mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
9294523e37
Let's make kernel stacktraces easier to identify by including the build ID[1] of a module if the stacktrace is printing a symbol from a module. This makes it simpler for developers to locate a kernel module's full debuginfo for a particular stacktrace. Combined with scripts/decode_stracktrace.sh, a developer can download the matching debuginfo from a debuginfod[2] server and find the exact file and line number for the functions plus offsets in a stacktrace that match the module. This is especially useful for pstore crash debugging where the kernel crashes are recorded in something like console-ramoops and the recovery kernel/modules are different or the debuginfo doesn't exist on the device due to space concerns (the debuginfo can be too large for space limited devices). Originally, I put this on the %pS format, but that was quickly rejected given that %pS is used in other places such as ftrace where build IDs aren't meaningful. There was some discussions on the list to put every module build ID into the "Modules linked in:" section of the stacktrace message but that quickly becomes very hard to read once you have more than three or four modules linked in. It also provides too much information when we don't expect each module to be traversed in a stacktrace. Having the build ID for modules that aren't important just makes things messy. Splitting it to multiple lines for each module quickly explodes the number of lines printed in an oops too, possibly wrapping the warning off the console. And finally, trying to stash away each module used in a callstack to provide the ID of each symbol printed is cumbersome and would require changes to each architecture to stash away modules and return their build IDs once unwinding has completed. Instead, we opt for the simpler approach of introducing new printk formats '%pS[R]b' for "pointer symbolic backtrace with module build ID" and '%pBb' for "pointer backtrace with module build ID" and then updating the few places in the architecture layer where the stacktrace is printed to use this new format. Before: Call trace: lkdtm_WARNING+0x28/0x30 [lkdtm] direct_entry+0x16c/0x1b4 [lkdtm] full_proxy_write+0x74/0xa4 vfs_write+0xec/0x2e8 After: Call trace: lkdtm_WARNING+0x28/0x30 [lkdtm 6c2215028606bda50de823490723dc4bc5bf46f9] direct_entry+0x16c/0x1b4 [lkdtm 6c2215028606bda50de823490723dc4bc5bf46f9] full_proxy_write+0x74/0xa4 vfs_write+0xec/0x2e8 [akpm@linux-foundation.org: fix build with CONFIG_MODULES=n, tweak code layout] [rdunlap@infradead.org: fix build when CONFIG_MODULES is not set] Link: https://lkml.kernel.org/r/20210513171510.20328-1-rdunlap@infradead.org [akpm@linux-foundation.org: make kallsyms_lookup_buildid() static] [cuibixuan@huawei.com: fix build error when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20210525105049.34804-1-cuibixuan@huawei.com Link: https://lkml.kernel.org/r/20210511003845.2429846-6-swboyd@chromium.org Link: https://fedoraproject.org/wiki/Releases/FeatureBuildId [1] Link: https://sourceware.org/elfutils/Debuginfod.html [2] Signed-off-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Bixuan Cui <cuibixuan@huawei.com> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Evan Green <evgreen@chromium.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Matthew Wilcox <willy@infradead.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Young <dyoung@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Sasha Levin <sashal@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
633 lines
17 KiB
ReStructuredText
633 lines
17 KiB
ReStructuredText
=========================================
|
|
How to get printk format specifiers right
|
|
=========================================
|
|
|
|
.. _printk-specifiers:
|
|
|
|
:Author: Randy Dunlap <rdunlap@infradead.org>
|
|
:Author: Andrew Murray <amurray@mpc-data.co.uk>
|
|
|
|
|
|
Integer types
|
|
=============
|
|
|
|
::
|
|
|
|
If variable is of Type, use printk format specifier:
|
|
------------------------------------------------------------
|
|
char %d or %x
|
|
unsigned char %u or %x
|
|
short int %d or %x
|
|
unsigned short int %u or %x
|
|
int %d or %x
|
|
unsigned int %u or %x
|
|
long %ld or %lx
|
|
unsigned long %lu or %lx
|
|
long long %lld or %llx
|
|
unsigned long long %llu or %llx
|
|
size_t %zu or %zx
|
|
ssize_t %zd or %zx
|
|
s8 %d or %x
|
|
u8 %u or %x
|
|
s16 %d or %x
|
|
u16 %u or %x
|
|
s32 %d or %x
|
|
u32 %u or %x
|
|
s64 %lld or %llx
|
|
u64 %llu or %llx
|
|
|
|
|
|
If <type> is architecture-dependent for its size (e.g., cycles_t, tcflag_t) or
|
|
is dependent on a config option for its size (e.g., blk_status_t), use a format
|
|
specifier of its largest possible type and explicitly cast to it.
