mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
80e0c505b2
Pull btrfs fixes from Chris Mason: "This has Mark Fasheh's patches to fix quota accounting during subvol deletion, which we've been working on for a while now. The patch is pretty small but it's a key fix. Otherwise it's a random assortment" * 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: btrfs: fix balance range usage filters in 4.4-rc btrfs: qgroup: account shared subtree during snapshot delete Btrfs: use btrfs_get_fs_root in resolve_indirect_ref btrfs: qgroup: fix quota disable during rescan Btrfs: fix race between cleaner kthread and space cache writeout Btrfs: fix scrub preventing unused block groups from being deleted Btrfs: fix race between scrub and block group deletion btrfs: fix rcu warning during device replace btrfs: Continue replace when set_block_ro failed btrfs: fix clashing number of the enhanced balance usage filter Btrfs: fix the number of transaction units needed to remove a block group Btrfs: use global reserve when deleting unused block group after ENOSPC Btrfs: tests: checking for NULL instead of IS_ERR() btrfs: fix signed overflows in btrfs_sync_file
6986 lines
181 KiB
C
6986 lines
181 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/random.h>
|
|
#include <linux/iocontext.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/raid/pq.h>
|
|
#include <linux/semaphore.h>
|
|
#include <asm/div64.h>
|
|
#include "ctree.h"
|
|
#include "extent_map.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "raid56.h"
|
|
#include "async-thread.h"
|
|
#include "check-integrity.h"
|
|
#include "rcu-string.h"
|
|
#include "math.h"
|
|
#include "dev-replace.h"
|
|
#include "sysfs.h"
|
|
|
|
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
|
|
[BTRFS_RAID_RAID10] = {
|
|
.sub_stripes = 2,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0, /* 0 == as many as possible */
|
|
.devs_min = 4,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 2,
|
|
.ncopies = 2,
|
|
},
|
|
[BTRFS_RAID_RAID1] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 2,
|
|
.devs_min = 2,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 2,
|
|
.ncopies = 2,
|
|
},
|
|
[BTRFS_RAID_DUP] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 2,
|
|
.devs_max = 1,
|
|
.devs_min = 1,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 2,
|
|
},
|
|
[BTRFS_RAID_RAID0] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 2,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
},
|
|
[BTRFS_RAID_SINGLE] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 1,
|
|
.devs_min = 1,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
},
|
|
[BTRFS_RAID_RAID5] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 2,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 1,
|
|
.ncopies = 2,
|
|
},
|
|
[BTRFS_RAID_RAID6] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 3,
|
|
.tolerated_failures = 2,
|
|
.devs_increment = 1,
|
|
.ncopies = 3,
|
|
},
|
|
};
|
|
|
|
const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
|
|
[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
|
|
[BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
|
|
[BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
|
|
[BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
|
|
[BTRFS_RAID_SINGLE] = 0,
|
|
[BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
|
|
[BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
|
|
};
|
|
|
|
static int init_first_rw_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_device *device);
|
|
static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
|
|
static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
|
|
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
|
|
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
|
|
|
|
DEFINE_MUTEX(uuid_mutex);
|
|
static LIST_HEAD(fs_uuids);
|
|
struct list_head *btrfs_get_fs_uuids(void)
|
|
{
|
|
return &fs_uuids;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *__alloc_fs_devices(void)
|
|
{
|
|
struct btrfs_fs_devices *fs_devs;
|
|
|
|
fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
|
|
if (!fs_devs)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
mutex_init(&fs_devs->device_list_mutex);
|
|
|
|
INIT_LIST_HEAD(&fs_devs->devices);
|
|
INIT_LIST_HEAD(&fs_devs->resized_devices);
|
|
INIT_LIST_HEAD(&fs_devs->alloc_list);
|
|
INIT_LIST_HEAD(&fs_devs->list);
|
|
|
|
return fs_devs;
|
|
}
|
|
|
|
/**
|
|
* alloc_fs_devices - allocate struct btrfs_fs_devices
|
|
* @fsid: a pointer to UUID for this FS. If NULL a new UUID is
|
|
* generated.
|
|
*
|
|
* Return: a pointer to a new &struct btrfs_fs_devices on success;
|
|
* ERR_PTR() on error. Returned struct is not linked onto any lists and
|
|
* can be destroyed with kfree() right away.
|
|
*/
|
|
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
|
|
{
|
|
struct btrfs_fs_devices *fs_devs;
|
|
|
|
fs_devs = __alloc_fs_devices();
|
|
if (IS_ERR(fs_devs))
|
|
return fs_devs;
|
|
|
|
if (fsid)
|
|
memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
|
|
else
|
|
generate_random_uuid(fs_devs->fsid);
|
|
|
|
return fs_devs;
|
|
}
|
|
|
|
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_device *device;
|
|
WARN_ON(fs_devices->opened);
|
|
while (!list_empty(&fs_devices->devices)) {
|
|
device = list_entry(fs_devices->devices.next,
|
|
struct btrfs_device, dev_list);
|
|
list_del(&device->dev_list);
|
|
rcu_string_free(device->name);
|
|
kfree(device);
|
|
}
|
|
kfree(fs_devices);
|
|
}
|
|
|
|
static void btrfs_kobject_uevent(struct block_device *bdev,
|
|
enum kobject_action action)
|
|
{
|
|
int ret;
|
|
|
|
ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
|
|
if (ret)
|
|
pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
|
|
action,
|
|
kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
|
|
&disk_to_dev(bdev->bd_disk)->kobj);
|
|
}
|
|
|
|
void btrfs_cleanup_fs_uuids(void)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
while (!list_empty(&fs_uuids)) {
|
|
fs_devices = list_entry(fs_uuids.next,
|
|
struct btrfs_fs_devices, list);
|
|
list_del(&fs_devices->list);
|
|
free_fs_devices(fs_devices);
|
|
}
|
|
}
|
|
|
|
static struct btrfs_device *__alloc_device(void)
|
|
{
|
|
struct btrfs_device *dev;
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_NOFS);
|
|
if (!dev)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&dev->dev_list);
|
|
INIT_LIST_HEAD(&dev->dev_alloc_list);
|
|
INIT_LIST_HEAD(&dev->resized_list);
|
|
|
|
spin_lock_init(&dev->io_lock);
|
|
|
|
spin_lock_init(&dev->reada_lock);
|
|
atomic_set(&dev->reada_in_flight, 0);
|
|
atomic_set(&dev->dev_stats_ccnt, 0);
|
|
INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
|
|
INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
|
|
|
|
return dev;
|
|
}
|
|
|
|
static noinline struct btrfs_device *__find_device(struct list_head *head,
|
|
u64 devid, u8 *uuid)
|
|
{
|
|
struct btrfs_device *dev;
|
|
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (dev->devid == devid &&
|
|
(!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
|
|
return dev;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
list_for_each_entry(fs_devices, &fs_uuids, list) {
|
|
if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
|
|
return fs_devices;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
|
|
int flush, struct block_device **bdev,
|
|
struct buffer_head **bh)
|
|
{
|
|
int ret;
|
|
|
|
*bdev = blkdev_get_by_path(device_path, flags, holder);
|
|
|
|
if (IS_ERR(*bdev)) {
|
|
ret = PTR_ERR(*bdev);
|
|
goto error;
|
|
}
|
|
|
|
if (flush)
|
|
filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
|
|
ret = set_blocksize(*bdev, 4096);
|
|
if (ret) {
|
|
blkdev_put(*bdev, flags);
|
|
goto error;
|
|
}
|
|
invalidate_bdev(*bdev);
|
|
*bh = btrfs_read_dev_super(*bdev);
|
|
if (IS_ERR(*bh)) {
|
|
ret = PTR_ERR(*bh);
|
|
blkdev_put(*bdev, flags);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
*bdev = NULL;
|
|
*bh = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static void requeue_list(struct btrfs_pending_bios *pending_bios,
|
|
struct bio *head, struct bio *tail)
|
|
{
|
|
|
|
struct bio *old_head;
|
|
|
|
old_head = pending_bios->head;
|
|
pending_bios->head = head;
|
|
if (pending_bios->tail)
|
|
tail->bi_next = old_head;
|
|
else
|
|
pending_bios->tail = tail;
|
|
}
|
|
|
|
/*
|
|
* we try to collect pending bios for a device so we don't get a large
|
|
* number of procs sending bios down to the same device. This greatly
|
|
* improves the schedulers ability to collect and merge the bios.
