
for (i = 0; i < config->rx_ring_num; i++) {
val64 = readq(&bar0->prc_ctrl_n[i]);
val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
writeq(val64, &bar0->prc_ctrl_n[i]);
}
}
static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
{
struct net_device *dev = nic->dev;
struct sk_buff *frag_list;
void *tmp;
/* Buffer-1 receives L3/L4 headers */
((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
(nic->pdev, skb->data, l3l4hdr_size + 4,
PCI_DMA_FROMDEVICE);
/* skb_shinfo(skb)->frag_list will have L4 data payload */
skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
if (skb_shinfo(skb)->frag_list == NULL) {
DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
return -ENOMEM ;
}
frag_list = skb_shinfo(skb)->frag_list;
frag_list->next = NULL;
tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
frag_list->data = tmp;
frag_list->tail = tmp;
/* Buffer-2 receives L4 data payload */
((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
frag_list->data, dev->mtu,
PCI_DMA_FROMDEVICE);
rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
return SUCCESS;
}
/**
* fill_rx_buffers - Allocates the Rx side skbs
* @nic: device private variable
* @ring_no: ring number
* Description:
* The function allocates Rx side skbs and puts the physical
* address of these buffers into the RxD buffer pointers, so that the NIC
* can DMA the received frame into these locations.
* The NIC supports 3 receive modes, viz
* 1. single buffer,
* 2. three buffer and
* 3. Five buffer modes.
* Each mode defines how many fragments the received frame will be split
* up into by the NIC. The frame is split into L3 header, L4 Header,
* L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
* is split into 3 fragments. As of now only single buffer mode is
* supported.
* Return Value:
* SUCCESS on success or an appropriate -ve value on failure.
*/
static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
{
struct net_device *dev = nic->dev;
struct sk_buff *skb;
RxD_t *rxdp;
int off, off1, size, block_no, block_no1;
u32 alloc_tab = 0;
u32 alloc_cnt;
mac_info_t *mac_control;
struct config_param *config;
u64 tmp;
buffAdd_t *ba;
#ifndef CONFIG_S2IO_NAPI
unsigned long flags;
#endif
RxD_t *first_rxdp = NULL;
mac_control = &nic->mac_control;
config = &nic->config;
alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
atomic_read(&nic->rx_bufs_left[ring_no]);
while (alloc_tab < alloc_cnt) {
block_no = mac_control->rings[ring_no].rx_curr_put_info.
block_index;
block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
block_index;
off = mac_control->rings[ring_no].rx_curr_put_info.offset;
off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
rxdp = mac_control->rings[ring_no].
rx_blocks[block_no].rxds[off].virt_addr;
if ((block_no == block_no1) && (off == off1) &&
(rxdp->Host_Control)) {
DBG_PRINT(INTR_DBG, "%s: Get and Put",
dev->name);
DBG_PRINT(INTR_DBG, " info equated\n");
goto end;
}
if (off && (off == rxd_count[nic->rxd_mode])) {
mac_control->rings[ring_no].rx_curr_put_info.
block_index++;
if (mac_control->rings[ring_no].rx_curr_put_info.
block_index == mac_control->rings[ring_no].
block_count)
mac_control->rings[ring_no].rx_curr_put_info.
block_index = 0;
block_no = mac_control->rings[ring_no].
rx_curr_put_info.block_index;
if (off == rxd_count[nic->rxd_mode])
off = 0;
mac_control->rings[ring_no].rx_curr_put_info.
offset = off;
rxdp = mac_control->rings[ring_no].
rx_blocks[block_no].block_virt_addr;
DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
dev->name, rxdp);
}
#ifndef CONFIG_S2IO_NAPI
spin_lock_irqsave(&nic->put_lock, flags);
mac_control->rings[ring_no].put_pos =
(block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
spin_unlock_irqrestore(&nic->put_lock, flags);
#endif
if ((rxdp->Control_1 & RXD_OWN_XENA) &&
((nic->rxd_mode >= RXD_MODE_3A) &&
(rxdp->Control_2 & BIT(0)))) {
mac_control->rings[ring_no].rx_curr_put_info.
offset = off;
goto end;
}
/* calculate size of skb based on ring mode */
size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
if (nic->rxd_mode == RXD_MODE_1)
size += NET_IP_ALIGN;
else if (nic->rxd_mode == RXD_MODE_3B)
size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
else
size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
/* allocate skb */
skb = dev_alloc_skb(size);
if(!skb) {
DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
if (first_rxdp) {
wmb();
first_rxdp->Control_1 |= RXD_OWN_XENA;
}
return -ENOMEM ;
}
if (nic->rxd_mode == RXD_MODE_1) {
/* 1 buffer mode - normal operation mode */
memset(rxdp, 0, sizeof(RxD1_t));
skb_reserve(skb, NET_IP_ALIGN);
((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
(nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);
} else if (nic->rxd_mode >= RXD_MODE_3A) {
/*
* 2 or 3 buffer mode -
* Both 2 buffer mode and 3 buffer mode provides 128
* byte aligned receive buffers.
*
* 3 buffer mode provides header separation where in
* skb->data will have L3/L4 headers where as
* skb_shinfo(skb)->frag_list will have the L4 data
* payload
*/
memset(rxdp, 0, sizeof(RxD3_t));
ba = &mac_control->rings[ring_no].ba[block_no][off];
skb_reserve(skb, BUF0_LEN);
tmp = (u64)(unsigned long) skb->data;
tmp += ALIGN_SIZE;
tmp &= ~ALIGN_SIZE;
skb->data = (void *) (unsigned long)tmp;
skb->tail = (void *) (unsigned long)tmp;
((RxD3_t*)rxdp)->Buffer0_ptr =
pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
PCI_DMA_FROMDEVICE);
rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
if (nic->rxd_mode == RXD_MODE_3B) {
/* Two buffer mode */
/*
* Buffer2 will have L3/L4 header plus
* L4 payload
*/
((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
(nic->pdev, skb->data, dev->mtu + 4,
PCI_DMA_FROMDEVICE);
/* Buffer-1 will be dummy buffer not used */
((RxD3_t*)rxdp)->Buffer1_ptr =
pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
PCI_DMA_FROMDEVICE);
rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
rxdp->Control_2 |= SET_BUFFER2_SIZE_3
(dev->mtu + 4);
} else {
/* 3 buffer mode */
if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
dev_kfree_skb_irq(skb);
if (first_rxdp) {
wmb();
first_rxdp->Control_1 |=
RXD_OWN_XENA;
}
return -ENOMEM ;
}
}
rxdp->Control_2 |= BIT(0);
}
rxdp->Host_Control = (unsigned long) (skb);
if (alloc_tab & ((1 << rxsync_frequency) - 1))
rxdp->Control_1 |= RXD_OWN_XENA;
off++;
if (off == (rxd_count[nic->rxd_mode] + 1))
off = 0;
mac_control->rings[ring_no].rx_curr_put_info.offset = off;
rxdp->Control_2 |= SET_RXD_MARKER;
if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
if (first_rxdp) {
wmb();
first_rxdp->Control_1 |= RXD_OWN_XENA;
}
first_rxdp = rxdp;
}
atomic_inc(&nic->rx_bufs_left[ring_no]);
alloc_tab++;
}
end:
/* Transfer ownership of first descriptor to adapter just before
* exiting. Before that, use memory barrier so that ownership
* and other fields are seen by adapter correctly.
*/
if (first_rxdp) {
wmb();
first_rxdp->Control_1 |= RXD_OWN_XENA;
}
return SUCCESS;
}
static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
{
struct net_device *dev = sp->dev;
int j;
struct sk_buff *skb;
RxD_t *rxdp;
mac_info_t *mac_control;
buffAdd_t *ba;
mac_control = &sp->mac_control;
for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
rxdp = mac_control->rings[ring_no].
rx_blocks[blk].rxds[j].virt_addr;
skb = (struct sk_buff *)
((unsigned long) rxdp->Host_Control);
if (!skb) {
continue;
}
if (sp->rxd_mode == RXD_MODE_1) {
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD1_t*)rxdp)->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE
+ HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
memset(rxdp, 0, sizeof(RxD1_t));
} else if(sp->rxd_mode == RXD_MODE_3B) {
ba = &mac_control->rings[ring_no].
ba[blk][j];
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer0_ptr,
BUF0_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer1_ptr,
BUF1_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer2_ptr,
dev->mtu + 4,
PCI_DMA_FROMDEVICE);
memset(rxdp, 0, sizeof(RxD3_t));
} else {
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer1_ptr,
l3l4hdr_size + 4,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
PCI_DMA_FROMDEVICE);
memset(rxdp, 0, sizeof(RxD3_t));
}
dev_kfree_skb(skb);
atomic_dec(&sp->rx_bufs_left[ring_no]);
}
}
/**
* free_rx_buffers - Frees all Rx buffers
* @sp: device private variable.
* Description:
* This function will free all Rx buffers allocated by host.
* Return Value:
* NONE.
*/
static void free_rx_buffers(struct s2io_nic *sp)
{
struct net_device *dev = sp->dev;
int i, blk = 0, buf_cnt = 0;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->rx_ring_num; i++) {
for (blk = 0; blk < rx_ring_sz[i]; blk++)
free_rxd_blk(sp,i,blk);
mac_control->rings[i].rx_curr_put_info.block_index = 0;
mac_control->rings[i].rx_curr_get_info.block_index = 0;
mac_control->rings[i].rx_curr_put_info.offset = 0;
mac_control->rings[i].rx_curr_get_info.offset = 0;
atomic_set(&sp->rx_bufs_left[i], 0);
DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
dev->name, buf_cnt, i);
}
}
/**
* s2io_poll - Rx interrupt handler for NAPI support
* @dev : pointer to the device structure.
* @budget : The number of packets that were budgeted to be processed
* during one pass through the 'Poll" function.
* Description:
* Comes into picture only if NAPI support has been incorporated. It does
* the same thing that rx_intr_handler does, but not in a interrupt context
* also It will process only a given number of packets.
* Return value:
* 0 on success and 1 if there are No Rx packets to be processed.
*/
#if defined(CONFIG_S2IO_NAPI)
static int s2io_poll(struct net_device *dev, int *budget)
{
nic_t *nic = dev->priv;
int pkt_cnt = 0, org_pkts_to_process;
mac_info_t *mac_control;
struct config_param *config;
XENA_dev_config_t __iomem *bar0 = nic->bar0;
u64 val64;
int i;
atomic_inc(&nic->isr_cnt);
mac_control = &nic->mac_control;
config = &nic->config;
nic->pkts_to_process = *budget;
if (nic->pkts_to_process > dev->quota)
nic->pkts_to_process = dev->quota;
org_pkts_to_process = nic->pkts_to_process;
val64 = readq(&bar0->rx_traffic_int);
writeq(val64, &bar0->rx_traffic_int);
for (i = 0; i < config->rx_ring_num; i++) {
rx_intr_handler(&mac_control->rings[i]);
pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
if (!nic->pkts_to_process) {
/* Quota for the current iteration has been met */
goto no_rx;
}
}
if (!pkt_cnt)
pkt_cnt = 1;
dev->quota -= pkt_cnt;
*budget -= pkt_cnt;
netif_rx_complete(dev);
for (i = 0; i < config->rx_ring_num; i++) {
if (fill_rx_buffers(nic, i) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
break;
}
}
/* Re enable the Rx interrupts. */
en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
atomic_dec(&nic->isr_cnt);
return 0;
no_rx:
dev->quota -= pkt_cnt;
*budget -= pkt_cnt;
for (i = 0; i < config->rx_ring_num; i++) {
if (fill_rx_buffers(nic, i) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
break;
}
}
atomic_dec(&nic->isr_cnt);
return 1;
}
#endif
/**
* rx_intr_handler - Rx interrupt handler
* @nic: device private variable.
* Description:
* If the interrupt is because of a received frame or if the
* receive ring contains fresh as yet un-processed frames,this function is
* called. It picks out the RxD at which place the last Rx processing had
* stopped and sends the skb to the OSM's Rx handler and then increments
* the offset.
* Return Value:
* NONE.
*/
static void rx_intr_handler(ring_info_t *ring_data)
{
nic_t *nic = ring_data->nic;
struct net_device *dev = (struct net_device *) nic->dev;
int get_block, put_block, put_offset;
rx_curr_get_info_t get_info, put_info;
RxD_t *rxdp;
struct sk_buff *skb;
#ifndef CONFIG_S2IO_NAPI
int pkt_cnt = 0;
#endif
int i;
spin_lock(&nic->rx_lock);
if (atomic_read(&nic->card_state) == CARD_DOWN) {
DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
__FUNCTION__, dev->name);
spin_unlock(&nic->rx_lock);
return;
}
get_info = ring_data->rx_curr_get_info;
get_block = get_info.block_index;
put_info = ring_data->rx_curr_put_info;
put_block = put_info.block_index;
rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
#ifndef CONFIG_S2IO_NAPI
spin_lock(&nic->put_lock);
put_offset = ring_data->put_pos;
spin_unlock(&nic->put_lock);
#else
put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
put_info.offset;
#endif
while (RXD_IS_UP2DT(rxdp)) {
/* If your are next to put index then it's FIFO full condition */
if ((get_block == put_block) &&
(get_info.offset + 1) == put_info.offset) {
DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
break;
}
skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ",
dev->name);
DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
spin_unlock(&nic->rx_lock);
return;
}
if (nic->rxd_mode == RXD_MODE_1) {
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD1_t*)rxdp)->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
} else if (nic->rxd_mode == RXD_MODE_3B) {
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer0_ptr,
BUF0_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer1_ptr,
BUF1_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer2_ptr,
dev->mtu + 4,
PCI_DMA_FROMDEVICE);
} else {
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer1_ptr,
l3l4hdr_size + 4,
PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer2_ptr,
dev->mtu, PCI_DMA_FROMDEVICE);
}
rx_osm_handler(ring_data, rxdp);
get_info.offset++;
ring_data->rx_curr_get_info.offset = get_info.offset;
rxdp = ring_data->rx_blocks[get_block].
rxds[get_info.offset].virt_addr;
if (get_info.offset == rxd_count[nic->rxd_mode]) {
get_info.offset = 0;
ring_data->rx_curr_get_info.offset = get_info.offset;
get_block++;
if (get_block == ring_data->block_count)
get_block = 0;
ring_data->rx_curr_get_info.block_index = get_block;
rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
}
#ifdef CONFIG_S2IO_NAPI
nic->pkts_to_process -= 1;
if (!nic->pkts_to_process)
break;
#else
pkt_cnt++;
if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
break;
#endif
}
if (nic->lro) {
/* Clear all LRO sessions before exiting */
for (i=0; i<MAX_LRO_SESSIONS; i++) {
lro_t *lro = &nic->lro0_n[i];
if (lro->in_use) {
update_L3L4_header(nic, lro);
queue_rx_frame(lro->parent);
clear_lro_session(lro);
}
}
}
spin_unlock(&nic->rx_lock);
}
/**
* tx_intr_handler - Transmit interrupt handler
* @nic : device private variable
* Description:
* If an interrupt was raised to indicate DMA complete of the
* Tx packet, this function is called. It identifies the last TxD
* whose buffer was freed and frees all skbs whose data have already
* DMA'ed into the NICs internal memory.