|
|
|
|
Example::
|
|
|
|
printk("test: latency: %llu cycles\n", (unsigned long long)time);
|
|
|
|
Reminder: sizeof() returns type size_t.
|
|
|
|
The kernel's printf does not support %n. Floating point formats (%e, %f,
|
|
%g, %a) are also not recognized, for obvious reasons. Use of any
|
|
unsupported specifier or length qualifier results in a WARN and early
|
|
return from vsnprintf().
|
|
|
|
Pointer types
|
|
=============
|
|
|
|
A raw pointer value may be printed with %p which will hash the address
|
|
before printing. The kernel also supports extended specifiers for printing
|
|
pointers of different types.
|
|
|
|
Some of the extended specifiers print the data on the given address instead
|
|
of printing the address itself. In this case, the following error messages
|
|
might be printed instead of the unreachable information::
|
|
|
|
(null) data on plain NULL address
|
|
(efault) data on invalid address
|
|
(einval) invalid data on a valid address
|
|
|
|
Plain Pointers
|
|
--------------
|
|
|
|
::
|
|
|
|
%p abcdef12 or 00000000abcdef12
|
|
|
|
Pointers printed without a specifier extension (i.e unadorned %p) are
|
|
hashed to prevent leaking information about the kernel memory layout. This
|
|
has the added benefit of providing a unique identifier. On 64-bit machines
|
|
the first 32 bits are zeroed. The kernel will print ``(ptrval)`` until it
|
|
gathers enough entropy.
|
|
|
|
When possible, use specialised modifiers such as %pS or %pB (described below)
|
|
to avoid the need of providing an unhashed address that has to be interpreted
|
|
post-hoc. If not possible, and the aim of printing the address is to provide
|
|
more information for debugging, use %p and boot the kernel with the
|
|
``no_hash_pointers`` parameter during debugging, which will print all %p
|
|
addresses unmodified. If you *really* always want the unmodified address, see
|
|
%px below.
|
|
|
|
If (and only if) you are printing addresses as a content of a virtual file in
|
|
e.g. procfs or sysfs (using e.g. seq_printf(), not printk()) read by a
|
|
userspace process, use the %pK modifier described below instead of %p or %px.
|
|
|
|
Error Pointers
|
|
--------------
|
|
|
|
::
|
|
|
|
%pe -ENOSPC
|
|
|
|
For printing error pointers (i.e. a pointer for which IS_ERR() is true)
|
|
as a symbolic error name. Error values for which no symbolic name is
|
|
known are printed in decimal, while a non-ERR_PTR passed as the
|
|
argument to %pe gets treated as ordinary %p.
|
|
|
|
Symbols/Function Pointers
|
|
-------------------------
|
|
|
|
::
|
|
|
|
%pS versatile_init+0x0/0x110
|
|
%ps versatile_init
|
|
%pSR versatile_init+0x9/0x110
|
|
(with __builtin_extract_return_addr() translation)
|
|
%pB prev_fn_of_versatile_init+0x88/0x88
|
|
|
|
|
|
The ``S`` and ``s`` specifiers are used for printing a pointer in symbolic
|
|
format. They result in the symbol name with (S) or without (s)
|
|
offsets. If KALLSYMS are disabled then the symbol address is printed instead.