|
|
*
|
|
* But, it also turns into a long list of bios to process and that is sure
|
|
* to eventually make the worker thread block. The solution here is to
|
|
* make some progress and then put this work struct back at the end of
|
|
* the list if the block device is congested. This way, multiple devices
|
|
* can make progress from a single worker thread.
|
|
*/
|
|
static noinline void run_scheduled_bios(struct btrfs_device *device)
|
|
{
|
|
struct bio *pending;
|
|
struct backing_dev_info *bdi;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_pending_bios *pending_bios;
|
|
struct bio *tail;
|
|
struct bio *cur;
|
|
int again = 0;
|
|
unsigned long num_run;
|
|
unsigned long batch_run = 0;
|
|
unsigned long limit;
|
|
unsigned long last_waited = 0;
|
|
int force_reg = 0;
|
|
int sync_pending = 0;
|
|
struct blk_plug plug;
|
|
|
|
/*
|
|
* this function runs all the bios we've collected for
|
|
* a particular device. We don't want to wander off to
|
|
* another device without first sending all of these down.
|
|
* So, setup a plug here and finish it off before we return
|
|
*/
|
|
blk_start_plug(&plug);
|
|
|
|
bdi = blk_get_backing_dev_info(device->bdev);
|
|
fs_info = device->dev_root->fs_info;
|
|
limit = btrfs_async_submit_limit(fs_info);
|
|
limit = limit * 2 / 3;
|
|
|
|
loop:
|
|
spin_lock(&device->io_lock);
|
|
|
|
loop_lock:
|
|
num_run = 0;
|
|
|
|
/* take all the bios off the list at once and process them
|
|
* later on (without the lock held). But, remember the
|
|
* tail and other pointers so the bios can be properly reinserted
|
|
* into the list if we hit congestion
|
|
*/
|
|
if (!force_reg && device->pending_sync_bios.head) {
|
|
pending_bios = &device->pending_sync_bios;
|
|
force_reg = 1;
|
|
} else {
|
|
pending_bios = &device->pending_bios;
|
|
force_reg = 0;
|
|
}
|
|
|
|
pending = pending_bios->head;
|
|
tail = pending_bios->tail;
|
|
WARN_ON(pending && !tail);
|
|
|
|
/*
|
|
* if pending was null this time around, no bios need processing
|
|
* at all and we can stop. Otherwise it'll loop back up again
|
|
* and do an additional check so no bios are missed.
|
|
*
|
|
* device->running_pending is used to synchronize with the
|
|
* schedule_bio code.
|
|
*/
|
|
if (device->pending_sync_bios.head == NULL &&
|
|
device->pending_bios.head == NULL) {
|
|
again = 0;
|
|
device->running_pending = 0;
|
|
} else {
|
|
again = 1;
|
|
device->running_pending = 1;
|
|
}
|
|
|
|
pending_bios->head = NULL;
|
|
pending_bios->tail = NULL;
|
|
|
|
spin_unlock(&device->io_lock);
|
|
|
|
while (pending) {
|
|
|
|
rmb();
|
|
/* we want to work on both lists, but do more bios on the
|
|
* sync list than the regular list
|
|
*/
|
|
if ((num_run > 32 &&
|
|
pending_bios != &device->pending_sync_bios &&
|
|
device->pending_sync_bios.head) ||
|
|
(num_run > 64 && pending_bios == &device->pending_sync_bios &&
|
|
device->pending_bios.head)) {
|
|
spin_lock(&device->io_lock);
|
|
requeue_list(pending_bios, pending, tail);
|
|
goto loop_lock;
|
|
}
|
|
|
|
cur = pending;
|
|
pending = pending->bi_next;
|
|
cur->bi_next = NULL;
|
|
|
|
/*
|
|
* atomic_dec_return implies a barrier for waitqueue_active
|
|
*/
|
|
if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
|
|
waitqueue_active(&fs_info->async_submit_wait))
|
|
wake_up(&fs_info->async_submit_wait);
|
|
|
|
BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
|
|
|
|
/*
|
|
* if we're doing the sync list, record that our
|
|
* plug has some sync requests on it
|
|
*
|
|
* If we're doing the regular list and there are
|
|
* sync requests sitting around, unplug before
|
|
* we add more
|
|
*/
|
|
if (pending_bios == &device->pending_sync_bios) {
|
|
sync_pending = 1;
|
|
} else if (sync_pending) {
|
|
blk_finish_plug(&plug);
|
|
blk_start_plug(&plug);
|
|
sync_pending = 0;
|
|
}
|
|
|
|
btrfsic_submit_bio(cur->bi_rw, cur);
|
|
num_run++;
|
|
batch_run++;
|
|
|
|
cond_resched();
|
|
|
|
/*
|
|
* we made progress, there is more work to do and the bdi
|
|
* is now congested. Back off and let other work structs
|
|
* run instead
|
|
*/
|
|
if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
|
|
fs_info->fs_devices->open_devices > 1) {
|
|
struct io_context *ioc;
|
|
|
|
ioc = current->io_context;
|
|
|
|
/*
|
|
* the main goal here is that we don't want to
|
|
* block if we're going to be able to submit
|
|
* more requests without blocking.
|
|
*
|
|
* This code does two great things, it pokes into
|
|
* the elevator code from a filesystem _and_
|
|
* it makes assumptions about how batching works.