* Return Value:
* NONE
*/
static void tx_intr_handler(fifo_info_t *fifo_data)
{
nic_t *nic = fifo_data->nic;
struct net_device *dev = (struct net_device *) nic->dev;
tx_curr_get_info_t get_info, put_info;
struct sk_buff *skb;
TxD_t *txdlp;
get_info = fifo_data->tx_curr_get_info;
put_info = fifo_data->tx_curr_put_info;
txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
list_virt_addr;
while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
(get_info.offset != put_info.offset) &&
(txdlp->Host_Control)) {
/* Check for TxD errors */
if (txdlp->Control_1 & TXD_T_CODE) {
unsigned long long err;
err = txdlp->Control_1 & TXD_T_CODE;
if ((err >> 48) == 0xA) {
DBG_PRINT(TX_DBG, "TxD returned due \
to loss of link\n");
}
else {
DBG_PRINT(ERR_DBG, "***TxD error \
%llx\n", err);
}
}
skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: Null skb ",
__FUNCTION__);
DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
return;
}
/* Updating the statistics block */
nic->stats.tx_bytes += skb->len;
dev_kfree_skb_irq(skb);
get_info.offset++;
get_info.offset %= get_info.fifo_len + 1;
txdlp = (TxD_t *) fifo_data->list_info
[get_info.offset].list_virt_addr;
fifo_data->tx_curr_get_info.offset =
get_info.offset;
}
spin_lock(&nic->tx_lock);
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
spin_unlock(&nic->tx_lock);
}
/**
* alarm_intr_handler - Alarm Interrrupt handler
* @nic: device private variable
* Description: If the interrupt was neither because of Rx packet or Tx
* complete, this function is called. If the interrupt was to indicate
* a loss of link, the OSM link status handler is invoked for any other
* alarm interrupt the block that raised the interrupt is displayed
* and a H/W reset is issued.
* Return Value:
* NONE
*/
static void alarm_intr_handler(struct s2io_nic *nic)
{
struct net_device *dev = (struct net_device *) nic->dev;
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64 = 0, err_reg = 0;
/* Handling link status change error Intr */
if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
err_reg = readq(&bar0->mac_rmac_err_reg);
writeq(err_reg, &bar0->mac_rmac_err_reg);
if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
schedule_work(&nic->set_link_task);
}
}
/* Handling Ecc errors */
val64 = readq(&bar0->mc_err_reg);
writeq(val64, &bar0->mc_err_reg);
if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
nic->mac_control.stats_info->sw_stat.
double_ecc_errs++;
DBG_PRINT(INIT_DBG, "%s: Device indicates ",
dev->name);
DBG_PRINT(INIT_DBG, "double ECC error!!\n");
if (nic->device_type != XFRAME_II_DEVICE) {
/* Reset XframeI only if critical error */
if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
netif_stop_queue(dev);
schedule_work(&nic->rst_timer_task);
}
}
} else {
nic->mac_control.stats_info->sw_stat.
single_ecc_errs++;
}
}
/* In case of a serious error, the device will be Reset. */
val64 = readq(&bar0->serr_source);
if (val64 & SERR_SOURCE_ANY) {
DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
(unsigned long long)val64);
netif_stop_queue(dev);
schedule_work(&nic->rst_timer_task);
}
/*
* Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
* Error occurs, the adapter will be recycled by disabling the
* adapter enable bit and enabling it again after the device
* becomes Quiescent.
*/
val64 = readq(&bar0->pcc_err_reg);
writeq(val64, &bar0->pcc_err_reg);
if (val64 & PCC_FB_ECC_DB_ERR) {
u64 ac = readq(&bar0->adapter_control);
ac &= ~(ADAPTER_CNTL_EN);
writeq(ac, &bar0->adapter_control);
ac = readq(&bar0->adapter_control);
schedule_work(&nic->set_link_task);
}
/* Other type of interrupts are not being handled now, TODO */
}
/**
* wait_for_cmd_complete - waits for a command to complete.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Description: Function that waits for a command to Write into RMAC
* ADDR DATA registers to be completed and returns either success or
* error depending on whether the command was complete or not.
* Return value:
* SUCCESS on success and FAILURE on failure.
*/
static int wait_for_cmd_complete(nic_t * sp)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
int ret = FAILURE, cnt = 0;
u64 val64;
while (TRUE) {
val64 = readq(&bar0->rmac_addr_cmd_mem);
if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
ret = SUCCESS;
break;
}
msleep(50);
if (cnt++ > 10)
break;
}
return ret;
}
/**
* s2io_reset - Resets the card.
* @sp : private member of the device structure.
* Description: Function to Reset the card. This function then also
* restores the previously saved PCI configuration space registers as
* the card reset also resets the configuration space.
* Return value:
* void.
*/
static void s2io_reset(nic_t * sp)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
u16 subid, pci_cmd;
/* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
val64 = SW_RESET_ALL;
writeq(val64, &bar0->sw_reset);
/*
* At this stage, if the PCI write is indeed completed, the
* card is reset and so is the PCI Config space of the device.
* So a read cannot be issued at this stage on any of the
* registers to ensure the write into "sw_reset" register
* has gone through.
* Question: Is there any system call that will explicitly force
* all the write commands still pending on the bus to be pushed
* through?
* As of now I'am just giving a 250ms delay and hoping that the
* PCI write to sw_reset register is done by this time.
*/
msleep(250);
/* Restore the PCI state saved during initialization. */
pci_restore_state(sp->pdev);
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
pci_cmd);
s2io_init_pci(sp);
msleep(250);
/* Set swapper to enable I/O register access */
s2io_set_swapper(sp);
/* Restore the MSIX table entries from local variables */
restore_xmsi_data(sp);
/* Clear certain PCI/PCI-X fields after reset */
if (sp->device_type == XFRAME_II_DEVICE) {
/* Clear parity err detect bit */
pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
/* Clearing PCIX Ecc status register */
pci_write_config_dword(sp->pdev, 0x68, 0x7C);
/* Clearing PCI_STATUS error reflected here */
writeq(BIT(62), &bar0->txpic_int_reg);
}
/* Reset device statistics maintained by OS */
memset(&sp->stats, 0, sizeof (struct net_device_stats));
/* SXE-002: Configure link and activity LED to turn it off */
subid = sp->pdev->subsystem_device;
if (((subid & 0xFF) >= 0x07) &&
(sp->device_type == XFRAME_I_DEVICE)) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *)bar0 + 0x2700);
}
/*
* Clear spurious ECC interrupts that would have occured on
* XFRAME II cards after reset.
*/
if (sp->device_type == XFRAME_II_DEVICE) {
val64 = readq(&bar0->pcc_err_reg);
writeq(val64, &bar0->pcc_err_reg);
}
sp->device_enabled_once = FALSE;
}
/**
* s2io_set_swapper - to set the swapper controle on the card
* @sp : private member of the device structure,
* pointer to the s2io_nic structure.
* Description: Function to set the swapper control on the card
* correctly depending on the 'endianness' of the system.
* Return value:
* SUCCESS on success and FAILURE on failure.
*/
static int s2io_set_swapper(nic_t * sp)
{
struct net_device *dev = sp->dev;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64, valt, valr;
/*
* Set proper endian settings and verify the same by reading
* the PIF Feed-back register.
*/
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x0123456789ABCDEFULL) {
int i = 0;
u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
0x8100008181000081ULL, /* FE=1, SE=0 */
0x4200004242000042ULL, /* FE=0, SE=1 */
0}; /* FE=0, SE=0 */
while(i<4) {
writeq(value[i], &bar0->swapper_ctrl);
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 == 0x0123456789ABCDEFULL)
break;
i++;
}
if (i == 4) {
DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
dev->name);
DBG_PRINT(ERR_DBG, "feedback read %llx\n",
(unsigned long long) val64);
return FAILURE;
}
valr = value[i];
} else {
valr = readq(&bar0->swapper_ctrl);
}
valt = 0x0123456789ABCDEFULL;
writeq(valt, &bar0->xmsi_address);
val64 = readq(&bar0->xmsi_address);
if(val64 != valt) {
int i = 0;
u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
0x0081810000818100ULL, /* FE=1, SE=0 */
0x0042420000424200ULL, /* FE=0, SE=1 */
0}; /* FE=0, SE=0 */
while(i<4) {
writeq((value[i] | valr), &bar0->swapper_ctrl);
writeq(valt, &bar0->xmsi_address);
val64 = readq(&bar0->xmsi_address);
if(val64 == valt)
break;
i++;
}
if(i == 4) {
unsigned long long x = val64;
DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
return FAILURE;
}
}
val64 = readq(&bar0->swapper_ctrl);
val64 &= 0xFFFF000000000000ULL;
#ifdef __BIG_ENDIAN
/*
* The device by default set to a big endian format, so a
* big endian driver need not set anything.
*/
val64 |= (SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
if (sp->intr_type == INTA)
val64 |= SWAPPER_CTRL_XMSI_SE;
writeq(val64, &bar0->swapper_ctrl);
#else
/*
* Initially we enable all bits to make it accessible by the
* driver, then we selectively enable only those bits that
* we want to set.
*/
val64 |= (SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_R_SE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXD_W_SE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_R_SE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXD_W_SE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
if (sp->intr_type == INTA)
val64 |= SWAPPER_CTRL_XMSI_SE;
writeq(val64, &bar0->swapper_ctrl);
#endif
val64 = readq(&bar0->swapper_ctrl);
/*
* Verifying if endian settings are accurate by reading a
* feedback register.
*/
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x0123456789ABCDEFULL) {
/* Endian settings are incorrect, calls for another dekko. */
DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
dev->name);
DBG_PRINT(ERR_DBG, "feedback read %llx\n",
(unsigned long long) val64);
return FAILURE;
}
return SUCCESS;
}
static int wait_for_msix_trans(nic_t *nic, int i)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
u64 val64;
int ret = 0, cnt = 0;
do {
val64 = readq(&bar0->xmsi_access);
if (!(val64 & BIT(15)))
break;
mdelay(1);
cnt++;
} while(cnt < 5);
if (cnt == 5) {
DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
ret = 1;
}
return ret;
}
static void restore_xmsi_data(nic_t *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
u64 val64;
int i;
for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
writeq(nic->msix_info[i].data, &bar0->xmsi_data);
val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
writeq(val64, &bar0->xmsi_access);
if (wait_for_msix_trans(nic, i)) {
DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
continue;
}
}
}
static void store_xmsi_data(nic_t *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
u64 val64, addr, data;
int i;
/* Store and display */
for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
val64 = (BIT(15) | vBIT(i, 26, 6));
writeq(val64, &bar0->xmsi_access);
if (wait_for_msix_trans(nic, i)) {
DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
continue;
}
addr = readq(&bar0->xmsi_address);
data = readq(&bar0->xmsi_data);
if (addr && data) {
nic->msix_info[i].addr = addr;
nic->msix_info[i].data = data;
}
}
}
int s2io_enable_msi(nic_t *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
u16 msi_ctrl, msg_val;
struct config_param *config = &nic->config;
struct net_device *dev = nic->dev;
u64 val64, tx_mat, rx_mat;
int i, err;
val64 = readq(&bar0->pic_control);
val64 &= ~BIT(1);
writeq(val64, &bar0->pic_control);
err = pci_enable_msi(nic->pdev);
if (err) {
DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
nic->dev->name);
return err;
}
/*
* Enable MSI and use MSI-1 in stead of the standard MSI-0
* for interrupt handling.