|
|
|
|
The ``B`` specifier results in the symbol name with offsets and should be
|
|
used when printing stack backtraces. The specifier takes into
|
|
consideration the effect of compiler optimisations which may occur
|
|
when tail-calls are used and marked with the noreturn GCC attribute.
|
|
|
|
If the pointer is within a module, the module name and optionally build ID is
|
|
printed after the symbol name with an extra ``b`` appended to the end of the
|
|
specifier.
|
|
|
|
::
|
|
%pS versatile_init+0x0/0x110 [module_name]
|
|
%pSb versatile_init+0x0/0x110 [module_name ed5019fdf5e53be37cb1ba7899292d7e143b259e]
|
|
%pSRb versatile_init+0x9/0x110 [module_name ed5019fdf5e53be37cb1ba7899292d7e143b259e]
|
|
(with __builtin_extract_return_addr() translation)
|
|
%pBb prev_fn_of_versatile_init+0x88/0x88 [module_name ed5019fdf5e53be37cb1ba7899292d7e143b259e]
|
|
|
|
Probed Pointers from BPF / tracing
|
|
----------------------------------
|
|
|
|
::
|
|
|
|
%pks kernel string
|
|
%pus user string
|
|
|
|
The ``k`` and ``u`` specifiers are used for printing prior probed memory from
|
|
either kernel memory (k) or user memory (u). The subsequent ``s`` specifier
|
|
results in printing a string. For direct use in regular vsnprintf() the (k)
|
|
and (u) annotation is ignored, however, when used out of BPF's bpf_trace_printk(),
|
|
for example, it reads the memory it is pointing to without faulting.
|
|
|
|
Kernel Pointers
|
|
---------------
|
|
|
|
::
|
|
|
|
%pK 01234567 or 0123456789abcdef
|
|
|
|
For printing kernel pointers which should be hidden from unprivileged
|
|
users. The behaviour of %pK depends on the kptr_restrict sysctl - see
|
|
Documentation/admin-guide/sysctl/kernel.rst for more details.
|
|
|
|
This modifier is *only* intended when producing content of a file read by
|
|
userspace from e.g. procfs or sysfs, not for dmesg. Please refer to the
|
|
section about %p above for discussion about how to manage hashing pointers
|
|
in printk().
|
|
|
|
Unmodified Addresses
|
|
--------------------
|
|
|
|
::
|
|
|
|
%px 01234567 or 0123456789abcdef
|
|
|
|
For printing pointers when you *really* want to print the address. Please
|
|
consider whether or not you are leaking sensitive information about the
|
|
kernel memory layout before printing pointers with %px. %px is functionally
|
|
equivalent to %lx (or %lu). %px is preferred because it is more uniquely
|
|
grep'able. If in the future we need to modify the way the kernel handles
|
|
printing pointers we will be better equipped to find the call sites.
|
|
|
|
Before using %px, consider if using %p is sufficient together with enabling the
|
|
``no_hash_pointers`` kernel parameter during debugging sessions (see the %p
|
|
description above). One valid scenario for %px might be printing information
|
|
immediately before a panic, which prevents any sensitive information to be
|
|
exploited anyway, and with %px there would be no need to reproduce the panic
|
|
with no_hash_pointers.
|
|
|
|
Pointer Differences
|
|
-------------------
|
|
|
|
::
|
|
|
|
%td 2560
|
|
%tx a00
|
|
|
|
For printing the pointer differences, use the %t modifier for ptrdiff_t.
|
|
|
|
Example::
|
|
|
|
printk("test: difference between pointers: %td\n", ptr2 - ptr1);
|
|
|
|
Struct Resources
|
|
----------------
|
|
|
|
::
|
|
|
|
%pr [mem 0x60000000-0x6fffffff flags 0x2200] or
|
|
[mem 0x0000000060000000-0x000000006fffffff flags 0x2200]
|
|
%pR [mem 0x60000000-0x6fffffff pref] or
|
|
[mem 0x0000000060000000-0x000000006fffffff pref]
|
|
|
|
For printing struct resources. The ``R`` and ``r`` specifiers result in a
|
|
printed resource with (R) or without (r) a decoded flags member.