|
|
*/
|
|
if (ioc && ioc->nr_batch_requests > 0 &&
|
|
time_before(jiffies, ioc->last_waited + HZ/50UL) &&
|
|
(last_waited == 0 ||
|
|
ioc->last_waited == last_waited)) {
|
|
/*
|
|
* we want to go through our batch of
|
|
* requests and stop. So, we copy out
|
|
* the ioc->last_waited time and test
|
|
* against it before looping
|
|
*/
|
|
last_waited = ioc->last_waited;
|
|
cond_resched();
|
|
continue;
|
|
}
|
|
spin_lock(&device->io_lock);
|
|
requeue_list(pending_bios, pending, tail);
|
|
device->running_pending = 1;
|
|
|
|
spin_unlock(&device->io_lock);
|
|
btrfs_queue_work(fs_info->submit_workers,
|
|
&device->work);
|
|
goto done;
|
|
}
|
|
/* unplug every 64 requests just for good measure */
|
|
if (batch_run % 64 == 0) {
|
|
blk_finish_plug(&plug);
|
|
blk_start_plug(&plug);
|
|
sync_pending = 0;
|
|
}
|
|
}
|
|
|
|
cond_resched();
|
|
if (again)
|
|
goto loop;
|
|
|
|
spin_lock(&device->io_lock);
|
|
if (device->pending_bios.head || device->pending_sync_bios.head)
|
|
goto loop_lock;
|
|
spin_unlock(&device->io_lock);
|
|
|
|
done:
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
static void pending_bios_fn(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
device = container_of(work, struct btrfs_device, work);
|
|
run_scheduled_bios(device);
|
|
}
|
|
|
|
|
|
void btrfs_free_stale_device(struct btrfs_device *cur_dev)
|
|
{
|
|
struct btrfs_fs_devices *fs_devs;
|
|
struct btrfs_device *dev;
|
|
|
|
if (!cur_dev->name)
|
|
return;
|
|
|
|
list_for_each_entry(fs_devs, &fs_uuids, list) {
|
|
int del = 1;
|
|
|
|
if (fs_devs->opened)
|
|
continue;
|
|
if (fs_devs->seeding)
|
|
continue;
|
|
|
|
list_for_each_entry(dev, &fs_devs->devices, dev_list) {
|
|
|
|
if (dev == cur_dev)
|
|
continue;
|
|
if (!dev->name)
|
|
continue;
|
|
|
|
/*
|
|
* Todo: This won't be enough. What if the same device
|
|
* comes back (with new uuid and) with its mapper path?
|
|
* But for now, this does help as mostly an admin will
|
|
* either use mapper or non mapper path throughout.
|
|
*/
|
|
rcu_read_lock();
|
|
del = strcmp(rcu_str_deref(dev->name),
|
|
rcu_str_deref(cur_dev->name));
|
|
rcu_read_unlock();
|
|
if (!del)
|
|
break;
|
|
}
|
|
|
|
if (!del) {
|
|
/* delete the stale device */
|
|
if (fs_devs->num_devices == 1) {
|
|
btrfs_sysfs_remove_fsid(fs_devs);
|
|
list_del(&fs_devs->list);
|
|
free_fs_devices(fs_devs);
|
|
} else {
|
|
fs_devs->num_devices--;
|
|
list_del(&dev->dev_list);
|
|
rcu_string_free(dev->name);
|
|
kfree(dev);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add new device to list of registered devices
|
|
*
|
|
* Returns:
|
|
* 1 - first time device is seen
|
|
* 0 - device already known
|
|
* < 0 - error
|
|
*/
|
|
static noinline int device_list_add(const char *path,
|
|
struct btrfs_super_block *disk_super,
|
|
u64 devid, struct btrfs_fs_devices **fs_devices_ret)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
struct rcu_string *name;
|
|
int ret = 0;
|
|
u64 found_transid = btrfs_super_generation(disk_super);
|
|
|
|
fs_devices = find_fsid(disk_super->fsid);
|
|
if (!fs_devices) {
|
|
fs_devices = alloc_fs_devices(disk_super->fsid);
|
|
if (IS_ERR(fs_devices))
|
|
return PTR_ERR(fs_devices);
|
|
|
|
list_add(&fs_devices->list, &fs_uuids);
|
|
|
|
device = NULL;
|
|
} else {
|
|
device = __find_device(&fs_devices->devices, devid,
|
|
disk_super->dev_item.uuid);
|
|
}
|
|
|
|
if (!device) {
|
|
if (fs_devices->opened)
|
|
return -EBUSY;
|
|
|
|
device = btrfs_alloc_device(NULL, &devid,
|
|
disk_super->dev_item.uuid);
|
|
if (IS_ERR(device)) {
|
|
/* we can safely leave the fs_devices entry around */
|
|
return PTR_ERR(device);
|
|
}
|
|
|
|
name = rcu_string_strdup(path, GFP_NOFS);
|
|
if (!name) {
|
|
kfree(device);
|
|
return -ENOMEM;
|
|
}
|
|
rcu_assign_pointer(device->name, name);
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_add_rcu(&device->dev_list, &fs_devices->devices);
|
|
fs_devices->num_devices++;
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
ret = 1;
|
|
device->fs_devices = fs_devices;
|
|
} else if (!device->name || strcmp(device->name->str, path)) {
|
|
/*
|
|
* When FS is already mounted.
|
|
* 1. If you are here and if the device->name is NULL that
|
|
* means this device was missing at time of FS mount.
|
|
* 2. If you are here and if the device->name is different
|
|
* from 'path' that means either
|
|
* a. The same device disappeared and reappeared with
|
|
* different name. or
|
|
* b. The missing-disk-which-was-replaced, has
|
|
* reappeared now.
|
|
*
|
|
* We must allow 1 and 2a above. But 2b would be a spurious
|
|
* and unintentional.
|
|
*
|
|
* Further in case of 1 and 2a above, the disk at 'path'
|
|
* would have missed some transaction when it was away and
|
|
* in case of 2a the stale bdev has to be updated as well.
|
|
* 2b must not be allowed at all time.
|
|
*/
|
|
|
|
/*
|
|
* For now, we do allow update to btrfs_fs_device through the
|
|
* btrfs dev scan cli after FS has been mounted. We're still
|
|
* tracking a problem where systems fail mount by subvolume id
|
|
* when we reject replacement on a mounted FS.
|
|
*/
|
|
if (!fs_devices->opened && found_transid < device->generation) {
|
|
/*
|
|
* That is if the FS is _not_ mounted and if you
|
|
* are here, that means there is more than one
|
|
* disk with same uuid and devid.We keep the one
|
|
* with larger generation number or the last-in if
|
|
* generation are equal.
|
|
*/
|
|
return -EEXIST;
|
|
}
|
|
|
|
name = rcu_string_strdup(path, GFP_NOFS);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
rcu_string_free(device->name);
|
|
rcu_assign_pointer(device->name, name);
|
|
if (device->missing) {
|
|
fs_devices->missing_devices--;
|
|
device->missing = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unmount does not free the btrfs_device struct but would zero
|
|
* generation along with most of the other members. So just update
|
|
* it back. We need it to pick the disk with largest generation
|
|
* (as above).
|
|
*/
|
|
if (!fs_devices->opened)
|
|
device->generation = found_transid;
|
|
|
|
/*
|
|
* if there is new btrfs on an already registered device,
|
|
* then remove the stale device entry.