*/
pci_read_config_word(nic->pdev, 0x4c, &msg_val);
msg_val ^= 0x1;
pci_write_config_word(nic->pdev, 0x4c, msg_val);
pci_read_config_word(nic->pdev, 0x4c, &msg_val);
pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
msi_ctrl |= 0x10;
pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
/* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
tx_mat = readq(&bar0->tx_mat0_n[0]);
for (i=0; i<config->tx_fifo_num; i++) {
tx_mat |= TX_MAT_SET(i, 1);
}
writeq(tx_mat, &bar0->tx_mat0_n[0]);
rx_mat = readq(&bar0->rx_mat);
for (i=0; i<config->rx_ring_num; i++) {
rx_mat |= RX_MAT_SET(i, 1);
}
writeq(rx_mat, &bar0->rx_mat);
dev->irq = nic->pdev->irq;
return 0;
}
static int s2io_enable_msi_x(nic_t *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
u64 tx_mat, rx_mat;
u16 msi_control; /* Temp variable */
int ret, i, j, msix_indx = 1;
nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
GFP_KERNEL);
if (nic->entries == NULL) {
DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
return -ENOMEM;
}
memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
nic->s2io_entries =
kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
GFP_KERNEL);
if (nic->s2io_entries == NULL) {
DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
kfree(nic->entries);
return -ENOMEM;
}
memset(nic->s2io_entries, 0,
MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
nic->entries[i].entry = i;
nic->s2io_entries[i].entry = i;
nic->s2io_entries[i].arg = NULL;
nic->s2io_entries[i].in_use = 0;
}
tx_mat = readq(&bar0->tx_mat0_n[0]);
for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
tx_mat |= TX_MAT_SET(i, msix_indx);
nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
}
writeq(tx_mat, &bar0->tx_mat0_n[0]);
if (!nic->config.bimodal) {
rx_mat = readq(&bar0->rx_mat);
for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
rx_mat |= RX_MAT_SET(j, msix_indx);
nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
}
writeq(rx_mat, &bar0->rx_mat);
} else {
tx_mat = readq(&bar0->tx_mat0_n[7]);
for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
tx_mat |= TX_MAT_SET(i, msix_indx);
nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
}
writeq(tx_mat, &bar0->tx_mat0_n[7]);
}
ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
if (ret) {
DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
kfree(nic->entries);
kfree(nic->s2io_entries);
nic->entries = NULL;
nic->s2io_entries = NULL;
return -ENOMEM;
}
/*
* To enable MSI-X, MSI also needs to be enabled, due to a bug
* in the herc NIC. (Temp change, needs to be removed later)
*/
pci_read_config_word(nic->pdev, 0x42, &msi_control);
msi_control |= 0x1; /* Enable MSI */
pci_write_config_word(nic->pdev, 0x42, msi_control);
return 0;
}
/* ********************************************************* *
* Functions defined below concern the OS part of the driver *
* ********************************************************* */
/**
* s2io_open - open entry point of the driver
* @dev : pointer to the device structure.
* Description:
* This function is the open entry point of the driver. It mainly calls a
* function to allocate Rx buffers and inserts them into the buffer
* descriptors and then enables the Rx part of the NIC.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_open(struct net_device *dev)
{
nic_t *sp = dev->priv;
int err = 0;
int i;
u16 msi_control; /* Temp variable */
/*
* Make sure you have link off by default every time
* Nic is initialized
*/
netif_carrier_off(dev);
sp->last_link_state = 0;
/* Initialize H/W and enable interrupts */
if (s2io_card_up(sp)) {
DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
dev->name);
err = -ENODEV;
goto hw_init_failed;
}
/* Store the values of the MSIX table in the nic_t structure */
store_xmsi_data(sp);
/* After proper initialization of H/W, register ISR */
if (sp->intr_type == MSI) {
err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
SA_SHIRQ, sp->name, dev);
if (err) {
DBG_PRINT(ERR_DBG, "%s: MSI registration \
failed\n", dev->name);
goto isr_registration_failed;
}
}
if (sp->intr_type == MSI_X) {
for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
sprintf(sp->desc1, "%s:MSI-X-%d-TX",
dev->name, i);
err = request_irq(sp->entries[i].vector,
s2io_msix_fifo_handle, 0, sp->desc1,
sp->s2io_entries[i].arg);
DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
(unsigned long long)sp->msix_info[i].addr);
} else {
sprintf(sp->desc2, "%s:MSI-X-%d-RX",
dev->name, i);
err = request_irq(sp->entries[i].vector,
s2io_msix_ring_handle, 0, sp->desc2,
sp->s2io_entries[i].arg);
DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
(unsigned long long)sp->msix_info[i].addr);
}
if (err) {
DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
failed\n", dev->name, i);
DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
goto isr_registration_failed;
}
sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
}
}
if (sp->intr_type == INTA) {
err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
sp->name, dev);
if (err) {
DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
dev->name);
goto isr_registration_failed;
}
}
if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
err = -ENODEV;
goto setting_mac_address_failed;
}
netif_start_queue(dev);
return 0;
setting_mac_address_failed:
if (sp->intr_type != MSI_X)
free_irq(sp->pdev->irq, dev);
isr_registration_failed:
del_timer_sync(&sp->alarm_timer);
if (sp->intr_type == MSI_X) {
if (sp->device_type == XFRAME_II_DEVICE) {
for (i=1; (sp->s2io_entries[i].in_use ==
MSIX_REGISTERED_SUCCESS); i++) {
int vector = sp->entries[i].vector;
void *arg = sp->s2io_entries[i].arg;
free_irq(vector, arg);
}
pci_disable_msix(sp->pdev);
/* Temp */
pci_read_config_word(sp->pdev, 0x42, &msi_control);
msi_control &= 0xFFFE; /* Disable MSI */
pci_write_config_word(sp->pdev, 0x42, msi_control);
}
}
else if (sp->intr_type == MSI)
pci_disable_msi(sp->pdev);
s2io_reset(sp);
hw_init_failed:
if (sp->intr_type == MSI_X) {
if (sp->entries)
kfree(sp->entries);
if (sp->s2io_entries)
kfree(sp->s2io_entries);
}
return err;
}
/**
* s2io_close -close entry point of the driver
* @dev : device pointer.
* Description:
* This is the stop entry point of the driver. It needs to undo exactly
* whatever was done by the open entry point,thus it's usually referred to
* as the close function.Among other things this function mainly stops the
* Rx side of the NIC and frees all the Rx buffers in the Rx rings.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_close(struct net_device *dev)
{
nic_t *sp = dev->priv;
int i;
u16 msi_control;
flush_scheduled_work();
netif_stop_queue(dev);
/* Reset card, kill tasklet and free Tx and Rx buffers. */
s2io_card_down(sp);
if (sp->intr_type == MSI_X) {
if (sp->device_type == XFRAME_II_DEVICE) {
for (i=1; (sp->s2io_entries[i].in_use ==
MSIX_REGISTERED_SUCCESS); i++) {
int vector = sp->entries[i].vector;
void *arg = sp->s2io_entries[i].arg;
free_irq(vector, arg);
}
pci_read_config_word(sp->pdev, 0x42, &msi_control);
msi_control &= 0xFFFE; /* Disable MSI */
pci_write_config_word(sp->pdev, 0x42, msi_control);
pci_disable_msix(sp->pdev);
}
}
else {
free_irq(sp->pdev->irq, dev);
if (sp->intr_type == MSI)
pci_disable_msi(sp->pdev);
}
sp->device_close_flag = TRUE; /* Device is shut down. */
return 0;
}
/**
* s2io_xmit - Tx entry point of te driver
* @skb : the socket buffer containing the Tx data.
* @dev : device pointer.
* Description :
* This function is the Tx entry point of the driver. S2IO NIC supports
* certain protocol assist features on Tx side, namely CSO, S/G, LSO.
* NOTE: when device cant queue the pkt,just the trans_start variable will
* not be upadted.
* Return value:
* 0 on success & 1 on failure.
*/
static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
{
nic_t *sp = dev->priv;
u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
register u64 val64;
TxD_t *txdp;
TxFIFO_element_t __iomem *tx_fifo;
unsigned long flags;
#ifdef NETIF_F_TSO
int mss;
#endif
u16 vlan_tag = 0;
int vlan_priority = 0;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
spin_lock_irqsave(&sp->tx_lock, flags);
if (atomic_read(&sp->card_state) == CARD_DOWN) {
DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
dev->name);
spin_unlock_irqrestore(&sp->tx_lock, flags);
dev_kfree_skb(skb);
return 0;
}
queue = 0;
/* Get Fifo number to Transmit based on vlan priority */
if (sp->vlgrp && vlan_tx_tag_present(skb)) {
vlan_tag = vlan_tx_tag_get(skb);
vlan_priority = vlan_tag >> 13;
queue = config->fifo_mapping[vlan_priority];
}
put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
list_virt_addr;
queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
/* Avoid "put" pointer going beyond "get" pointer */
if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
netif_stop_queue(dev);
dev_kfree_skb(skb);
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
/* A buffer with no data will be dropped */
if (!skb->len) {
DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
dev_kfree_skb(skb);
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
txdp->Control_1 = 0;
txdp->Control_2 = 0;
#ifdef NETIF_F_TSO
mss = skb_shinfo(skb)->tso_size;
if (mss) {
txdp->Control_1 |= TXD_TCP_LSO_EN;
txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
}
#endif
if (skb->ip_summed == CHECKSUM_HW) {
txdp->Control_2 |=
(TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
TXD_TX_CKO_UDP_EN);
}
txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
txdp->Control_1 |= TXD_LIST_OWN_XENA;
txdp->Control_2 |= config->tx_intr_type;
if (sp->vlgrp && vlan_tx_tag_present(skb)) {
txdp->Control_2 |= TXD_VLAN_ENABLE;
txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
}
frg_len = skb->len - skb->data_len;
if (skb_shinfo(skb)->ufo_size) {
int ufo_size;
ufo_size = skb_shinfo(skb)->ufo_size;
ufo_size &= ~7;
txdp->Control_1 |= TXD_UFO_EN;
txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
#ifdef __BIG_ENDIAN
sp->ufo_in_band_v[put_off] =
(u64)skb_shinfo(skb)->ip6_frag_id;
#else
sp->ufo_in_band_v[put_off] =
(u64)skb_shinfo(skb)->ip6_frag_id << 32;
#endif
txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
txdp->Buffer_Pointer = pci_map_single(sp->pdev,
sp->ufo_in_band_v,
sizeof(u64), PCI_DMA_TODEVICE);
txdp++;
txdp->Control_1 = 0;
txdp->Control_2 = 0;
}
txdp->Buffer_Pointer = pci_map_single
(sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
txdp->Host_Control = (unsigned long) skb;
txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
if (skb_shinfo(skb)->ufo_size)
txdp->Control_1 |= TXD_UFO_EN;
frg_cnt = skb_shinfo(skb)->nr_frags;
/* For fragmented SKB. */
for (i = 0; i < frg_cnt; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
/* A '0' length fragment will be ignored */
if (!frag->size)
continue;
txdp++;
txdp->Buffer_Pointer = (u64) pci_map_page
(sp->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
if (skb_shinfo(skb)->ufo_size)
txdp->Control_1 |= TXD_UFO_EN;
}
txdp->Control_1 |= TXD_GATHER_CODE_LAST;
if (skb_shinfo(skb)->ufo_size)
frg_cnt++; /* as Txd0 was used for inband header */
tx_fifo = mac_control->tx_FIFO_start[queue];
val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
writeq(val64, &tx_fifo->TxDL_Pointer);
val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
TX_FIFO_LAST_LIST);
#ifdef NETIF_F_TSO
if (mss)
val64 |= TX_FIFO_SPECIAL_FUNC;
#endif
if (skb_shinfo(skb)->ufo_size)
val64 |= TX_FIFO_SPECIAL_FUNC;
writeq(val64, &tx_fifo->List_Control);
mmiowb();
put_off++;
put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
/* Avoid "put" pointer going beyond "get" pointer */
if (((put_off + 1) % queue_len) == get_off) {
DBG_PRINT(TX_DBG,
"No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
put_off, get_off);
netif_stop_queue(dev);
}
dev->trans_start = jiffies;
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
static void
s2io_alarm_handle(unsigned long data)
{
nic_t *sp = (nic_t *)data;
alarm_intr_handler(sp);
mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
}
static irqreturn_t
s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
nic_t *sp = dev->priv;
int i;
int ret;
mac_info_t *mac_control;
struct config_param *config;
atomic_inc(&sp->isr_cnt);
mac_control = &sp->mac_control;
config = &sp->config;
DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
/* If Intr is because of Rx Traffic */
for (i = 0; i < config->rx_ring_num; i++)
rx_intr_handler(&mac_control->rings[i]);
/* If Intr is because of Tx Traffic */
for (i = 0; i < config->tx_fifo_num; i++)
tx_intr_handler(&mac_control->fifos[i]);
/*
* If the Rx buffer count is below the panic threshold then
* reallocate the buffers from the interrupt handler itself,
* else schedule a tasklet to reallocate the buffers.
*/
for (i = 0; i < config->rx_ring_num; i++) {
if (!sp->lro) {
int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
int level = rx_buffer_level(sp, rxb_size, i);
if ((level == PANIC) && (!TASKLET_IN_USE)) {
DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
dev->name);
DBG_PRINT(INTR_DBG, "PANIC levels\n");
if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory",
dev->name);
DBG_PRINT(ERR_DBG, " in ISR!!\n");
clear_bit(0, (&sp->tasklet_status));
atomic_dec(&sp->isr_cnt);
return IRQ_HANDLED;
}
clear_bit(0, (&sp->tasklet_status));
} else if (level == LOW) {
tasklet_schedule(&sp->task);
}
}
else if (fill_rx_buffers(sp, i) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory",
dev->name);
DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
break;
}
}
atomic_dec(&sp->isr_cnt);
return IRQ_HANDLED;
}
static irqreturn_t
s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
{
ring_info_t *ring = (ring_info_t *)dev_id;
nic_t *sp = ring->nic;
struct net_device *dev = (struct net_device *) dev_id;
int rxb_size, level, rng_n;
atomic_inc(&sp->isr_cnt);
rx_intr_handler(ring);
rng_n = ring->ring_no;
if (!sp->lro) {
rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
level = rx_buffer_level(sp, rxb_size, rng_n);
if ((level == PANIC) && (!TASKLET_IN_USE)) {
int ret;
DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
DBG_PRINT(INTR_DBG, "PANIC levels\n");
if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "Out of memory in %s",
__FUNCTION__);
clear_bit(0, (&sp->tasklet_status));
return IRQ_HANDLED;
}
clear_bit(0, (&sp->tasklet_status));
} else if (level == LOW) {
tasklet_schedule(&sp->task);
}
}
else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
}
atomic_dec(&sp->isr_cnt);
return IRQ_HANDLED;
}
static irqreturn_t
s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
{
fifo_info_t *fifo = (fifo_info_t *)dev_id;
nic_t *sp = fifo->nic;
atomic_inc(&sp->isr_cnt);
tx_intr_handler(fifo);
atomic_dec(&sp->isr_cnt);
return IRQ_HANDLED;
}
static void s2io_txpic_intr_handle(nic_t *sp)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
val64 = readq(&bar0->pic_int_status);
if (val64 & PIC_INT_GPIO) {
val64 = readq(&bar0->gpio_int_reg);
if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
(val64 & GPIO_INT_REG_LINK_UP)) {
val64 |= GPIO_INT_REG_LINK_DOWN;
val64 |= GPIO_INT_REG_LINK_UP;
writeq(val64, &bar0->gpio_int_reg);
goto masking;
}
if (((sp->last_link_state == LINK_UP) &&
(val64 & GPIO_INT_REG_LINK_DOWN)) ||
((sp->last_link_state == LINK_DOWN) &&
(val64 & GPIO_INT_REG_LINK_UP))) {
val64 = readq(&bar0->gpio_int_mask);
val64 |= GPIO_INT_MASK_LINK_DOWN;
val64 |= GPIO_INT_MASK_LINK_UP;
writeq(val64, &bar0->gpio_int_mask);
s2io_set_link((unsigned long)sp);
}
masking:
if (sp->last_link_state == LINK_UP) {
/*enable down interrupt */
val64 = readq(&bar0->gpio_int_mask);
/* unmasks link down intr */
val64 &= ~GPIO_INT_MASK_LINK_DOWN;
/* masks link up intr */
val64 |= GPIO_INT_MASK_LINK_UP;
writeq(val64, &bar0->gpio_int_mask);
} else {
/*enable UP Interrupt */
val64 = readq(&bar0->gpio_int_mask);
/* unmasks link up interrupt */
val64 &= ~GPIO_INT_MASK_LINK_UP;
/* masks link down interrupt */
val64 |= GPIO_INT_MASK_LINK_DOWN;
writeq(val64, &bar0->gpio_int_mask);
}
}
}
/**
* s2io_isr - ISR handler of the device .