|
|
|
|
Passed by reference.
|
|
|
|
Physical address types phys_addr_t
|
|
----------------------------------
|
|
|
|
::
|
|
|
|
%pa[p] 0x01234567 or 0x0123456789abcdef
|
|
|
|
For printing a phys_addr_t type (and its derivatives, such as
|
|
resource_size_t) which can vary based on build options, regardless of the
|
|
width of the CPU data path.
|
|
|
|
Passed by reference.
|
|
|
|
DMA address types dma_addr_t
|
|
----------------------------
|
|
|
|
::
|
|
|
|
%pad 0x01234567 or 0x0123456789abcdef
|
|
|
|
For printing a dma_addr_t type which can vary based on build options,
|
|
regardless of the width of the CPU data path.
|
|
|
|
Passed by reference.
|
|
|
|
Raw buffer as an escaped string
|
|
-------------------------------
|
|
|
|
::
|
|
|
|
%*pE[achnops]
|
|
|
|
For printing raw buffer as an escaped string. For the following buffer::
|
|
|
|
1b 62 20 5c 43 07 22 90 0d 5d
|
|
|
|
A few examples show how the conversion would be done (excluding surrounding
|
|
quotes)::
|
|
|
|
%*pE "\eb \C\a"\220\r]"
|
|
%*pEhp "\x1bb \C\x07"\x90\x0d]"
|
|
%*pEa "\e\142\040\\\103\a\042\220\r\135"
|
|
|
|
The conversion rules are applied according to an optional combination
|
|
of flags (see :c:func:`string_escape_mem` kernel documentation for the
|
|
details):
|
|
|
|
- a - ESCAPE_ANY
|
|
- c - ESCAPE_SPECIAL
|
|
- h - ESCAPE_HEX
|
|
- n - ESCAPE_NULL
|
|
- o - ESCAPE_OCTAL
|
|
- p - ESCAPE_NP
|
|
- s - ESCAPE_SPACE
|
|
|
|
By default ESCAPE_ANY_NP is used.
|
|
|
|
ESCAPE_ANY_NP is the sane choice for many cases, in particularly for
|
|
printing SSIDs.
|
|
|
|
If field width is omitted then 1 byte only will be escaped.
|
|
|
|
Raw buffer as a hex string
|
|
--------------------------
|
|
|
|
::
|
|
|
|
%*ph 00 01 02 ... 3f
|
|
%*phC 00:01:02: ... :3f
|
|
%*phD 00-01-02- ... -3f
|
|
%*phN 000102 ... 3f
|
|
|
|
For printing small buffers (up to 64 bytes long) as a hex string with a
|
|
certain separator. For larger buffers consider using
|
|
:c:func:`print_hex_dump`.
|
|
|
|
MAC/FDDI addresses
|
|
------------------
|
|
|
|
::
|
|
|
|
%pM 00:01:02:03:04:05
|
|
%pMR 05:04:03:02:01:00
|
|
%pMF 00-01-02-03-04-05
|
|
%pm 000102030405
|
|
%pmR 050403020100
|
|
|
|
For printing 6-byte MAC/FDDI addresses in hex notation. The ``M`` and ``m``
|
|
specifiers result in a printed address with (M) or without (m) byte
|
|
separators. The default byte separator is the colon (:).
|
|
|
|
Where FDDI addresses are concerned the ``F`` specifier can be used after
|
|
the ``M`` specifier to use dash (-) separators instead of the default
|
|
separator.
|
|
|
|
For Bluetooth addresses the ``R`` specifier shall be used after the ``M``
|
|
specifier to use reversed byte order suitable for visual interpretation
|
|
of Bluetooth addresses which are in the little endian order.
|
|
|
|
Passed by reference.