|
|
*/
|
|
btrfs_free_stale_device(device);
|
|
|
|
*fs_devices_ret = fs_devices;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
struct btrfs_device *device;
|
|
struct btrfs_device *orig_dev;
|
|
|
|
fs_devices = alloc_fs_devices(orig->fsid);
|
|
if (IS_ERR(fs_devices))
|
|
return fs_devices;
|
|
|
|
mutex_lock(&orig->device_list_mutex);
|
|
fs_devices->total_devices = orig->total_devices;
|
|
|
|
/* We have held the volume lock, it is safe to get the devices. */
|
|
list_for_each_entry(orig_dev, &orig->devices, dev_list) {
|
|
struct rcu_string *name;
|
|
|
|
device = btrfs_alloc_device(NULL, &orig_dev->devid,
|
|
orig_dev->uuid);
|
|
if (IS_ERR(device))
|
|
goto error;
|
|
|
|
/*
|
|
* This is ok to do without rcu read locked because we hold the
|
|
* uuid mutex so nothing we touch in here is going to disappear.
|
|
*/
|
|
if (orig_dev->name) {
|
|
name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
|
|
if (!name) {
|
|
kfree(device);
|
|
goto error;
|
|
}
|
|
rcu_assign_pointer(device->name, name);
|
|
}
|
|
|
|
list_add(&device->dev_list, &fs_devices->devices);
|
|
device->fs_devices = fs_devices;
|
|
fs_devices->num_devices++;
|
|
}
|
|
mutex_unlock(&orig->device_list_mutex);
|
|
return fs_devices;
|
|
error:
|
|
mutex_unlock(&orig->device_list_mutex);
|
|
free_fs_devices(fs_devices);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
|
|
{
|
|
struct btrfs_device *device, *next;
|
|
struct btrfs_device *latest_dev = NULL;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
again:
|
|
/* This is the initialized path, it is safe to release the devices. */
|
|
list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
|
|
if (device->in_fs_metadata) {
|
|
if (!device->is_tgtdev_for_dev_replace &&
|
|
(!latest_dev ||
|
|
device->generation > latest_dev->generation)) {
|
|
latest_dev = device;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
|
|
/*
|
|
* In the first step, keep the device which has
|
|
* the correct fsid and the devid that is used
|
|
* for the dev_replace procedure.
|
|
* In the second step, the dev_replace state is
|
|
* read from the device tree and it is known
|
|
* whether the procedure is really active or
|
|
* not, which means whether this device is
|
|
* used or whether it should be removed.
|
|
*/
|
|
if (step == 0 || device->is_tgtdev_for_dev_replace) {
|
|
continue;
|
|
}
|
|
}
|
|
if (device->bdev) {
|
|
blkdev_put(device->bdev, device->mode);
|
|
device->bdev = NULL;
|
|
fs_devices->open_devices--;
|
|
}
|
|
if (device->writeable) {
|
|
list_del_init(&device->dev_alloc_list);
|
|
device->writeable = 0;
|
|
if (!device->is_tgtdev_for_dev_replace)
|
|
fs_devices->rw_devices--;
|
|
}
|
|
list_del_init(&device->dev_list);
|
|
fs_devices->num_devices--;
|
|
rcu_string_free(device->name);
|
|
kfree(device);
|
|
}
|
|
|
|
if (fs_devices->seed) {
|
|
fs_devices = fs_devices->seed;
|
|
goto again;
|
|
}
|
|
|
|
fs_devices->latest_bdev = latest_dev->bdev;
|
|
|
|
mutex_unlock(&uuid_mutex);
|
|
}
|
|
|
|
static void __free_device(struct work_struct *work)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
device = container_of(work, struct btrfs_device, rcu_work);
|
|
|
|
if (device->bdev)
|
|
blkdev_put(device->bdev, device->mode);
|
|
|
|
rcu_string_free(device->name);
|
|
kfree(device);
|
|
}
|
|
|
|
static void free_device(struct rcu_head *head)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
device = container_of(head, struct btrfs_device, rcu);
|
|
|
|
INIT_WORK(&device->rcu_work, __free_device);
|
|
schedule_work(&device->rcu_work);
|
|
}
|
|
|
|
static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_device *device, *tmp;
|
|
|
|
if (--fs_devices->opened > 0)
|
|
return 0;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
|
|
btrfs_close_one_device(device);
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
WARN_ON(fs_devices->open_devices);
|
|
WARN_ON(fs_devices->rw_devices);
|
|
fs_devices->opened = 0;
|
|
fs_devices->seeding = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_fs_devices *seed_devices = NULL;
|
|
int ret;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
ret = __btrfs_close_devices(fs_devices);
|
|
if (!fs_devices->opened) {
|
|
seed_devices = fs_devices->seed;
|
|
fs_devices->seed = NULL;
|
|
}
|
|
mutex_unlock(&uuid_mutex);
|
|
|
|
while (seed_devices) {
|
|
fs_devices = seed_devices;
|
|
seed_devices = fs_devices->seed;
|
|
__btrfs_close_devices(fs_devices);
|
|
free_fs_devices(fs_devices);
|
|
}
|
|
/*
|
|
* Wait for rcu kworkers under __btrfs_close_devices
|
|
* to finish all blkdev_puts so device is really
|
|
* free when umount is done.
|
|
*/
|
|
rcu_barrier();
|
|
return ret;
|
|
}
|
|
|
|
static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
|
|
fmode_t flags, void *holder)
|
|
{
|
|
struct request_queue *q;
|
|
struct block_device *bdev;
|
|
struct list_head *head = &fs_devices->devices;
|
|
struct btrfs_device *device;
|
|
struct btrfs_device *latest_dev = NULL;
|
|
struct buffer_head *bh;
|
|
struct btrfs_super_block *disk_super;
|
|
u64 devid;
|
|
int seeding = 1;
|
|
int ret = 0;
|
|
|
|
flags |= FMODE_EXCL;
|
|
|
|
list_for_each_entry(device, head, dev_list) {
|
|
if (device->bdev)
|
|
continue;
|
|
if (!device->name)
|
|
continue;
|
|
|
|
/* Just open everything we can; ignore failures here */
|
|
if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
|
|
&bdev, &bh))
|
|
continue;
|
|
|
|
disk_super = (struct btrfs_super_block *)bh->b_data;
|
|
devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
if (devid != device->devid)
|
|
goto error_brelse;
|
|
|
|
if (memcmp(device->uuid, disk_super->dev_item.uuid,
|
|
BTRFS_UUID_SIZE))
|
|
goto error_brelse;
|
|
|
|
device->generation = btrfs_super_generation(disk_super);
|
|
if (!latest_dev ||
|
|
device->generation > latest_dev->generation)
|
|
latest_dev = device;
|
|
|
|
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
|
|
device->writeable = 0;
|
|
} else {
|
|
device->writeable = !bdev_read_only(bdev);
|
|
seeding = 0;
|
|
}
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (blk_queue_discard(q))
|
|
device->can_discard = 1;
|
|
|
|
device->bdev = bdev;
|
|
device->in_fs_metadata = 0;
|
|
device->mode = flags;
|
|
|
|
if (!blk_queue_nonrot(bdev_get_queue(bdev)))
|
|
fs_devices->rotating = 1;
|
|
|
|
fs_devices->open_devices++;
|
|
if (device->writeable &&
|
|
device->devid != BTRFS_DEV_REPLACE_DEVID) {
|
|
fs_devices->rw_devices++;
|
|
list_add(&device->dev_alloc_list,
|
|
&fs_devices->alloc_list);
|
|
}
|
|
brelse(bh);
|
|
continue;
|
|
|
|
error_brelse:
|
|
brelse(bh);
|
|
blkdev_put(bdev, flags);
|
|
continue;
|
|
}
|
|
if (fs_devices->open_devices == 0) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
fs_devices->seeding = seeding;
|
|
fs_devices->opened = 1;
|
|
fs_devices->latest_bdev = latest_dev->bdev;
|
|
fs_devices->total_rw_bytes = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
|
|
fmode_t flags, void *holder)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
if (fs_devices->opened) {
|
|
fs_devices->opened++;
|
|
ret = 0;
|
|
} else {
|
|
ret = __btrfs_open_devices(fs_devices, flags, holder);
|
|
}
|
|
mutex_unlock(&uuid_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Look for a btrfs signature on a device. This may be called out of the mount path
|
|
* and we are not allowed to call set_blocksize during the scan. The superblock
|
|
* is read via pagecache
|
|
*/
|
|
int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
|
|
struct btrfs_fs_devices **fs_devices_ret)
|
|
{
|
|
struct btrfs_super_block *disk_super;
|
|
struct block_device *bdev;
|
|
struct page *page;
|
|
void *p;
|
|
int ret = -EINVAL;
|
|
u64 devid;
|
|
u64 transid;
|
|
u64 total_devices;
|
|
u64 bytenr;
|
|
pgoff_t index;
|
|
|
|
/*
|
|
* we would like to check all the supers, but that would make
|
|
* a btrfs mount succeed after a mkfs from a different FS.