* @irq: the irq of the device.
* @dev_id: a void pointer to the dev structure of the NIC.
* @pt_regs: pointer to the registers pushed on the stack.
* Description: This function is the ISR handler of the device. It
* identifies the reason for the interrupt and calls the relevant
* service routines. As a contongency measure, this ISR allocates the
* recv buffers, if their numbers are below the panic value which is
* presently set to 25% of the original number of rcv buffers allocated.
* Return value:
* IRQ_HANDLED: will be returned if IRQ was handled by this routine
* IRQ_NONE: will be returned if interrupt is not from our device
*/
static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
int i;
u64 reason = 0, val64;
mac_info_t *mac_control;
struct config_param *config;
atomic_inc(&sp->isr_cnt);
mac_control = &sp->mac_control;
config = &sp->config;
/*
* Identify the cause for interrupt and call the appropriate
* interrupt handler. Causes for the interrupt could be;
* 1. Rx of packet.
* 2. Tx complete.
* 3. Link down.
* 4. Error in any functional blocks of the NIC.
*/
reason = readq(&bar0->general_int_status);
if (!reason) {
/* The interrupt was not raised by Xena. */
atomic_dec(&sp->isr_cnt);
return IRQ_NONE;
}
#ifdef CONFIG_S2IO_NAPI
if (reason & GEN_INTR_RXTRAFFIC) {
if (netif_rx_schedule_prep(dev)) {
en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
DISABLE_INTRS);
__netif_rx_schedule(dev);
}
}
#else
/* If Intr is because of Rx Traffic */
if (reason & GEN_INTR_RXTRAFFIC) {
/*
* rx_traffic_int reg is an R1 register, writing all 1's
* will ensure that the actual interrupt causing bit get's
* cleared and hence a read can be avoided.
*/
val64 = 0xFFFFFFFFFFFFFFFFULL;
writeq(val64, &bar0->rx_traffic_int);
for (i = 0; i < config->rx_ring_num; i++) {
rx_intr_handler(&mac_control->rings[i]);
}
}
#endif
/* If Intr is because of Tx Traffic */
if (reason & GEN_INTR_TXTRAFFIC) {
/*
* tx_traffic_int reg is an R1 register, writing all 1's
* will ensure that the actual interrupt causing bit get's
* cleared and hence a read can be avoided.
*/
val64 = 0xFFFFFFFFFFFFFFFFULL;
writeq(val64, &bar0->tx_traffic_int);
for (i = 0; i < config->tx_fifo_num; i++)
tx_intr_handler(&mac_control->fifos[i]);
}
if (reason & GEN_INTR_TXPIC)
s2io_txpic_intr_handle(sp);
/*
* If the Rx buffer count is below the panic threshold then
* reallocate the buffers from the interrupt handler itself,
* else schedule a tasklet to reallocate the buffers.
*/
#ifndef CONFIG_S2IO_NAPI
for (i = 0; i < config->rx_ring_num; i++) {
if (!sp->lro) {
int ret;
int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
int level = rx_buffer_level(sp, rxb_size, i);
if ((level == PANIC) && (!TASKLET_IN_USE)) {
DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
dev->name);
DBG_PRINT(INTR_DBG, "PANIC levels\n");
if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory",
dev->name);
DBG_PRINT(ERR_DBG, " in ISR!!\n");
clear_bit(0, (&sp->tasklet_status));
atomic_dec(&sp->isr_cnt);
return IRQ_HANDLED;
}
clear_bit(0, (&sp->tasklet_status));
} else if (level == LOW) {
tasklet_schedule(&sp->task);
}
}
else if (fill_rx_buffers(sp, i) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory",
dev->name);
DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
break;
}
}
#endif
atomic_dec(&sp->isr_cnt);
return IRQ_HANDLED;
}
/**
* s2io_updt_stats -
*/
static void s2io_updt_stats(nic_t *sp)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
int cnt = 0;
if (atomic_read(&sp->card_state) == CARD_UP) {
/* Apprx 30us on a 133 MHz bus */
val64 = SET_UPDT_CLICKS(10) |
STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
writeq(val64, &bar0->stat_cfg);
do {
udelay(100);
val64 = readq(&bar0->stat_cfg);
if (!(val64 & BIT(0)))
break;
cnt++;
if (cnt == 5)
break; /* Updt failed */
} while(1);
}
}
/**
* s2io_get_stats - Updates the device statistics structure.
* @dev : pointer to the device structure.
* Description:
* This function updates the device statistics structure in the s2io_nic
* structure and returns a pointer to the same.
* Return value:
* pointer to the updated net_device_stats structure.
*/
static struct net_device_stats *s2io_get_stats(struct net_device *dev)
{
nic_t *sp = dev->priv;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
/* Configure Stats for immediate updt */
s2io_updt_stats(sp);
sp->stats.tx_packets =
le32_to_cpu(mac_control->stats_info->tmac_frms);
sp->stats.tx_errors =
le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
sp->stats.rx_errors =
le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
sp->stats.multicast =
le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
sp->stats.rx_length_errors =
le32_to_cpu(mac_control->stats_info->rmac_long_frms);
return (&sp->stats);
}
/**
* s2io_set_multicast - entry point for multicast address enable/disable.
* @dev : pointer to the device structure
* Description:
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled. This also gets
* called to set/reset promiscuous mode. Depending on the deivce flag, we
* determine, if multicast address must be enabled or if promiscuous mode
* is to be disabled etc.
* Return value:
* void.
*/
static void s2io_set_multicast(struct net_device *dev)
{
int i, j, prev_cnt;
struct dev_mc_list *mclist;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
0xfeffffffffffULL;
u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
void __iomem *add;
if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
/* Enable all Multicast addresses */
writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
wait_for_cmd_complete(sp);
sp->m_cast_flg = 1;
sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
/* Disable all Multicast addresses */
writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
wait_for_cmd_complete(sp);
sp->m_cast_flg = 0;
sp->all_multi_pos = 0;
}
if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
/* Put the NIC into promiscuous mode */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_CFG_RMAC_PROM_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
sp->promisc_flg = 1;
DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
dev->name);
} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
/* Remove the NIC from promiscuous mode */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
sp->promisc_flg = 0;
DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
dev->name);
}
/* Update individual M_CAST address list */
if ((!sp->m_cast_flg) && dev->mc_count) {
if (dev->mc_count >
(MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
dev->name);
DBG_PRINT(ERR_DBG, "can be added, please enable ");
DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
return;
}
prev_cnt = sp->mc_addr_count;
sp->mc_addr_count = dev->mc_count;
/* Clear out the previous list of Mc in the H/W. */
for (i = 0; i < prev_cnt; i++) {
writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET
(MAC_MC_ADDR_START_OFFSET + i);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait for command completes */
if (wait_for_cmd_complete(sp)) {
DBG_PRINT(ERR_DBG, "%s: Adding ",
dev->name);
DBG_PRINT(ERR_DBG, "Multicasts failed\n");
return;
}
}
/* Create the new Rx filter list and update the same in H/W. */
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
i++, mclist = mclist->next) {
memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
ETH_ALEN);
mac_addr = 0;
for (j = 0; j < ETH_ALEN; j++) {
mac_addr |= mclist->dmi_addr[j];
mac_addr <<= 8;
}
mac_addr >>= 8;
writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET
(i + MAC_MC_ADDR_START_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait for command completes */
if (wait_for_cmd_complete(sp)) {
DBG_PRINT(ERR_DBG, "%s: Adding ",
dev->name);
DBG_PRINT(ERR_DBG, "Multicasts failed\n");
return;
}
}
}
}
/**
* s2io_set_mac_addr - Programs the Xframe mac address
* @dev : pointer to the device structure.
* @addr: a uchar pointer to the new mac address which is to be set.
* Description : This procedure will program the Xframe to receive
* frames with new Mac Address
* Return value: SUCCESS on success and an appropriate (-)ve integer
* as defined in errno.h file on failure.
*/
static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
{
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
register u64 val64, mac_addr = 0;
int i;
/*
* Set the new MAC address as the new unicast filter and reflect this
* change on the device address registered with the OS. It will be
* at offset 0.
*/
for (i = 0; i < ETH_ALEN; i++) {
mac_addr <<= 8;
mac_addr |= addr[i];
}
writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
&bar0->rmac_addr_data0_mem);
val64 =
RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(0);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
if (wait_for_cmd_complete(sp)) {
DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
return FAILURE;
}
return SUCCESS;
}
/**
* s2io_ethtool_sset - Sets different link parameters.
* @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
* @info: pointer to the structure with parameters given by ethtool to set
* link information.
* Description:
* The function sets different link parameters provided by the user onto
* the NIC.
* Return value:
* 0 on success.
*/
static int s2io_ethtool_sset(struct net_device *dev,
struct ethtool_cmd *info)
{
nic_t *sp = dev->priv;
if ((info->autoneg == AUTONEG_ENABLE) ||
(info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
return -EINVAL;
else {
s2io_close(sp->dev);
s2io_open(sp->dev);
}
return 0;
}
/**
* s2io_ethtol_gset - Return link specific information.
* @sp : private member of the device structure, pointer to the
* s2io_nic structure.
* @info : pointer to the structure with parameters given by ethtool
* to return link information.
* Description:
* Returns link specific information like speed, duplex etc.. to ethtool.
* Return value :
* return 0 on success.
*/
static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
{
nic_t *sp = dev->priv;
info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
info->port = PORT_FIBRE;
/* info->transceiver?? TODO */
if (netif_carrier_ok(sp->dev)) {
info->speed = 10000;
info->duplex = DUPLEX_FULL;
} else {
info->speed = -1;
info->duplex = -1;
}
info->autoneg = AUTONEG_DISABLE;
return 0;
}
/**
* s2io_ethtool_gdrvinfo - Returns driver specific information.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @info : pointer to the structure with parameters given by ethtool to
* return driver information.
* Description:
* Returns driver specefic information like name, version etc.. to ethtool.
* Return value:
* void
*/
static void s2io_ethtool_gdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
nic_t *sp = dev->priv;
strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
strncpy(info->version, s2io_driver_version, sizeof(info->version));
strncpy(info->fw_version, "", sizeof(info->fw_version));
strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
info->regdump_len = XENA_REG_SPACE;
info->eedump_len = XENA_EEPROM_SPACE;
info->testinfo_len = S2IO_TEST_LEN;
info->n_stats = S2IO_STAT_LEN;
}
/**
* s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
* @sp: private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @regs : pointer to the structure with parameters given by ethtool for
* dumping the registers.
* @reg_space: The input argumnet into which all the registers are dumped.
* Description:
* Dumps the entire register space of xFrame NIC into the user given
* buffer area.
* Return value :
* void .
*/
static void s2io_ethtool_gregs(struct net_device *dev,
struct ethtool_regs *regs, void *space)
{
int i;
u64 reg;
u8 *reg_space = (u8 *) space;
nic_t *sp = dev->priv;
regs->len = XENA_REG_SPACE;
regs->version = sp->pdev->subsystem_device;
for (i = 0; i < regs->len; i += 8) {
reg = readq(sp->bar0 + i);
memcpy((reg_space + i), &reg, 8);
}
}
/**
* s2io_phy_id - timer function that alternates adapter LED.
* @data : address of the private member of the device structure, which
* is a pointer to the s2io_nic structure, provided as an u32.
* Description: This is actually the timer function that alternates the
* adapter LED bit of the adapter control bit to set/reset every time on
* invocation. The timer is set for 1/2 a second, hence tha NIC blinks
* once every second.
*/
static void s2io_phy_id(unsigned long data)
{
nic_t *sp = (nic_t *) data;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64 = 0;
u16 subid;
subid = sp->pdev->subsystem_device;
if ((sp->device_type == XFRAME_II_DEVICE) ||
((subid & 0xFF) >= 0x07)) {
val64 = readq(&bar0->gpio_control);
val64 ^= GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
} else {
val64 = readq(&bar0->adapter_control);
val64 ^= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
}
mod_timer(&sp->id_timer, jiffies + HZ / 2);
}
/**
* s2io_ethtool_idnic - To physically identify the nic on the system.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @id : pointer to the structure with identification parameters given by
* ethtool.