|
|
|
|
IPv4 addresses
|
|
--------------
|
|
|
|
::
|
|
|
|
%pI4 1.2.3.4
|
|
%pi4 001.002.003.004
|
|
%p[Ii]4[hnbl]
|
|
|
|
For printing IPv4 dot-separated decimal addresses. The ``I4`` and ``i4``
|
|
specifiers result in a printed address with (i4) or without (I4) leading
|
|
zeros.
|
|
|
|
The additional ``h``, ``n``, ``b``, and ``l`` specifiers are used to specify
|
|
host, network, big or little endian order addresses respectively. Where
|
|
no specifier is provided the default network/big endian order is used.
|
|
|
|
Passed by reference.
|
|
|
|
IPv6 addresses
|
|
--------------
|
|
|
|
::
|
|
|
|
%pI6 0001:0002:0003:0004:0005:0006:0007:0008
|
|
%pi6 00010002000300040005000600070008
|
|
%pI6c 1:2:3:4:5:6:7:8
|
|
|
|
For printing IPv6 network-order 16-bit hex addresses. The ``I6`` and ``i6``
|
|
specifiers result in a printed address with (I6) or without (i6)
|
|
colon-separators. Leading zeros are always used.
|
|
|
|
The additional ``c`` specifier can be used with the ``I`` specifier to
|
|
print a compressed IPv6 address as described by
|
|
https://tools.ietf.org/html/rfc5952
|
|
|
|
Passed by reference.
|
|
|
|
IPv4/IPv6 addresses (generic, with port, flowinfo, scope)
|
|
---------------------------------------------------------
|
|
|
|
::
|
|
|
|
%pIS 1.2.3.4 or 0001:0002:0003:0004:0005:0006:0007:0008
|
|
%piS 001.002.003.004 or 00010002000300040005000600070008
|
|
%pISc 1.2.3.4 or 1:2:3:4:5:6:7:8
|
|
%pISpc 1.2.3.4:12345 or [1:2:3:4:5:6:7:8]:12345
|
|
%p[Ii]S[pfschnbl]
|
|
|
|
For printing an IP address without the need to distinguish whether it's of
|
|
type AF_INET or AF_INET6. A pointer to a valid struct sockaddr,
|
|
specified through ``IS`` or ``iS``, can be passed to this format specifier.
|
|
|
|
The additional ``p``, ``f``, and ``s`` specifiers are used to specify port
|
|
(IPv4, IPv6), flowinfo (IPv6) and scope (IPv6). Ports have a ``:`` prefix,
|
|
flowinfo a ``/`` and scope a ``%``, each followed by the actual value.
|
|
|
|
In case of an IPv6 address the compressed IPv6 address as described by
|
|
https://tools.ietf.org/html/rfc5952 is being used if the additional
|
|
specifier ``c`` is given. The IPv6 address is surrounded by ``[``, ``]`` in
|
|
case of additional specifiers ``p``, ``f`` or ``s`` as suggested by
|
|
https://tools.ietf.org/html/draft-ietf-6man-text-addr-representation-07
|
|
|
|
In case of IPv4 addresses, the additional ``h``, ``n``, ``b``, and ``l``
|
|
specifiers can be used as well and are ignored in case of an IPv6
|
|
address.
|
|
|
|
Passed by reference.
|
|
|
|
Further examples::
|
|
|
|
%pISfc 1.2.3.4 or [1:2:3:4:5:6:7:8]/123456789
|
|
%pISsc 1.2.3.4 or [1:2:3:4:5:6:7:8]%1234567890
|
|
%pISpfc 1.2.3.4:12345 or [1:2:3:4:5:6:7:8]:12345/123456789
|
|
|
|
UUID/GUID addresses
|
|
-------------------
|
|
|
|
::
|
|
|
|
%pUb 00010203-0405-0607-0809-0a0b0c0d0e0f
|
|
%pUB 00010203-0405-0607-0809-0A0B0C0D0E0F
|
|
%pUl 03020100-0504-0706-0809-0a0b0c0e0e0f
|
|
%pUL 03020100-0504-0706-0809-0A0B0C0E0E0F
|
|
|
|
For printing 16-byte UUID/GUIDs addresses. The additional ``l``, ``L``,
|
|
``b`` and ``B`` specifiers are used to specify a little endian order in
|
|
lower (l) or upper case (L) hex notation - and big endian order in lower (b)
|
|
or upper case (B) hex notation.