|
|
* So, we need to add a special mount option to scan for
|
|
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
|
|
*/
|
|
bytenr = btrfs_sb_offset(0);
|
|
flags |= FMODE_EXCL;
|
|
mutex_lock(&uuid_mutex);
|
|
|
|
bdev = blkdev_get_by_path(path, flags, holder);
|
|
|
|
if (IS_ERR(bdev)) {
|
|
ret = PTR_ERR(bdev);
|
|
goto error;
|
|
}
|
|
|
|
/* make sure our super fits in the device */
|
|
if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
|
|
goto error_bdev_put;
|
|
|
|
/* make sure our super fits in the page */
|
|
if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
|
|
goto error_bdev_put;
|
|
|
|
/* make sure our super doesn't straddle pages on disk */
|
|
index = bytenr >> PAGE_CACHE_SHIFT;
|
|
if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
|
|
goto error_bdev_put;
|
|
|
|
/* pull in the page with our super */
|
|
page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
|
|
index, GFP_NOFS);
|
|
|
|
if (IS_ERR_OR_NULL(page))
|
|
goto error_bdev_put;
|
|
|
|
p = kmap(page);
|
|
|
|
/* align our pointer to the offset of the super block */
|
|
disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
|
|
|
|
if (btrfs_super_bytenr(disk_super) != bytenr ||
|
|
btrfs_super_magic(disk_super) != BTRFS_MAGIC)
|
|
goto error_unmap;
|
|
|
|
devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
transid = btrfs_super_generation(disk_super);
|
|
total_devices = btrfs_super_num_devices(disk_super);
|
|
|
|
ret = device_list_add(path, disk_super, devid, fs_devices_ret);
|
|
if (ret > 0) {
|
|
if (disk_super->label[0]) {
|
|
if (disk_super->label[BTRFS_LABEL_SIZE - 1])
|
|
disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
|
|
printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
|
|
} else {
|
|
printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
|
|
}
|
|
|
|
printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
|
|
ret = 0;
|
|
}
|
|
if (!ret && fs_devices_ret)
|
|
(*fs_devices_ret)->total_devices = total_devices;
|
|
|
|
error_unmap:
|
|
kunmap(page);
|
|
page_cache_release(page);
|
|
|
|
error_bdev_put:
|
|
blkdev_put(bdev, flags);
|
|
error:
|
|
mutex_unlock(&uuid_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* helper to account the used device space in the range */
|
|
int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
|
|
u64 end, u64 *length)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *dev_extent;
|
|
struct btrfs_path *path;
|
|
u64 extent_end;
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *l;
|
|
|
|
*length = 0;
|
|
|
|
if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
path->reada = 2;
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, key.objectid, key.type);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(l)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
if (key.objectid < device->devid)
|
|
goto next;
|
|
|
|
if (key.objectid > device->devid)
|
|
break;
|
|
|
|
if (key.type != BTRFS_DEV_EXTENT_KEY)
|
|
goto next;
|
|
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
extent_end = key.offset + btrfs_dev_extent_length(l,
|
|
dev_extent);
|
|
if (key.offset <= start && extent_end > end) {
|
|
*length = end - start + 1;
|
|
break;
|
|
} else if (key.offset <= start && extent_end > start)
|
|
*length += extent_end - start;
|
|
else if (key.offset > start && extent_end <= end)
|
|
*length += extent_end - key.offset;
|
|
else if (key.offset > start && key.offset <= end) {
|
|
*length += end - key.offset + 1;
|
|
break;
|
|
} else if (key.offset > end)
|
|
break;
|
|
|
|
next:
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int contains_pending_extent(struct btrfs_transaction *transaction,
|
|
struct btrfs_device *device,
|
|
u64 *start, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
|
|
struct extent_map *em;
|
|
struct list_head *search_list = &fs_info->pinned_chunks;
|
|
int ret = 0;
|
|
u64 physical_start = *start;
|
|
|
|
if (transaction)
|
|
search_list = &transaction->pending_chunks;
|
|
again:
|
|
list_for_each_entry(em, search_list, list) {
|
|
struct map_lookup *map;
|
|
int i;
|
|
|
|
map = (struct map_lookup *)em->bdev;
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
u64 end;
|
|
|
|
if (map->stripes[i].dev != device)
|
|
continue;
|
|
if (map->stripes[i].physical >= physical_start + len ||
|
|
map->stripes[i].physical + em->orig_block_len <=
|
|
physical_start)
|
|
continue;
|
|
/*
|
|
* Make sure that while processing the pinned list we do
|
|
* not override our *start with a lower value, because
|
|
* we can have pinned chunks that fall within this
|
|
* device hole and that have lower physical addresses
|
|
* than the pending chunks we processed before. If we
|
|
* do not take this special care we can end up getting
|
|
* 2 pending chunks that start at the same physical
|
|
* device offsets because the end offset of a pinned
|
|
* chunk can be equal to the start offset of some
|
|
* pending chunk.
|
|
*/
|
|
end = map->stripes[i].physical + em->orig_block_len;
|
|
if (end > *start) {
|
|
*start = end;
|
|
ret = 1;
|
|
}
|
|
}
|
|
}
|
|
if (search_list != &fs_info->pinned_chunks) {
|
|
search_list = &fs_info->pinned_chunks;
|
|
goto again;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* find_free_dev_extent_start - find free space in the specified device
|
|
* @device: the device which we search the free space in
|
|
* @num_bytes: the size of the free space that we need
|
|
* @search_start: the position from which to begin the search
|
|
* @start: store the start of the free space.