* Description: Used to physically identify the NIC on the system.
* The Link LED will blink for a time specified by the user for
* identification.
* NOTE: The Link has to be Up to be able to blink the LED. Hence
* identification is possible only if it's link is up.
* Return value:
* int , returns 0 on success
*/
static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
{
u64 val64 = 0, last_gpio_ctrl_val;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u16 subid;
subid = sp->pdev->subsystem_device;
last_gpio_ctrl_val = readq(&bar0->gpio_control);
if ((sp->device_type == XFRAME_I_DEVICE) &&
((subid & 0xFF) < 0x07)) {
val64 = readq(&bar0->adapter_control);
if (!(val64 & ADAPTER_CNTL_EN)) {
printk(KERN_ERR
"Adapter Link down, cannot blink LED\n");
return -EFAULT;
}
}
if (sp->id_timer.function == NULL) {
init_timer(&sp->id_timer);
sp->id_timer.function = s2io_phy_id;
sp->id_timer.data = (unsigned long) sp;
}
mod_timer(&sp->id_timer, jiffies);
if (data)
msleep_interruptible(data * HZ);
else
msleep_interruptible(MAX_FLICKER_TIME);
del_timer_sync(&sp->id_timer);
if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
writeq(last_gpio_ctrl_val, &bar0->gpio_control);
last_gpio_ctrl_val = readq(&bar0->gpio_control);
}
return 0;
}
/**
* s2io_ethtool_getpause_data -Pause frame frame generation and reception.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @ep : pointer to the structure with pause parameters given by ethtool.
* Description:
* Returns the Pause frame generation and reception capability of the NIC.
* Return value:
* void
*/
static void s2io_ethtool_getpause_data(struct net_device *dev,
struct ethtool_pauseparam *ep)
{
u64 val64;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
val64 = readq(&bar0->rmac_pause_cfg);
if (val64 & RMAC_PAUSE_GEN_ENABLE)
ep->tx_pause = TRUE;
if (val64 & RMAC_PAUSE_RX_ENABLE)
ep->rx_pause = TRUE;
ep->autoneg = FALSE;
}
/**
* s2io_ethtool_setpause_data - set/reset pause frame generation.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @ep : pointer to the structure with pause parameters given by ethtool.
* Description:
* It can be used to set or reset Pause frame generation or reception
* support of the NIC.
* Return value:
* int, returns 0 on Success
*/
static int s2io_ethtool_setpause_data(struct net_device *dev,
struct ethtool_pauseparam *ep)
{
u64 val64;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
val64 = readq(&bar0->rmac_pause_cfg);
if (ep->tx_pause)
val64 |= RMAC_PAUSE_GEN_ENABLE;
else
val64 &= ~RMAC_PAUSE_GEN_ENABLE;
if (ep->rx_pause)
val64 |= RMAC_PAUSE_RX_ENABLE;
else
val64 &= ~RMAC_PAUSE_RX_ENABLE;
writeq(val64, &bar0->rmac_pause_cfg);
return 0;
}
/**
* read_eeprom - reads 4 bytes of data from user given offset.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @off : offset at which the data must be written
* @data : Its an output parameter where the data read at the given
* offset is stored.
* Description:
* Will read 4 bytes of data from the user given offset and return the
* read data.
* NOTE: Will allow to read only part of the EEPROM visible through the
* I2C bus.
* Return value:
* -1 on failure and 0 on success.
*/
#define S2IO_DEV_ID 5
static int read_eeprom(nic_t * sp, int off, u64 * data)
{
int ret = -1;
u32 exit_cnt = 0;
u64 val64;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
if (sp->device_type == XFRAME_I_DEVICE) {
val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
I2C_CONTROL_CNTL_START;
SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->i2c_control);
if (I2C_CONTROL_CNTL_END(val64)) {
*data = I2C_CONTROL_GET_DATA(val64);
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
}
if (sp->device_type == XFRAME_II_DEVICE) {
val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
SPI_CONTROL_BYTECNT(0x3) |
SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
val64 |= SPI_CONTROL_REQ;
SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->spi_control);
if (val64 & SPI_CONTROL_NACK) {
ret = 1;
break;
} else if (val64 & SPI_CONTROL_DONE) {
*data = readq(&bar0->spi_data);
*data &= 0xffffff;
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
}
return ret;
}
/**
* write_eeprom - actually writes the relevant part of the data value.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @off : offset at which the data must be written
* @data : The data that is to be written
* @cnt : Number of bytes of the data that are actually to be written into
* the Eeprom. (max of 3)
* Description:
* Actually writes the relevant part of the data value into the Eeprom
* through the I2C bus.
* Return value:
* 0 on success, -1 on failure.
*/
static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
{
int exit_cnt = 0, ret = -1;
u64 val64;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
if (sp->device_type == XFRAME_I_DEVICE) {
val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
I2C_CONTROL_CNTL_START;
SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->i2c_control);
if (I2C_CONTROL_CNTL_END(val64)) {
if (!(val64 & I2C_CONTROL_NACK))
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
}
if (sp->device_type == XFRAME_II_DEVICE) {
int write_cnt = (cnt == 8) ? 0 : cnt;
writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
SPI_CONTROL_BYTECNT(write_cnt) |
SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
val64 |= SPI_CONTROL_REQ;
SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->spi_control);
if (val64 & SPI_CONTROL_NACK) {
ret = 1;
break;
} else if (val64 & SPI_CONTROL_DONE) {
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
}
return ret;
}
/**
* s2io_ethtool_geeprom - reads the value stored in the Eeprom.
* @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
* @eeprom : pointer to the user level structure provided by ethtool,
* containing all relevant information.
* @data_buf : user defined value to be written into Eeprom.
* Description: Reads the values stored in the Eeprom at given offset
* for a given length. Stores these values int the input argument data
* buffer 'data_buf' and returns these to the caller (ethtool.)
* Return value:
* int 0 on success
*/
static int s2io_ethtool_geeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 * data_buf)
{
u32 i, valid;
u64 data;
nic_t *sp = dev->priv;
eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
for (i = 0; i < eeprom->len; i += 4) {
if (read_eeprom(sp, (eeprom->offset + i), &data)) {
DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
return -EFAULT;
}
valid = INV(data);
memcpy((data_buf + i), &valid, 4);
}
return 0;
}
/**
* s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @eeprom : pointer to the user level structure provided by ethtool,
* containing all relevant information.
* @data_buf ; user defined value to be written into Eeprom.
* Description:
* Tries to write the user provided value in the Eeprom, at the offset
* given by the user.
* Return value:
* 0 on success, -EFAULT on failure.
*/
static int s2io_ethtool_seeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom,
u8 * data_buf)
{
int len = eeprom->len, cnt = 0;
u64 valid = 0, data;
nic_t *sp = dev->priv;
if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
DBG_PRINT(ERR_DBG,
"ETHTOOL_WRITE_EEPROM Err: Magic value ");
DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
eeprom->magic);
return -EFAULT;
}
while (len) {
data = (u32) data_buf[cnt] & 0x000000FF;
if (data) {
valid = (u32) (data << 24);
} else
valid = data;
if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
DBG_PRINT(ERR_DBG,
"ETHTOOL_WRITE_EEPROM Err: Cannot ");
DBG_PRINT(ERR_DBG,
"write into the specified offset\n");
return -EFAULT;
}
cnt++;
len--;
}
return 0;
}
/**
* s2io_register_test - reads and writes into all clock domains.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data : variable that returns the result of each of the test conducted b
* by the driver.
* Description:
* Read and write into all clock domains. The NIC has 3 clock domains,
* see that registers in all the three regions are accessible.
* Return value:
* 0 on success.
*/
static int s2io_register_test(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64 = 0, exp_val;
int fail = 0;
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x123456789abcdefULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
}
val64 = readq(&bar0->rmac_pause_cfg);
if (val64 != 0xc000ffff00000000ULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
}
val64 = readq(&bar0->rx_queue_cfg);
if (sp->device_type == XFRAME_II_DEVICE)
exp_val = 0x0404040404040404ULL;
else
exp_val = 0x0808080808080808ULL;
if (val64 != exp_val) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
}
val64 = readq(&bar0->xgxs_efifo_cfg);
if (val64 != 0x000000001923141EULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
}
val64 = 0x5A5A5A5A5A5A5A5AULL;
writeq(val64, &bar0->xmsi_data);
val64 = readq(&bar0->xmsi_data);
if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
fail = 1;
DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
}
val64 = 0xA5A5A5A5A5A5A5A5ULL;
writeq(val64, &bar0->xmsi_data);
val64 = readq(&bar0->xmsi_data);
if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
fail = 1;
DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
}
*data = fail;
return fail;
}
/**
* s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data:variable that returns the result of each of the test conducted by
* the driver.
* Description:
* Verify that EEPROM in the xena can be programmed using I2C_CONTROL
* register.
* Return value:
* 0 on success.
*/
static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
{
int fail = 0;
u64 ret_data, org_4F0, org_7F0;
u8 saved_4F0 = 0, saved_7F0 = 0;
struct net_device *dev = sp->dev;
/* Test Write Error at offset 0 */
/* Note that SPI interface allows write access to all areas
* of EEPROM. Hence doing all negative testing only for Xframe I.
*/
if (sp->device_type == XFRAME_I_DEVICE)
if (!write_eeprom(sp, 0, 0, 3))
fail = 1;
/* Save current values at offsets 0x4F0 and 0x7F0 */
if (!read_eeprom(sp, 0x4F0, &org_4F0))
saved_4F0 = 1;
if (!read_eeprom(sp, 0x7F0, &org_7F0))
saved_7F0 = 1;
/* Test Write at offset 4f0 */
if (write_eeprom(sp, 0x4F0, 0x012345, 3))
fail = 1;
if (read_eeprom(sp, 0x4F0, &ret_data))
fail = 1;
if (ret_data != 0x012345) {
DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
"Data written %llx Data read %llx\n",
dev->name, (unsigned long long)0x12345,
(unsigned long long)ret_data);
fail = 1;
}
/* Reset the EEPROM data go FFFF */
write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
/* Test Write Request Error at offset 0x7c */
if (sp->device_type == XFRAME_I_DEVICE)
if (!write_eeprom(sp, 0x07C, 0, 3))
fail = 1;
/* Test Write Request at offset 0x7f0 */
if (write_eeprom(sp, 0x7F0, 0x012345, 3))
fail = 1;
if (read_eeprom(sp, 0x7F0, &ret_data))
fail = 1;
if (ret_data != 0x012345) {
DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
"Data written %llx Data read %llx\n",
dev->name, (unsigned long long)0x12345,
(unsigned long long)ret_data);
fail = 1;
}
/* Reset the EEPROM data go FFFF */
write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
if (sp->device_type == XFRAME_I_DEVICE) {
/* Test Write Error at offset 0x80 */
if (!write_eeprom(sp, 0x080, 0, 3))
fail = 1;
/* Test Write Error at offset 0xfc */
if (!write_eeprom(sp, 0x0FC, 0, 3))
fail = 1;
/* Test Write Error at offset 0x100 */
if (!write_eeprom(sp, 0x100, 0, 3))
fail = 1;
/* Test Write Error at offset 4ec */
if (!write_eeprom(sp, 0x4EC, 0, 3))
fail = 1;
}
/* Restore values at offsets 0x4F0 and 0x7F0 */
if (saved_4F0)
write_eeprom(sp, 0x4F0, org_4F0, 3);
if (saved_7F0)
write_eeprom(sp, 0x7F0, org_7F0, 3);
*data = fail;
return fail;
}
/**
* s2io_bist_test - invokes the MemBist test of the card .
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data:variable that returns the result of each of the test conducted by
* the driver.
* Description:
* This invokes the MemBist test of the card. We give around
* 2 secs time for the Test to complete. If it's still not complete
* within this peiod, we consider that the test failed.
* Return value:
* 0 on success and -1 on failure.
*/
static int s2io_bist_test(nic_t * sp, uint64_t * data)
{
u8 bist = 0;
int cnt = 0, ret = -1;
pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
bist |= PCI_BIST_START;
pci_write_config_word(sp->pdev, PCI_BIST, bist);
while (cnt < 20) {
pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
if (!(bist & PCI_BIST_START)) {
*data = (bist & PCI_BIST_CODE_MASK);
ret = 0;
break;
}
msleep(100);
cnt++;
}
return ret;
}
/**
* s2io-link_test - verifies the link state of the nic
* @sp ; private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data: variable that returns the result of each of the test conducted by
* the driver.
* Description:
* The function verifies the link state of the NIC and updates the input
* argument 'data' appropriately.
* Return value:
* 0 on success.
*/
static int s2io_link_test(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
val64 = readq(&bar0->adapter_status);
if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
*data = 1;
return 0;
}
/**
* s2io_rldram_test - offline test for access to the RldRam chip on the NIC
* @sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data - variable that returns the result of each of the test
* conducted by the driver.
* Description:
* This is one of the offline test that tests the read and write
* access to the RldRam chip on the NIC.
* Return value:
* 0 on success.
*/
static int s2io_rldram_test(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
int cnt, iteration = 0, test_fail = 0;
val64 = readq(&bar0->adapter_control);
val64 &= ~ADAPTER_ECC_EN;
writeq(val64, &bar0->adapter_control);
val64 = readq(&bar0->mc_rldram_test_ctrl);
val64 |= MC_RLDRAM_TEST_MODE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
val64 = readq(&bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
val64 |= MC_RLDRAM_MRS_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
while (iteration < 2) {
val64 = 0x55555555aaaa0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d0);
val64 = 0xaaaa5a5555550000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d1);
val64 = 0x55aaaaaaaa5a0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d2);
val64 = (u64) (0x0000003ffffe0100ULL);
writeq(val64, &bar0->mc_rldram_test_add);
val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
MC_RLDRAM_TEST_GO;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
for (cnt = 0; cnt < 5; cnt++) {
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_DONE)
break;
msleep(200);
}
if (cnt == 5)
break;
val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
for (cnt = 0; cnt < 5; cnt++) {
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_DONE)
break;
msleep(500);
}
if (cnt == 5)
break;
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (!(val64 & MC_RLDRAM_TEST_PASS))
test_fail = 1;
iteration++;
}
*data = test_fail;
/* Bring the adapter out of test mode */
SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
return test_fail;
}
/**
* s2io_ethtool_test - conducts 6 tsets to determine the health of card.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @ethtest : pointer to a ethtool command specific structure that will be
* returned to the user.