|
|
|
|
Where no additional specifiers are used the default big endian
|
|
order with lower case hex notation will be printed.
|
|
|
|
Passed by reference.
|
|
|
|
dentry names
|
|
------------
|
|
|
|
::
|
|
|
|
%pd{,2,3,4}
|
|
%pD{,2,3,4}
|
|
|
|
For printing dentry name; if we race with :c:func:`d_move`, the name might
|
|
be a mix of old and new ones, but it won't oops. %pd dentry is a safer
|
|
equivalent of %s dentry->d_name.name we used to use, %pd<n> prints ``n``
|
|
last components. %pD does the same thing for struct file.
|
|
|
|
Passed by reference.
|
|
|
|
block_device names
|
|
------------------
|
|
|
|
::
|
|
|
|
%pg sda, sda1 or loop0p1
|
|
|
|
For printing name of block_device pointers.
|
|
|
|
struct va_format
|
|
----------------
|
|
|
|
::
|
|
|
|
%pV
|
|
|
|
For printing struct va_format structures. These contain a format string
|
|
and va_list as follows::
|
|
|
|
struct va_format {
|
|
const char *fmt;
|
|
va_list *va;
|
|
};
|
|
|
|
Implements a "recursive vsnprintf".
|
|
|
|
Do not use this feature without some mechanism to verify the
|
|
correctness of the format string and va_list arguments.
|
|
|
|
Passed by reference.
|
|
|
|
Device tree nodes
|
|
-----------------
|
|
|
|
::
|
|
|
|
%pOF[fnpPcCF]
|
|
|
|
|
|
For printing device tree node structures. Default behaviour is
|
|
equivalent to %pOFf.
|
|
|
|
- f - device node full_name
|
|
- n - device node name
|
|
- p - device node phandle
|
|
- P - device node path spec (name + @unit)
|
|
- F - device node flags
|
|
- c - major compatible string
|
|
- C - full compatible string
|
|
|
|
The separator when using multiple arguments is ':'
|
|
|
|
Examples::
|
|
|
|
%pOF /foo/bar@0 - Node full name
|
|
%pOFf /foo/bar@0 - Same as above
|
|
%pOFfp /foo/bar@0:10 - Node full name + phandle
|
|
%pOFfcF /foo/bar@0:foo,device:--P- - Node full name +
|
|
major compatible string +
|
|
node flags
|
|
D - dynamic
|
|
d - detached
|
|
P - Populated
|
|
B - Populated bus
|
|
|
|
Passed by reference.
|
|
|
|
Fwnode handles
|
|
--------------
|
|
|
|
::
|
|
|
|
%pfw[fP]
|
|
|
|
For printing information on fwnode handles. The default is to print the full
|
|
node name, including the path. The modifiers are functionally equivalent to
|
|
%pOF above.
|
|
|
|
- f - full name of the node, including the path
|
|
- P - the name of the node including an address (if there is one)
|
|
|
|
Examples (ACPI)::
|
|
|
|
%pfwf \_SB.PCI0.CIO2.port@1.endpoint@0 - Full node name
|
|
%pfwP endpoint@0 - Node name
|
|
|
|
Examples (OF)::
|
|
|
|
%pfwf /ocp@68000000/i2c@48072000/camera@10/port/endpoint - Full name
|
|
%pfwP endpoint - Node name
|
|
|
|
Time and date
|
|
-------------
|
|
|
|
::
|
|
|
|
%pt[RT] YYYY-mm-ddTHH:MM:SS
|
|
%pt[RT]s YYYY-mm-dd HH:MM:SS
|
|
%pt[RT]d YYYY-mm-dd
|
|
%pt[RT]t HH:MM:SS
|
|
%pt[RT][dt][r][s]
|
|
|
|
For printing date and time as represented by::
|
|
|
|
R struct rtc_time structure
|
|
T time64_t type
|
|
|
|
in human readable format.