|
|
* @len: the size of the free space. that we find, or the size
|
|
* of the max free space if we don't find suitable free space
|
|
*
|
|
* this uses a pretty simple search, the expectation is that it is
|
|
* called very infrequently and that a given device has a small number
|
|
* of extents
|
|
*
|
|
* @start is used to store the start of the free space if we find. But if we
|
|
* don't find suitable free space, it will be used to store the start position
|
|
* of the max free space.
|
|
*
|
|
* @len is used to store the size of the free space that we find.
|
|
* But if we don't find suitable free space, it is used to store the size of
|
|
* the max free space.
|
|
*/
|
|
int find_free_dev_extent_start(struct btrfs_transaction *transaction,
|
|
struct btrfs_device *device, u64 num_bytes,
|
|
u64 search_start, u64 *start, u64 *len)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *dev_extent;
|
|
struct btrfs_path *path;
|
|
u64 hole_size;
|
|
u64 max_hole_start;
|
|
u64 max_hole_size;
|
|
u64 extent_end;
|
|
u64 search_end = device->total_bytes;
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *l;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
max_hole_start = search_start;
|
|
max_hole_size = 0;
|
|
|
|
again:
|
|
if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
path->reada = 2;
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = search_start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, key.objectid, key.type);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(l)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
if (key.objectid < device->devid)
|
|
goto next;
|
|
|
|
if (key.objectid > device->devid)
|
|
break;
|
|
|
|
if (key.type != BTRFS_DEV_EXTENT_KEY)
|
|
goto next;
|
|
|
|
if (key.offset > search_start) {
|
|
hole_size = key.offset - search_start;
|
|
|
|
/*
|
|
* Have to check before we set max_hole_start, otherwise
|
|
* we could end up sending back this offset anyway.
|
|
*/
|
|
if (contains_pending_extent(transaction, device,
|
|
&search_start,
|
|
hole_size)) {
|
|
if (key.offset >= search_start) {
|
|
hole_size = key.offset - search_start;
|
|
} else {
|
|
WARN_ON_ONCE(1);
|
|
hole_size = 0;
|
|
}
|
|
}
|
|
|
|
if (hole_size > max_hole_size) {
|
|
max_hole_start = search_start;
|
|
max_hole_size = hole_size;
|
|
}
|
|
|
|
/*
|
|
* If this free space is greater than which we need,
|
|
* it must be the max free space that we have found
|
|
* until now, so max_hole_start must point to the start
|
|
* of this free space and the length of this free space
|
|
* is stored in max_hole_size. Thus, we return
|
|
* max_hole_start and max_hole_size and go back to the
|
|
* caller.
|
|
*/
|
|
if (hole_size >= num_bytes) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
extent_end = key.offset + btrfs_dev_extent_length(l,
|
|
dev_extent);
|
|
if (extent_end > search_start)
|
|
search_start = extent_end;
|
|
next:
|
|
path->slots[0]++;
|
|
cond_resched();
|
|
}
|
|
|
|
/*
|
|
* At this point, search_start should be the end of
|
|
* allocated dev extents, and when shrinking the device,
|
|
* search_end may be smaller than search_start.
|
|
*/
|
|
if (search_end > search_start) {
|
|
hole_size = search_end - search_start;
|
|
|
|
if (contains_pending_extent(transaction, device, &search_start,
|
|
hole_size)) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
|
|
if (hole_size > max_hole_size) {
|
|
max_hole_start = search_start;
|
|
max_hole_size = hole_size;
|
|
}
|
|
}
|
|
|
|
/* See above. */
|
|
if (max_hole_size < num_bytes)
|
|
ret = -ENOSPC;
|
|
else
|
|
ret = 0;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
*start = max_hole_start;
|
|
if (len)
|
|
*len = max_hole_size;
|
|
return ret;
|
|
}
|
|
|
|
int find_free_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device, u64 num_bytes,
|
|
u64 *start, u64 *len)
|
|
{
|
|
struct btrfs_root *root = device->dev_root;
|
|
u64 search_start;
|
|
|
|
/* FIXME use last free of some kind */
|
|
|
|
/*
|
|
* we don't want to overwrite the superblock on the drive,
|
|
* so we make sure to start at an offset of at least 1MB
|
|
*/
|
|
search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
|
|
return find_free_dev_extent_start(trans->transaction, device,
|
|
num_bytes, search_start, start, len);
|
|
}
|
|
|
|
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
u64 start, u64 *dev_extent_len)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf = NULL;
|
|
struct btrfs_dev_extent *extent = NULL;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
again:
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, key.objectid,
|
|
BTRFS_DEV_EXTENT_KEY);
|
|
if (ret)
|
|
goto out;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
BUG_ON(found_key.offset > start || found_key.offset +
|
|
btrfs_dev_extent_length(leaf, extent) < start);
|
|
key = found_key;
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
} else if (ret == 0) {
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
} else {
|
|
btrfs_std_error(root->fs_info, ret, "Slot search failed");
|
|
goto out;
|
|
}
|
|
|
|
*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
if (ret) {
|
|
btrfs_std_error(root->fs_info, ret,
|
|
"Failed to remove dev extent item");
|
|
} else {
|
|
set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
u64 chunk_tree, u64 chunk_objectid,
|
|
u64 chunk_offset, u64 start, u64 num_bytes)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *extent;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
WARN_ON(!device->in_fs_metadata);
|
|
WARN_ON(device->is_tgtdev_for_dev_replace);
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(*extent));
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
|
|
btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
|
|
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
|
|
|
|
write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
|
|
btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
|
|
|
|
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
struct rb_node *n;
|
|
u64 ret = 0;
|
|
|
|
em_tree = &fs_info->mapping_tree.map_tree;
|
|
read_lock(&em_tree->lock);
|
|
n = rb_last(&em_tree->map);
|
|
if (n) {
|
|
em = rb_entry(n, struct extent_map, rb_node);
|
|
ret = em->start + em->len;
|
|
}
|
|
read_unlock(&em_tree->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
|
|
u64 *devid_ret)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path *path;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
BUG_ON(ret == 0); /* Corruption */
|
|
|
|
ret = btrfs_previous_item(fs_info->chunk_root, path,
|
|
BTRFS_DEV_ITEMS_OBJECTID,
|
|
BTRFS_DEV_ITEM_KEY);
|
|
if (ret) {
|
|
*devid_ret = 1;
|
|
} else {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
*devid_ret = found_key.offset + 1;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* the device information is stored in the chunk root
|
|
* the btrfs_device struct should be fully filled in
|
|
*/
|
|
static int btrfs_add_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
unsigned long ptr;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(*dev_item));
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
|
|
|
|
btrfs_set_device_id(leaf, dev_item, device->devid);
|
|
btrfs_set_device_generation(leaf, dev_item, 0);
|
|
btrfs_set_device_type(leaf, dev_item, device->type);
|
|
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
|
|
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
|
|
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
|
|
btrfs_set_device_total_bytes(leaf, dev_item,
|
|
btrfs_device_get_disk_total_bytes(device));
|
|
btrfs_set_device_bytes_used(leaf, dev_item,
|
|
btrfs_device_get_bytes_used(device));
|
|
btrfs_set_device_group(leaf, dev_item, 0);
|
|
btrfs_set_device_seek_speed(leaf, dev_item, 0);
|
|
btrfs_set_device_bandwidth(leaf, dev_item, 0);
|
|
btrfs_set_device_start_offset(leaf, dev_item, 0);
|
|
|
|
ptr = btrfs_device_uuid(dev_item);
|
|
write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
ptr = btrfs_device_fsid(dev_item);
|
|
write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function to update ctime/mtime for a given device path.