* @data : variable that returns the result of each of the test
* conducted by the driver.
* Description:
* This function conducts 6 tests ( 4 offline and 2 online) to determine
* the health of the card.
* Return value:
* void
*/
static void s2io_ethtool_test(struct net_device *dev,
struct ethtool_test *ethtest,
uint64_t * data)
{
nic_t *sp = dev->priv;
int orig_state = netif_running(sp->dev);
if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
/* Offline Tests. */
if (orig_state)
s2io_close(sp->dev);
if (s2io_register_test(sp, &data[0]))
ethtest->flags |= ETH_TEST_FL_FAILED;
s2io_reset(sp);
if (s2io_rldram_test(sp, &data[3]))
ethtest->flags |= ETH_TEST_FL_FAILED;
s2io_reset(sp);
if (s2io_eeprom_test(sp, &data[1]))
ethtest->flags |= ETH_TEST_FL_FAILED;
if (s2io_bist_test(sp, &data[4]))
ethtest->flags |= ETH_TEST_FL_FAILED;
if (orig_state)
s2io_open(sp->dev);
data[2] = 0;
} else {
/* Online Tests. */
if (!orig_state) {
DBG_PRINT(ERR_DBG,
"%s: is not up, cannot run test\n",
dev->name);
data[0] = -1;
data[1] = -1;
data[2] = -1;
data[3] = -1;
data[4] = -1;
}
if (s2io_link_test(sp, &data[2]))
ethtest->flags |= ETH_TEST_FL_FAILED;
data[0] = 0;
data[1] = 0;
data[3] = 0;
data[4] = 0;
}
}
static void s2io_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *estats,
u64 * tmp_stats)
{
int i = 0;
nic_t *sp = dev->priv;
StatInfo_t *stat_info = sp->mac_control.stats_info;
u64 tmp;
s2io_updt_stats(sp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
le32_to_cpu(stat_info->tmac_data_octets);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_mcst_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_bcst_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_any_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
le32_to_cpu(stat_info->tmac_vld_ip);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
le32_to_cpu(stat_info->tmac_drop_ip);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
le32_to_cpu(stat_info->tmac_icmp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
le32_to_cpu(stat_info->tmac_rst_tcp);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
le32_to_cpu(stat_info->tmac_udp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_vld_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
le32_to_cpu(stat_info->rmac_data_octets);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_vld_mcst_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_vld_bcst_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_discarded_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_usized_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_osized_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_frag_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_jabber_frms);
tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
le32_to_cpu(stat_info->rmac_ip);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
le32_to_cpu(stat_info->rmac_drop_ip);
tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
le32_to_cpu(stat_info->rmac_icmp);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
le32_to_cpu(stat_info->rmac_udp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
le32_to_cpu(stat_info->rmac_err_drp_udp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
le32_to_cpu(stat_info->rmac_pause_cnt);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
le32_to_cpu(stat_info->rmac_accepted_ip);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
tmp_stats[i++] = 0;
tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
tmp_stats[i++] = stat_info->sw_stat.sending_both;
tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
tmp = 0;
if (stat_info->sw_stat.num_aggregations) {
tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
do_div(tmp, stat_info->sw_stat.num_aggregations);
}
tmp_stats[i++] = tmp;
}
static int s2io_ethtool_get_regs_len(struct net_device *dev)
{
return (XENA_REG_SPACE);
}
static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
{
nic_t *sp = dev->priv;
return (sp->rx_csum);
}
static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
{
nic_t *sp = dev->priv;
if (data)
sp->rx_csum = 1;
else
sp->rx_csum = 0;
return 0;
}
static int s2io_get_eeprom_len(struct net_device *dev)
{
return (XENA_EEPROM_SPACE);
}
static int s2io_ethtool_self_test_count(struct net_device *dev)
{
return (S2IO_TEST_LEN);
}
static void s2io_ethtool_get_strings(struct net_device *dev,
u32 stringset, u8 * data)
{
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
break;
case ETH_SS_STATS:
memcpy(data, &ethtool_stats_keys,
sizeof(ethtool_stats_keys));
}
}
static int s2io_ethtool_get_stats_count(struct net_device *dev)
{
return (S2IO_STAT_LEN);
}
static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
{
if (data)
dev->features |= NETIF_F_IP_CSUM;
else
dev->features &= ~NETIF_F_IP_CSUM;
return 0;
}
static struct ethtool_ops netdev_ethtool_ops = {
.get_settings = s2io_ethtool_gset,
.set_settings = s2io_ethtool_sset,
.get_drvinfo = s2io_ethtool_gdrvinfo,
.get_regs_len = s2io_ethtool_get_regs_len,
.get_regs = s2io_ethtool_gregs,
.get_link = ethtool_op_get_link,
.get_eeprom_len = s2io_get_eeprom_len,
.get_eeprom = s2io_ethtool_geeprom,
.set_eeprom = s2io_ethtool_seeprom,
.get_pauseparam = s2io_ethtool_getpause_data,
.set_pauseparam = s2io_ethtool_setpause_data,
.get_rx_csum = s2io_ethtool_get_rx_csum,
.set_rx_csum = s2io_ethtool_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = s2io_ethtool_op_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
.set_tso = ethtool_op_set_tso,
#endif
.get_ufo = ethtool_op_get_ufo,
.set_ufo = ethtool_op_set_ufo,
.self_test_count = s2io_ethtool_self_test_count,
.self_test = s2io_ethtool_test,
.get_strings = s2io_ethtool_get_strings,
.phys_id = s2io_ethtool_idnic,
.get_stats_count = s2io_ethtool_get_stats_count,
.get_ethtool_stats = s2io_get_ethtool_stats
};
/**
* s2io_ioctl - Entry point for the Ioctl
* @dev : Device pointer.
* @ifr : An IOCTL specefic structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* @cmd : This is used to distinguish between the different commands that
* can be passed to the IOCTL functions.
* Description:
* Currently there are no special functionality supported in IOCTL, hence
* function always return EOPNOTSUPPORTED
*/
static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
return -EOPNOTSUPP;
}
/**
* s2io_change_mtu - entry point to change MTU size for the device.
* @dev : device pointer.
* @new_mtu : the new MTU size for the device.
* Description: A driver entry point to change MTU size for the device.
* Before changing the MTU the device must be stopped.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_change_mtu(struct net_device *dev, int new_mtu)
{
nic_t *sp = dev->priv;
if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
dev->name);
return -EPERM;
}
dev->mtu = new_mtu;
if (netif_running(dev)) {
s2io_card_down(sp);
netif_stop_queue(dev);
if (s2io_card_up(sp)) {
DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
__FUNCTION__);
}
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
} else { /* Device is down */
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64 = new_mtu;
writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
}
return 0;
}
/**
* s2io_tasklet - Bottom half of the ISR.
* @dev_adr : address of the device structure in dma_addr_t format.
* Description:
* This is the tasklet or the bottom half of the ISR. This is
* an extension of the ISR which is scheduled by the scheduler to be run
* when the load on the CPU is low. All low priority tasks of the ISR can
* be pushed into the tasklet. For now the tasklet is used only to
* replenish the Rx buffers in the Rx buffer descriptors.
* Return value:
* void.
*/
static void s2io_tasklet(unsigned long dev_addr)
{
struct net_device *dev = (struct net_device *) dev_addr;
nic_t *sp = dev->priv;
int i, ret;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
if (!TASKLET_IN_USE) {
for (i = 0; i < config->rx_ring_num; i++) {
ret = fill_rx_buffers(sp, i);
if (ret == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s: Out of ",
dev->name);
DBG_PRINT(ERR_DBG, "memory in tasklet\n");
break;
} else if (ret == -EFILL) {
DBG_PRINT(ERR_DBG,
"%s: Rx Ring %d is full\n",
dev->name, i);
break;
}
}
clear_bit(0, (&sp->tasklet_status));
}
}
/**
* s2io_set_link - Set the LInk status
* @data: long pointer to device private structue
* Description: Sets the link status for the adapter
*/
static void s2io_set_link(unsigned long data)
{
nic_t *nic = (nic_t *) data;
struct net_device *dev = nic->dev;
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64;
u16 subid;
if (test_and_set_bit(0, &(nic->link_state))) {
/* The card is being reset, no point doing anything */
return;
}
subid = nic->pdev->subsystem_device;
if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
/*
* Allow a small delay for the NICs self initiated
* cleanup to complete.
*/
msleep(100);
}
val64 = readq(&bar0->adapter_status);
if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
if (LINK_IS_UP(val64)) {
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_CNTL_EN;
writeq(val64, &bar0->adapter_control);
if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
subid)) {
val64 = readq(&bar0->gpio_control);
val64 |= GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
val64 = readq(&bar0->gpio_control);
} else {
val64 |= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
}
if (s2io_link_fault_indication(nic) ==
MAC_RMAC_ERR_TIMER) {
val64 = readq(&bar0->adapter_status);
if (!LINK_IS_UP(val64)) {
DBG_PRINT(ERR_DBG, "%s:", dev->name);
DBG_PRINT(ERR_DBG, " Link down");
DBG_PRINT(ERR_DBG, "after ");
DBG_PRINT(ERR_DBG, "enabling ");
DBG_PRINT(ERR_DBG, "device \n");
}
}
if (nic->device_enabled_once == FALSE) {
nic->device_enabled_once = TRUE;
}
s2io_link(nic, LINK_UP);
} else {
if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
subid)) {
val64 = readq(&bar0->gpio_control);
val64 &= ~GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
val64 = readq(&bar0->gpio_control);
}
s2io_link(nic, LINK_DOWN);
}
} else { /* NIC is not Quiescent. */
DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
netif_stop_queue(dev);
}
clear_bit(0, &(nic->link_state));
}
static void s2io_card_down(nic_t * sp)
{
int cnt = 0;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
unsigned long flags;
register u64 val64 = 0;
del_timer_sync(&sp->alarm_timer);
/* If s2io_set_link task is executing, wait till it completes. */
while (test_and_set_bit(0, &(sp->link_state))) {
msleep(50);
}
atomic_set(&sp->card_state, CARD_DOWN);
/* disable Tx and Rx traffic on the NIC */
stop_nic(sp);
/* Kill tasklet. */
tasklet_kill(&sp->task);
/* Check if the device is Quiescent and then Reset the NIC */
do {
val64 = readq(&bar0->adapter_status);
if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
break;
}
msleep(50);
cnt++;
if (cnt == 10) {
DBG_PRINT(ERR_DBG,
"s2io_close:Device not Quiescent ");
DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
(unsigned long long) val64);
break;
}
} while (1);
s2io_reset(sp);
/* Waiting till all Interrupt handlers are complete */
cnt = 0;
do {
msleep(10);
if (!atomic_read(&sp->isr_cnt))
break;
cnt++;
} while(cnt < 5);
spin_lock_irqsave(&sp->tx_lock, flags);
/* Free all Tx buffers */
free_tx_buffers(sp);
spin_unlock_irqrestore(&sp->tx_lock, flags);
/* Free all Rx buffers */
spin_lock_irqsave(&sp->rx_lock, flags);
free_rx_buffers(sp);
spin_unlock_irqrestore(&sp->rx_lock, flags);
clear_bit(0, &(sp->link_state));
}
static int s2io_card_up(nic_t * sp)
{
int i, ret = 0;
mac_info_t *mac_control;
struct config_param *config;
struct net_device *dev = (struct net_device *) sp->dev;
/* Initialize the H/W I/O registers */
if (init_nic(sp) != 0) {
DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
dev->name);
return -ENODEV;
}
if (sp->intr_type == MSI)
ret = s2io_enable_msi(sp);
else if (sp->intr_type == MSI_X)
ret = s2io_enable_msi_x(sp);
if (ret) {
DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
sp->intr_type = INTA;
}
/*
* Initializing the Rx buffers. For now we are considering only 1
* Rx ring and initializing buffers into 30 Rx blocks
*/
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->rx_ring_num; i++) {
if ((ret = fill_rx_buffers(sp, i))) {
DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
dev->name);
s2io_reset(sp);
free_rx_buffers(sp);
return -ENOMEM;
}
DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
atomic_read(&sp->rx_bufs_left[i]));
}
/* Setting its receive mode */
s2io_set_multicast(dev);
if (sp->lro) {
/* Initialize max aggregatable pkts based on MTU */
sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
/* Check if we can use(if specified) user provided value */
if (lro_max_pkts < sp->lro_max_aggr_per_sess)
sp->lro_max_aggr_per_sess = lro_max_pkts;
}
/* Enable tasklet for the device */
tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
/* Enable Rx Traffic and interrupts on the NIC */
if (start_nic(sp)) {
DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
tasklet_kill(&sp->task);
s2io_reset(sp);
free_irq(dev->irq, dev);
free_rx_buffers(sp);
return -ENODEV;
}
S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
atomic_set(&sp->card_state, CARD_UP);
return 0;
}
/**
* s2io_restart_nic - Resets the NIC.
* @data : long pointer to the device private structure
* Description:
* This function is scheduled to be run by the s2io_tx_watchdog
* function after 0.5 secs to reset the NIC. The idea is to reduce
* the run time of the watch dog routine which is run holding a
* spin lock.
*/
static void s2io_restart_nic(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
nic_t *sp = dev->priv;
s2io_card_down(sp);
if (s2io_card_up(sp)) {
DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
dev->name);
}
netif_wake_queue(dev);
DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
dev->name);
}
/**
* s2io_tx_watchdog - Watchdog for transmit side.
* @dev : Pointer to net device structure
* Description:
* This function is triggered if the Tx Queue is stopped
* for a pre-defined amount of time when the Interface is still up.