|
|
|
|
By default year will be incremented by 1900 and month by 1.
|
|
Use %pt[RT]r (raw) to suppress this behaviour.
|
|
|
|
The %pt[RT]s (space) will override ISO 8601 separator by using ' ' (space)
|
|
instead of 'T' (Capital T) between date and time. It won't have any effect
|
|
when date or time is omitted.
|
|
|
|
Passed by reference.
|
|
|
|
struct clk
|
|
----------
|
|
|
|
::
|
|
|
|
%pC pll1
|
|
%pCn pll1
|
|
|
|
For printing struct clk structures. %pC and %pCn print the name of the clock
|
|
(Common Clock Framework) or a unique 32-bit ID (legacy clock framework).
|
|
|
|
Passed by reference.
|
|
|
|
bitmap and its derivatives such as cpumask and nodemask
|
|
-------------------------------------------------------
|
|
|
|
::
|
|
|
|
%*pb 0779
|
|
%*pbl 0,3-6,8-10
|
|
|
|
For printing bitmap and its derivatives such as cpumask and nodemask,
|
|
%*pb outputs the bitmap with field width as the number of bits and %*pbl
|
|
output the bitmap as range list with field width as the number of bits.
|
|
|
|
The field width is passed by value, the bitmap is passed by reference.
|
|
Helper macros cpumask_pr_args() and nodemask_pr_args() are available to ease
|
|
printing cpumask and nodemask.
|
|
|
|
Flags bitfields such as page flags, gfp_flags
|
|
---------------------------------------------
|
|
|
|
::
|
|
|
|
%pGp referenced|uptodate|lru|active|private|node=0|zone=2|lastcpupid=0x1fffff
|
|
%pGg GFP_USER|GFP_DMA32|GFP_NOWARN
|
|
%pGv read|exec|mayread|maywrite|mayexec|denywrite
|
|
|
|
For printing flags bitfields as a collection of symbolic constants that
|
|
would construct the value. The type of flags is given by the third
|
|
character. Currently supported are [p]age flags, [v]ma_flags (both
|
|
expect ``unsigned long *``) and [g]fp_flags (expects ``gfp_t *``). The flag
|
|
names and print order depends on the particular type.
|
|
|
|
Note that this format should not be used directly in the
|
|
:c:func:`TP_printk()` part of a tracepoint. Instead, use the show_*_flags()
|
|
functions from <trace/events/mmflags.h>.
|
|
|
|
Passed by reference.
|
|
|
|
Network device features
|
|
-----------------------
|
|
|
|
::
|
|
|
|
%pNF 0x000000000000c000
|
|
|
|
For printing netdev_features_t.
|
|
|
|
Passed by reference.
|
|
|
|
V4L2 and DRM FourCC code (pixel format)
|
|
---------------------------------------
|
|
|
|
::
|
|
|
|
%p4cc
|
|
|
|
Print a FourCC code used by V4L2 or DRM, including format endianness and
|
|
its numerical value as hexadecimal.
|
|
|
|
Passed by reference.
|
|
|
|
Examples::
|
|
|
|
%p4cc BG12 little-endian (0x32314742)
|
|
%p4cc Y10 little-endian (0x20303159)
|
|
%p4cc NV12 big-endian (0xb231564e)
|
|
|
|
Thanks
|
|
======
|
|
|
|
If you add other %p extensions, please extend <lib/test_printf.c> with
|
|
one or more test cases, if at all feasible.
|
|
|
|
Thank you for your cooperation and attention.
|