|
|
* Mainly used for ctime/mtime based probe like libblkid.
|
|
*/
|
|
static void update_dev_time(char *path_name)
|
|
{
|
|
struct file *filp;
|
|
|
|
filp = filp_open(path_name, O_RDWR, 0);
|
|
if (IS_ERR(filp))
|
|
return;
|
|
file_update_time(filp);
|
|
filp_close(filp, NULL);
|
|
return;
|
|
}
|
|
|
|
static int btrfs_rm_dev_item(struct btrfs_root *root,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(trans);
|
|
}
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
if (ret)
|
|
goto out;
|
|
out:
|
|
btrfs_free_path(path);
|
|
btrfs_commit_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_rm_device(struct btrfs_root *root, char *device_path)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_device *next_device;
|
|
struct block_device *bdev;
|
|
struct buffer_head *bh = NULL;
|
|
struct btrfs_super_block *disk_super;
|
|
struct btrfs_fs_devices *cur_devices;
|
|
u64 all_avail;
|
|
u64 devid;
|
|
u64 num_devices;
|
|
u8 *dev_uuid;
|
|
unsigned seq;
|
|
int ret = 0;
|
|
bool clear_super = false;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
|
|
do {
|
|
seq = read_seqbegin(&root->fs_info->profiles_lock);
|
|
|
|
all_avail = root->fs_info->avail_data_alloc_bits |
|
|
root->fs_info->avail_system_alloc_bits |
|
|
root->fs_info->avail_metadata_alloc_bits;
|
|
} while (read_seqretry(&root->fs_info->profiles_lock, seq));
|
|
|
|
num_devices = root->fs_info->fs_devices->num_devices;
|
|
btrfs_dev_replace_lock(&root->fs_info->dev_replace);
|
|
if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
|
|
WARN_ON(num_devices < 1);
|
|
num_devices--;
|
|
}
|
|
btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
|
|
|
|
if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
|
|
ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
|
|
goto out;
|
|
}
|
|
|
|
if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
|
|
ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
|
|
goto out;
|
|
}
|
|
|
|
if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
|
|
root->fs_info->fs_devices->rw_devices <= 2) {
|
|
ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
|
|
goto out;
|
|
}
|
|
if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
|
|
root->fs_info->fs_devices->rw_devices <= 3) {
|
|
ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
|
|
goto out;
|
|
}
|
|
|
|
if (strcmp(device_path, "missing") == 0) {
|
|
struct list_head *devices;
|
|
struct btrfs_device *tmp;
|
|
|
|
device = NULL;
|
|
devices = &root->fs_info->fs_devices->devices;
|
|
/*
|
|
* It is safe to read the devices since the volume_mutex
|
|
* is held.
|
|
*/
|
|
list_for_each_entry(tmp, devices, dev_list) {
|
|
if (tmp->in_fs_metadata &&
|
|
!tmp->is_tgtdev_for_dev_replace &&
|
|
!tmp->bdev) {
|
|
device = tmp;
|
|
break;
|
|
}
|
|
}
|
|
bdev = NULL;
|
|
bh = NULL;
|
|
disk_super = NULL;
|
|
if (!device) {
|
|
ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
|
|
goto out;
|
|
}
|
|
} else {
|
|
ret = btrfs_get_bdev_and_sb(device_path,
|
|
FMODE_WRITE | FMODE_EXCL,
|
|
root->fs_info->bdev_holder, 0,
|
|
&bdev, &bh);
|
|
if (ret)
|
|
goto out;
|
|
disk_super = (struct btrfs_super_block *)bh->b_data;
|
|
devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
dev_uuid = disk_super->dev_item.uuid;
|
|
device = btrfs_find_device(root->fs_info, devid, dev_uuid,
|
|
disk_super->fsid);
|
|
if (!device) {
|
|
ret = -ENOENT;
|
|
goto error_brelse;
|
|
}
|
|
}
|
|
|
|
if (device->is_tgtdev_for_dev_replace) {
|
|
ret = BTRFS_ERROR_DEV_TGT_REPLACE;
|
|
goto error_brelse;
|
|
}
|
|
|
|
if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
|
|
ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
|
|
goto error_brelse;
|
|
}
|
|
|
|
if (device->writeable) {
|
|
lock_chunks(root);
|
|
list_del_init(&device->dev_alloc_list);
|
|
device->fs_devices->rw_devices--;
|
|
unlock_chunks(root);
|
|
clear_super = true;
|
|
}
|
|
|
|
mutex_unlock(&uuid_mutex);
|
|
ret = btrfs_shrink_device(device, 0);
|
|
mutex_lock(&uuid_mutex);
|
|
if (ret)
|
|
goto error_undo;
|
|
|
|
/*
|
|
* TODO: the superblock still includes this device in its num_devices
|
|
* counter although write_all_supers() is not locked out. This
|
|
* could give a filesystem state which requires a degraded mount.
|
|
*/
|
|
ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
|
|
if (ret)
|
|
goto error_undo;
|
|
|
|
device->in_fs_metadata = 0;
|
|
btrfs_scrub_cancel_dev(root->fs_info, device);
|
|
|
|
/*
|
|
* the device list mutex makes sure that we don't change
|
|
* the device list while someone else is writing out all
|
|
* the device supers. Whoever is writing all supers, should
|
|
* lock the device list mutex before getting the number of
|
|
* devices in the super block (super_copy). Conversely,
|
|
* whoever updates the number of devices in the super block
|
|
* (super_copy) should hold the device list mutex.