* If the Interface is jammed in such a situation, the hardware is
* reset (by s2io_close) and restarted again (by s2io_open) to
* overcome any problem that might have been caused in the hardware.
* Return value:
* void
*/
static void s2io_tx_watchdog(struct net_device *dev)
{
nic_t *sp = dev->priv;
if (netif_carrier_ok(dev)) {
schedule_work(&sp->rst_timer_task);
}
}
/**
* rx_osm_handler - To perform some OS related operations on SKB.
* @sp: private member of the device structure,pointer to s2io_nic structure.
* @skb : the socket buffer pointer.
* @len : length of the packet
* @cksum : FCS checksum of the frame.
* @ring_no : the ring from which this RxD was extracted.
* Description:
* This function is called by the Tx interrupt serivce routine to perform
* some OS related operations on the SKB before passing it to the upper
* layers. It mainly checks if the checksum is OK, if so adds it to the
* SKBs cksum variable, increments the Rx packet count and passes the SKB
* to the upper layer. If the checksum is wrong, it increments the Rx
* packet error count, frees the SKB and returns error.
* Return value:
* SUCCESS on success and -1 on failure.
*/
static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
{
nic_t *sp = ring_data->nic;
struct net_device *dev = (struct net_device *) sp->dev;
struct sk_buff *skb = (struct sk_buff *)
((unsigned long) rxdp->Host_Control);
int ring_no = ring_data->ring_no;
u16 l3_csum, l4_csum;
lro_t *lro;
skb->dev = dev;
if (rxdp->Control_1 & RXD_T_CODE) {
unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
dev->name, err);
dev_kfree_skb(skb);
sp->stats.rx_crc_errors++;
atomic_dec(&sp->rx_bufs_left[ring_no]);
rxdp->Host_Control = 0;
return 0;
}
/* Updating statistics */
rxdp->Host_Control = 0;
sp->rx_pkt_count++;
sp->stats.rx_packets++;
if (sp->rxd_mode == RXD_MODE_1) {
int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
sp->stats.rx_bytes += len;
skb_put(skb, len);
} else if (sp->rxd_mode >= RXD_MODE_3A) {
int get_block = ring_data->rx_curr_get_info.block_index;
int get_off = ring_data->rx_curr_get_info.offset;
int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
unsigned char *buff = skb_push(skb, buf0_len);
buffAdd_t *ba = &ring_data->ba[get_block][get_off];
sp->stats.rx_bytes += buf0_len + buf2_len;
memcpy(buff, ba->ba_0, buf0_len);
if (sp->rxd_mode == RXD_MODE_3A) {
int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
skb_put(skb, buf1_len);
skb->len += buf2_len;
skb->data_len += buf2_len;
skb->truesize += buf2_len;
skb_put(skb_shinfo(skb)->frag_list, buf2_len);
sp->stats.rx_bytes += buf1_len;
} else
skb_put(skb, buf2_len);
}
if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
(sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
(sp->rx_csum)) {
l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
/*
* NIC verifies if the Checksum of the received
* frame is Ok or not and accordingly returns
* a flag in the RxD.
*/
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (sp->lro) {
u32 tcp_len;
u8 *tcp;
int ret = 0;
ret = s2io_club_tcp_session(skb->data, &tcp,
&tcp_len, &lro, rxdp, sp);
switch (ret) {
case 3: /* Begin anew */
lro->parent = skb;
goto aggregate;
case 1: /* Aggregate */
{
lro_append_pkt(sp, lro,
skb, tcp_len);
goto aggregate;
}
case 4: /* Flush session */
{
lro_append_pkt(sp, lro,
skb, tcp_len);
queue_rx_frame(lro->parent);
clear_lro_session(lro);
sp->mac_control.stats_info->
sw_stat.flush_max_pkts++;
goto aggregate;
}
case 2: /* Flush both */
lro->parent->data_len =
lro->frags_len;
sp->mac_control.stats_info->
sw_stat.sending_both++;
queue_rx_frame(lro->parent);
clear_lro_session(lro);
goto send_up;
case 0: /* sessions exceeded */
case 5: /*
* First pkt in session not
* L3/L4 aggregatable
*/
break;
default:
DBG_PRINT(ERR_DBG,
"%s: Samadhana!!\n",
__FUNCTION__);
BUG();
}
}
} else {
/*
* Packet with erroneous checksum, let the
* upper layers deal with it.
*/
skb->ip_summed = CHECKSUM_NONE;
}
} else {
skb->ip_summed = CHECKSUM_NONE;
}
if (!sp->lro) {
skb->protocol = eth_type_trans(skb, dev);
#ifdef CONFIG_S2IO_NAPI
if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
/* Queueing the vlan frame to the upper layer */
vlan_hwaccel_receive_skb(skb, sp->vlgrp,
RXD_GET_VLAN_TAG(rxdp->Control_2));
} else {
netif_receive_skb(skb);
}
#else
if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
/* Queueing the vlan frame to the upper layer */
vlan_hwaccel_rx(skb, sp->vlgrp,
RXD_GET_VLAN_TAG(rxdp->Control_2));
} else {
netif_rx(skb);
}
#endif
} else {
send_up:
queue_rx_frame(skb);
}
dev->last_rx = jiffies;
aggregate:
atomic_dec(&sp->rx_bufs_left[ring_no]);
return SUCCESS;
}
/**
* s2io_link - stops/starts the Tx queue.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @link : inidicates whether link is UP/DOWN.
* Description:
* This function stops/starts the Tx queue depending on whether the link
* status of the NIC is is down or up. This is called by the Alarm
* interrupt handler whenever a link change interrupt comes up.
* Return value:
* void.
*/
static void s2io_link(nic_t * sp, int link)
{
struct net_device *dev = (struct net_device *) sp->dev;
if (link != sp->last_link_state) {
if (link == LINK_DOWN) {
DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
netif_carrier_off(dev);
} else {
DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
netif_carrier_on(dev);
}
}
sp->last_link_state = link;
}
/**
* get_xena_rev_id - to identify revision ID of xena.
* @pdev : PCI Dev structure
* Description:
* Function to identify the Revision ID of xena.
* Return value:
* returns the revision ID of the device.
*/
static int get_xena_rev_id(struct pci_dev *pdev)
{
u8 id = 0;
int ret;
ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
return id;
}
/**
* s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Description:
* This function initializes a few of the PCI and PCI-X configuration registers
* with recommended values.
* Return value:
* void
*/
static void s2io_init_pci(nic_t * sp)
{
u16 pci_cmd = 0, pcix_cmd = 0;
/* Enable Data Parity Error Recovery in PCI-X command register. */
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(pcix_cmd));
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
(pcix_cmd | 1));
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(pcix_cmd));
/* Set the PErr Response bit in PCI command register. */
pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_word(sp->pdev, PCI_COMMAND,
(pci_cmd | PCI_COMMAND_PARITY));
pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
/* Forcibly disabling relaxed ordering capability of the card. */
pcix_cmd &= 0xfffd;
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
pcix_cmd);
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(pcix_cmd));
}
MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_param(tx_fifo_num, int, 0);
module_param(rx_ring_num, int, 0);
module_param(rx_ring_mode, int, 0);
module_param_array(tx_fifo_len, uint, NULL, 0);
module_param_array(rx_ring_sz, uint, NULL, 0);
module_param_array(rts_frm_len, uint, NULL, 0);
module_param(use_continuous_tx_intrs, int, 1);
module_param(rmac_pause_time, int, 0);
module_param(mc_pause_threshold_q0q3, int, 0);
module_param(mc_pause_threshold_q4q7, int, 0);
module_param(shared_splits, int, 0);
module_param(tmac_util_period, int, 0);
module_param(rmac_util_period, int, 0);
module_param(bimodal, bool, 0);
module_param(l3l4hdr_size, int , 0);
#ifndef CONFIG_S2IO_NAPI
module_param(indicate_max_pkts, int, 0);
#endif
module_param(rxsync_frequency, int, 0);
module_param(intr_type, int, 0);
module_param(lro, int, 0);
module_param(lro_max_pkts, int, 0);
/**
* s2io_init_nic - Initialization of the adapter .
* @pdev : structure containing the PCI related information of the device.
* @pre: List of PCI devices supported by the driver listed in s2io_tbl.
* Description:
* The function initializes an adapter identified by the pci_dec structure.
* All OS related initialization including memory and device structure and
* initlaization of the device private variable is done. Also the swapper
* control register is initialized to enable read and write into the I/O
* registers of the device.
* Return value:
* returns 0 on success and negative on failure.
*/
static int __devinit
s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
{
nic_t *sp;
struct net_device *dev;
int i, j, ret;
int dma_flag = FALSE;
u32 mac_up, mac_down;
u64 val64 = 0, tmp64 = 0;
XENA_dev_config_t __iomem *bar0 = NULL;
u16 subid;
mac_info_t *mac_control;
struct config_param *config;
int mode;
u8 dev_intr_type = intr_type;
#ifdef CONFIG_S2IO_NAPI
if (dev_intr_type != INTA) {
DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
is enabled. Defaulting to INTA\n");
dev_intr_type = INTA;
}
else
DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
#endif
if ((ret = pci_enable_device(pdev))) {
DBG_PRINT(ERR_DBG,
"s2io_init_nic: pci_enable_device failed\n");
return ret;
}
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
dma_flag = TRUE;
if (pci_set_consistent_dma_mask
(pdev, DMA_64BIT_MASK)) {
DBG_PRINT(ERR_DBG,
"Unable to obtain 64bit DMA for \
consistent allocations\n");
pci_disable_device(pdev);
return -ENOMEM;
}
} else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
} else {
pci_disable_device(pdev);
return -ENOMEM;
}
if ((dev_intr_type == MSI_X) &&
((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
(pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
Defaulting to INTA\n");
dev_intr_type = INTA;
}
if (dev_intr_type != MSI_X) {
if (pci_request_regions(pdev, s2io_driver_name)) {
DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
pci_disable_device(pdev);
return -ENODEV;
}
}
else {
if (!(request_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0), s2io_driver_name))) {
DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
pci_disable_device(pdev);
return -ENODEV;
}
if (!(request_mem_region(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2), s2io_driver_name))) {
DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
pci_disable_device(pdev);
return -ENODEV;
}
}
dev = alloc_etherdev(sizeof(nic_t));
if (dev == NULL) {
DBG_PRINT(ERR_DBG, "Device allocation failed\n");
pci_disable_device(pdev);
pci_release_regions(pdev);
return -ENODEV;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, dev);
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
/* Private member variable initialized to s2io NIC structure */
sp = dev->priv;
memset(sp, 0, sizeof(nic_t));
sp->dev = dev;
sp->pdev = pdev;
sp->high_dma_flag = dma_flag;
sp->device_enabled_once = FALSE;
if (rx_ring_mode == 1)
sp->rxd_mode = RXD_MODE_1;
if (rx_ring_mode == 2)
sp->rxd_mode = RXD_MODE_3B;
if (rx_ring_mode == 3)
sp->rxd_mode = RXD_MODE_3A;
sp->intr_type = dev_intr_type;
if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
(pdev->device == PCI_DEVICE_ID_HERC_UNI))
sp->device_type = XFRAME_II_DEVICE;
else
sp->device_type = XFRAME_I_DEVICE;
sp->lro = lro;
/* Initialize some PCI/PCI-X fields of the NIC. */
s2io_init_pci(sp);
/*
* Setting the device configuration parameters.
* Most of these parameters can be specified by the user during
* module insertion as they are module loadable parameters. If
* these parameters are not not specified during load time, they
* are initialized with default values.
*/
mac_control = &sp->mac_control;
config = &sp->config;
/* Tx side parameters. */
if (tx_fifo_len[0] == 0)
tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
config->tx_fifo_num = tx_fifo_num;
for (i = 0; i < MAX_TX_FIFOS; i++) {
config->tx_cfg[i].fifo_len = tx_fifo_len[i];
config->tx_cfg[i].fifo_priority = i;
}
/* mapping the QoS priority to the configured fifos */
for (i = 0; i < MAX_TX_FIFOS; i++)
config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
config->tx_intr_type = TXD_INT_TYPE_UTILZ;
for (i = 0; i < config->tx_fifo_num; i++) {
config->tx_cfg[i].f_no_snoop =
(NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
if (config->tx_cfg[i].fifo_len < 65) {
config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
break;
}
}
/* + 2 because one Txd for skb->data and one Txd for UFO */
config->max_txds = MAX_SKB_FRAGS + 2;
/* Rx side parameters. */
if (rx_ring_sz[0] == 0)
rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
config->rx_ring_num = rx_ring_num;
for (i = 0; i < MAX_RX_RINGS; i++) {
config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
(rxd_count[sp->rxd_mode] + 1);
config->rx_cfg[i].ring_priority = i;
}
for (i = 0; i < rx_ring_num; i++) {
config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
config->rx_cfg[i].f_no_snoop =
(NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
}
/* Setting Mac Control parameters */
mac_control->rmac_pause_time = rmac_pause_time;
mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
/* Initialize Ring buffer parameters. */
for (i = 0; i < config->rx_ring_num; i++)
atomic_set(&sp->rx_bufs_left[i], 0);
/* Initialize the number of ISRs currently running */
atomic_set(&sp->isr_cnt, 0);
/* initialize the shared memory used by the NIC and the host */
if (init_shared_mem(sp)) {
DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
__FUNCTION__);
ret = -ENOMEM;
goto mem_alloc_failed;
}
sp->bar0 = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!sp->bar0) {
DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
dev->name);
ret = -ENOMEM;
goto bar0_remap_failed;
}
sp->bar1 = ioremap(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
if (!sp->bar1) {
DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
dev->name);
ret = -ENOMEM;
goto bar1_remap_failed;
}
dev->irq = pdev->irq;
dev->base_addr = (unsigned long) sp->bar0;
/* Initializing the BAR1 address as the start of the FIFO pointer. */
for (j = 0; j < MAX_TX_FIFOS; j++) {
mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
(sp->bar1 + (j * 0x00020000));
}
/* Driver entry points */
dev->open = &s2io_open;
dev->stop = &s2io_close;
dev->hard_start_xmit = &s2io_xmit;
dev->get_stats = &s2io_get_stats;
dev->set_multicast_list = &s2io_set_multicast;
dev->do_ioctl = &s2io_ioctl;
dev->change_mtu = &s2io_change_mtu;
SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
dev->vlan_rx_register = s2io_vlan_rx_register;
dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
/*
* will use eth_mac_addr() for dev->set_mac_address
* mac address will be set every time dev->open() is called
*/
#if defined(CONFIG_S2IO_NAPI)
dev->poll = s2io_poll;
dev->weight = 32;
#endif
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
if (sp->high_dma_flag == TRUE)
dev->features |= NETIF_F_HIGHDMA;
#ifdef NETIF_F_TSO
dev->features |= NETIF_F_TSO;
#endif
if (sp->device_type & XFRAME_II_DEVICE) {
dev->features |= NETIF_F_UFO;
dev->features |= NETIF_F_HW_CSUM;
}
dev->tx_timeout = &s2io_tx_watchdog;
dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
INIT_WORK(&sp->rst_timer_task,
(void (*)(void *)) s2io_restart_nic, dev);
INIT_WORK(&sp->set_link_task,
(void (*)(void *)) s2io_set_link, sp);
pci_save_state(sp->pdev);
/* Setting swapper control on the NIC, for proper reset operation */
if (s2io_set_swapper(sp)) {
DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
dev->name);
ret = -EAGAIN;
goto set_swap_failed;
}
/* Verify if the Herc works on the slot its placed into */
if (sp->device_type & XFRAME_II_DEVICE) {
mode = s2io_verify_pci_mode(sp);
if (mode < 0) {
DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
ret = -EBADSLT;
goto set_swap_failed;
}
}
/* Not needed for Herc */
if (sp->device_type & XFRAME_I_DEVICE) {
/*
* Fix for all "FFs" MAC address problems observed on
* Alpha platforms
*/
fix_mac_address(sp);
s2io_reset(sp);
}
/*
* MAC address initialization.
* For now only one mac address will be read and used.
*/
bar0 = sp->bar0;
val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
wait_for_cmd_complete(sp);
tmp64 = readq(&bar0->rmac_addr_data0_mem);
mac_down = (u32) tmp64;
mac_up = (u32) (tmp64 >> 32);
memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
/* Set the factory defined MAC address initially */
dev->addr_len = ETH_ALEN;
memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
/*
* Initialize the tasklet status and link state flags
* and the card state parameter
*/
atomic_set(&(sp->card_state), 0);
sp->tasklet_status = 0;
sp->link_state = 0;
/* Initialize spinlocks */
spin_lock_init(&sp->tx_lock);
#ifndef CONFIG_S2IO_NAPI
spin_lock_init(&sp->put_lock);
#endif
spin_lock_init(&sp->rx_lock);
/*
* SXE-002: Configure link and activity LED to init state
* on driver load.
*/
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *) bar0 + 0x2700);
val64 = readq(&bar0->gpio_control);
}
sp->rx_csum = 1; /* Rx chksum verify enabled by default */
if (register_netdev(dev)) {
DBG_PRINT(ERR_DBG, "Device registration failed\n");
ret = -ENODEV;
goto register_failed;
}
if (sp->device_type & XFRAME_II_DEVICE) {
DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
dev->name);
DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
get_xena_rev_id(sp->pdev),
s2io_driver_version);
switch(sp->intr_type) {
case INTA:
DBG_PRINT(ERR_DBG, ", Intr type INTA");
break;
case MSI:
DBG_PRINT(ERR_DBG, ", Intr type MSI");
break;
case MSI_X:
DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
break;
}
DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
sp->def_mac_addr[0].mac_addr[0],
sp->def_mac_addr[0].mac_addr[1],
sp->def_mac_addr[0].mac_addr[2],
sp->def_mac_addr[0].mac_addr[3],
sp->def_mac_addr[0].mac_addr[4],
sp->def_mac_addr[0].mac_addr[5]);
mode = s2io_print_pci_mode(sp);
if (mode < 0) {
DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
ret = -EBADSLT;
goto set_swap_failed;
}
} else {
DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
dev->name);
DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
get_xena_rev_id(sp->pdev),
s2io_driver_version);
switch(sp->intr_type) {
case INTA:
DBG_PRINT(ERR_DBG, ", Intr type INTA");
break;
case MSI:
DBG_PRINT(ERR_DBG, ", Intr type MSI");
break;
case MSI_X:
DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
break;
}
DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
sp->def_mac_addr[0].mac_addr[0],
sp->def_mac_addr[0].mac_addr[1],
sp->def_mac_addr[0].mac_addr[2],
sp->def_mac_addr[0].mac_addr[3],
sp->def_mac_addr[0].mac_addr[4],
sp->def_mac_addr[0].mac_addr[5]);
}
if (sp->rxd_mode == RXD_MODE_3B)
DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
"enabled\n",dev->name);
if (sp->rxd_mode == RXD_MODE_3A)
DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
"enabled\n",dev->name);
if (sp->lro)
DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
dev->name);
/* Initialize device name */
strcpy(sp->name, dev->name);
if (sp->device_type & XFRAME_II_DEVICE)
strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
else
strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
/* Initialize bimodal Interrupts */
sp->config.bimodal = bimodal;
if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
sp->config.bimodal = 0;
DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
dev->name);
}
/*
* Make Link state as off at this point, when the Link change
* interrupt comes the state will be automatically changed to
* the right state.
*/
netif_carrier_off(dev);
return 0;
register_failed:
set_swap_failed:
iounmap(sp->bar1);
bar1_remap_failed:
iounmap(sp->bar0);
bar0_remap_failed:
mem_alloc_failed:
free_shared_mem(sp);
pci_disable_device(pdev);
if (dev_intr_type != MSI_X)
pci_release_regions(pdev);
else {
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
release_mem_region(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
}
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
return ret;
}
/**
* s2io_rem_nic - Free the PCI device
* @pdev: structure containing the PCI related information of the device.
* Description: This function is called by the Pci subsystem to release a
* PCI device and free up all resource held up by the device. This could
* be in response to a Hot plug event or when the driver is to be removed
* from memory.
*/
static void __devexit s2io_rem_nic(struct pci_dev *pdev)
{
struct net_device *dev =
(struct net_device *) pci_get_drvdata(pdev);
nic_t *sp;
if (dev == NULL) {
DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
return;
}
sp = dev->priv;
unregister_netdev(dev);
free_shared_mem(sp);
iounmap(sp->bar0);
iounmap(sp->bar1);
pci_disable_device(pdev);
if (sp->intr_type != MSI_X)
pci_release_regions(pdev);
else {
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
release_mem_region(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
}
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
}
/**
* s2io_starter - Entry point for the driver
* Description: This function is the entry point for the driver. It verifies
* the module loadable parameters and initializes PCI configuration space.
*/
int __init s2io_starter(void)
{
return pci_module_init(&s2io_driver);
}
/**
* s2io_closer - Cleanup routine for the driver
* Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
*/
static void s2io_closer(void)
{
pci_unregister_driver(&s2io_driver);
DBG_PRINT(INIT_DBG, "cleanup done\n");
}
module_init(s2io_starter);
module_exit(s2io_closer);
static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
struct tcphdr **tcp, RxD_t *rxdp)
{
int ip_off;
u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
__FUNCTION__);
return -1;
}
/* TODO:
* By default the VLAN field in the MAC is stripped by the card, if this
* feature is turned off in rx_pa_cfg register, then the ip_off field
* has to be shifted by a further 2 bytes
*/
switch (l2_type) {
case 0: /* DIX type */
case 4: /* DIX type with VLAN */
ip_off = HEADER_ETHERNET_II_802_3_SIZE;
break;
/* LLC, SNAP etc are considered non-mergeable */
default:
return -1;
}
*ip = (struct iphdr *)((u8 *)buffer + ip_off);
ip_len = (u8)((*ip)->ihl);
ip_len <<= 2;
*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
return 0;
}
static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
struct tcphdr *tcp)
{
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
(lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
return -1;
return 0;
}
static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
{
return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
}
static void initiate_new_session(lro_t *lro, u8 *l2h,
struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
{
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
lro->l2h = l2h;
lro->iph = ip;
lro->tcph = tcp;
lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
lro->tcp_ack = ntohl(tcp->ack_seq);
lro->sg_num = 1;
lro->total_len = ntohs(ip->tot_len);
lro->frags_len = 0;
/*
* check if we saw TCP timestamp. Other consistency checks have
* already been done.
*/
if (tcp->doff == 8) {
u32 *ptr;
ptr = (u32 *)(tcp+1);
lro->saw_ts = 1;
lro->cur_tsval = *(ptr+1);
lro->cur_tsecr = *(ptr+2);
}
lro->in_use = 1;
}
static void update_L3L4_header(nic_t *sp, lro_t *lro)
{
struct iphdr *ip = lro->iph;
struct tcphdr *tcp = lro->tcph;
u16 nchk;
StatInfo_t *statinfo = sp->mac_control.stats_info;
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
/* Update L3 header */
ip->tot_len = htons(lro->total_len);
ip->check = 0;
nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
ip->check = nchk;
/* Update L4 header */
tcp->ack_seq = lro->tcp_ack;
tcp->window = lro->window;
/* Update tsecr field if this session has timestamps enabled */
if (lro->saw_ts) {
u32 *ptr = (u32 *)(tcp + 1);
*(ptr+2) = lro->cur_tsecr;
}
/* Update counters required for calculation of
* average no. of packets aggregated.
*/
statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
statinfo->sw_stat.num_aggregations++;
}
static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
struct tcphdr *tcp, u32 l4_pyld)
{
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
lro->total_len += l4_pyld;
lro->frags_len += l4_pyld;
lro->tcp_next_seq += l4_pyld;
lro->sg_num++;
/* Update ack seq no. and window ad(from this pkt) in LRO object */
lro->tcp_ack = tcp->ack_seq;
lro->window = tcp->window;
if (lro->saw_ts) {
u32 *ptr;
/* Update tsecr and tsval from this packet */
ptr = (u32 *) (tcp + 1);
lro->cur_tsval = *(ptr + 1);
lro->cur_tsecr = *(ptr + 2);
}
}
static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
struct tcphdr *tcp, u32 tcp_pyld_len)
{
u8 *ptr;
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
if (!tcp_pyld_len) {
/* Runt frame or a pure ack */
return -1;
}
if (ip->ihl != 5) /* IP has options */
return -1;
if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
!tcp->ack) {
/*
* Currently recognize only the ack control word and
* any other control field being set would result in
* flushing the LRO session
*/
return -1;
}
/*
* Allow only one TCP timestamp option. Don't aggregate if
* any other options are detected.
*/
if (tcp->doff != 5 && tcp->doff != 8)
return -1;
if (tcp->doff == 8) {
ptr = (u8 *)(tcp + 1);
while (*ptr == TCPOPT_NOP)
ptr++;
if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
return -1;
/* Ensure timestamp value increases monotonically */
if (l_lro)
if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
return -1;
/* timestamp echo reply should be non-zero */
if (*((u32 *)(ptr+6)) == 0)
return -1;
}
return 0;
}
static int
s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
RxD_t *rxdp, nic_t *sp)
{
struct iphdr *ip;
struct tcphdr *tcph;
int ret = 0, i;
if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
rxdp))) {
DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
ip->saddr, ip->daddr);
} else {
return ret;
}
tcph = (struct tcphdr *)*tcp;
*tcp_len = get_l4_pyld_length(ip, tcph);
for (i=0; i<MAX_LRO_SESSIONS; i++) {
lro_t *l_lro = &sp->lro0_n[i];
if (l_lro->in_use) {
if (check_for_socket_match(l_lro, ip, tcph))
continue;
/* Sock pair matched */
*lro = l_lro;
if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
"0x%x, actual 0x%x\n", __FUNCTION__,
(*lro)->tcp_next_seq,
ntohl(tcph->seq));
sp->mac_control.stats_info->
sw_stat.outof_sequence_pkts++;
ret = 2;
break;
}
if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
ret = 1; /* Aggregate */
else
ret = 2; /* Flush both */
break;
}
}
if (ret == 0) {
/* Before searching for available LRO objects,
* check if the pkt is L3/L4 aggregatable. If not
* don't create new LRO session. Just send this
* packet up.
*/
if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
return 5;
}
for (i=0; i<MAX_LRO_SESSIONS; i++) {
lro_t *l_lro = &sp->lro0_n[i];
if (!(l_lro->in_use)) {
*lro = l_lro;
ret = 3; /* Begin anew */
break;
}
}
}
if (ret == 0) { /* sessions exceeded */
DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
__FUNCTION__);
*lro = NULL;
return ret;
}
switch (ret) {
case 3:
initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
break;
case 2:
update_L3L4_header(sp, *lro);
break;
case 1:
aggregate_new_rx(*lro, ip, tcph, *tcp_len);
if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
update_L3L4_header(sp, *lro);
ret = 4; /* Flush the LRO */
}
break;
default:
DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
__FUNCTION__);
break;
}
return ret;
}
static void clear_lro_session(lro_t *lro)
{
static u16 lro_struct_size = sizeof(lro_t);
memset(lro, 0, lro_struct_size);
}
static void queue_rx_frame(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
skb->protocol = eth_type_trans(skb, dev);
#ifdef CONFIG_S2IO_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
}
static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
u32 tcp_len)
{
struct sk_buff *tmp, *first = lro->parent;
first->len += tcp_len;
first->data_len = lro->frags_len;
skb_pull(skb, (skb->len - tcp_len));
if ((tmp = skb_shinfo(first)->frag_list)) {
while (tmp->next)
tmp = tmp->next;
tmp->next = skb;
}
else
skb_shinfo(first)->frag_list = skb;
sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
return;
}