|
|
*/
|
|
|
|
cur_devices = device->fs_devices;
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
list_del_rcu(&device->dev_list);
|
|
|
|
device->fs_devices->num_devices--;
|
|
device->fs_devices->total_devices--;
|
|
|
|
if (device->missing)
|
|
device->fs_devices->missing_devices--;
|
|
|
|
next_device = list_entry(root->fs_info->fs_devices->devices.next,
|
|
struct btrfs_device, dev_list);
|
|
if (device->bdev == root->fs_info->sb->s_bdev)
|
|
root->fs_info->sb->s_bdev = next_device->bdev;
|
|
if (device->bdev == root->fs_info->fs_devices->latest_bdev)
|
|
root->fs_info->fs_devices->latest_bdev = next_device->bdev;
|
|
|
|
if (device->bdev) {
|
|
device->fs_devices->open_devices--;
|
|
/* remove sysfs entry */
|
|
btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
|
|
}
|
|
|
|
call_rcu(&device->rcu, free_device);
|
|
|
|
num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
|
|
btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
|
|
if (cur_devices->open_devices == 0) {
|
|
struct btrfs_fs_devices *fs_devices;
|
|
fs_devices = root->fs_info->fs_devices;
|
|
while (fs_devices) {
|
|
if (fs_devices->seed == cur_devices) {
|
|
fs_devices->seed = cur_devices->seed;
|
|
break;
|
|
}
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
cur_devices->seed = NULL;
|
|
__btrfs_close_devices(cur_devices);
|
|
free_fs_devices(cur_devices);
|
|
}
|
|
|
|
root->fs_info->num_tolerated_disk_barrier_failures =
|
|
btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
|
|
|
|
/*
|
|
* at this point, the device is zero sized. We want to
|
|
* remove it from the devices list and zero out the old super
|
|
*/
|
|
if (clear_super && disk_super) {
|
|
u64 bytenr;
|
|
int i;
|
|
|
|
/* make sure this device isn't detected as part of
|
|
* the FS anymore
|
|
*/
|
|
memset(&disk_super->magic, 0, sizeof(disk_super->magic));
|
|
set_buffer_dirty(bh);
|
|
sync_dirty_buffer(bh);
|
|
|
|
/* clear the mirror copies of super block on the disk
|
|
* being removed, 0th copy is been taken care above and
|
|
* the below would take of the rest
|
|
*/
|
|
for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
|
|
i_size_read(bdev->bd_inode))
|
|
break;
|
|
|
|
brelse(bh);
|
|
bh = __bread(bdev, bytenr / 4096,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!bh)
|
|
continue;
|
|
|
|
disk_super = (struct btrfs_super_block *)bh->b_data;
|
|
|
|
if (btrfs_super_bytenr(disk_super) != bytenr ||
|
|
btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
|
|
continue;
|
|
}
|
|
memset(&disk_super->magic, 0,
|
|
sizeof(disk_super->magic));
|
|
set_buffer_dirty(bh);
|
|
sync_dirty_buffer(bh);
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
if (bdev) {
|
|
/* Notify udev that device has changed */
|
|
btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
|
|
|
|
/* Update ctime/mtime for device path for libblkid */
|
|
update_dev_time(device_path);
|
|
}
|
|
|
|
error_brelse:
|
|
brelse(bh);
|
|
if (bdev)
|
|
blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
|
|
out:
|
|
mutex_unlock(&uuid_mutex);
|
|
return ret;
|
|
error_undo:
|
|
if (device->writeable) {
|
|
lock_chunks(root);
|
|
list_add(&device->dev_alloc_list,
|
|
&root->fs_info->fs_devices->alloc_list);
|
|
device->fs_devices->rw_devices++;
|
|
unlock_chunks(root);
|
|
}
|
|
goto error_brelse;
|
|
}
|
|
|
|
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_device *srcdev)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
|
|
|
|
/*
|
|
* in case of fs with no seed, srcdev->fs_devices will point
|
|
* to fs_devices of fs_info. However when the dev being replaced is
|
|
* a seed dev it will point to the seed's local fs_devices. In short
|
|
* srcdev will have its correct fs_devices in both the cases.
|
|
*/
|
|
fs_devices = srcdev->fs_devices;
|
|
|
|
list_del_rcu(&srcdev->dev_list);
|
|
list_del_rcu(&srcdev->dev_alloc_list);
|
|
fs_devices->num_devices--;
|
|
if (srcdev->missing)
|
|
fs_devices->missing_devices--;
|
|
|
|
if (srcdev->writeable) {
|
|
fs_devices->rw_devices--;
|
|
/* zero out the old super if it is writable */
|
|
btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
|
|
}
|
|
|
|
if (srcdev->bdev)
|
|
fs_devices->open_devices--;
|
|
}
|
|
|
|
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_device *srcdev)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
|
|
|
|
call_rcu(&srcdev->rcu, free_device);
|
|
|
|
/*
|
|
* unless fs_devices is seed fs, num_devices shouldn't go
|
|
* zero
|
|
*/
|
|
BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
|
|
|
|
/* if this is no devs we rather delete the fs_devices */
|
|
if (!fs_devices->num_devices) {
|
|
struct btrfs_fs_devices *tmp_fs_devices;
|
|
|
|
tmp_fs_devices = fs_info->fs_devices;
|
|
while (tmp_fs_devices) {
|
|
if (tmp_fs_devices->seed == fs_devices) {
|
|
tmp_fs_devices->seed = fs_devices->seed;
|
|
break;
|
|
}
|
|
tmp_fs_devices = tmp_fs_devices->seed;
|
|
}
|
|
fs_devices->seed = NULL;
|
|
__btrfs_close_devices(fs_devices);
|
|
free_fs_devices(fs_devices);
|
|
}
|
|
}
|
|
|
|
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_device *tgtdev)
|
|
{
|
|
struct btrfs_device *next_device;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
WARN_ON(!tgtdev);
|
|
mutex_lock(&fs_info->fs_devices->device_list_mutex);
|
|
|
|
btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
|
|
|
|
if (tgtdev->bdev) {
|
|
btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
|
|
fs_info->fs_devices->open_devices--;
|
|
}
|
|
fs_info->fs_devices->num_devices--;
|
|
|
|
next_device = list_entry(fs_info->fs_devices->devices.next,
|
|
struct btrfs_device, dev_list);
|
|
if (tgtdev->bdev == fs_info->sb->s_bdev)
|
|
fs_info->sb->s_bdev = next_device->bdev;
|
|
if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
|
|
fs_info->fs_devices->latest_bdev = next_device->bdev;
|
|
list_del_rcu(&tgtdev->dev_list);
|
|
|
|
call_rcu(&tgtdev->rcu, free_device);
|
|
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
mutex_unlock(&uuid_mutex);
|
|
}
|
|
|
|
static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
|
|
struct btrfs_device **device)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_super_block *disk_super;
|
|
u64 devid;
|
|
u8 *dev_uuid;
|
|
struct block_device *bdev;
|
|
struct buffer_head *bh;
|
|
|
|
*device = NULL;
|
|
ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
|
|
root->fs_info->bdev_holder, 0, &bdev, &bh);
|
|
if (ret)
|
|
return ret;
|
|
disk_super = (struct btrfs_super_block *)bh->b_data;
|
|
devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
dev_uuid = disk_super->dev_item.uuid;
|
|
*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
|
|
disk_super->fsid);
|
|
brelse(bh);
|
|
if (!*device)
|
|
ret = -ENOENT;
|
|
blkdev_put(bdev, FMODE_READ);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
|
|
char *device_path,
|
|
struct btrfs_device **device)
|
|
{
|
|
*device = NULL;
|
|
if (strcmp(device_path, "missing") == 0) {
|
|
struct list_head *devices;
|
|
struct btrfs_device *tmp;
|
|
|
|
devices = &root->fs_info->fs_devices->devices;
|
|
/*
|
|
* It is safe to read the devices since the volume_mutex
|
|
* is held by the caller.
|
|
*/
|
|
list_for_each_entry(tmp, devices, dev_list) {
|
|
if (tmp->in_fs_metadata && !tmp->bdev) {
|
|
*device = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!*device)
|
|
return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
|
|
|
|
return 0;
|
|
} else {
|
|
return btrfs_find_device_by_path(root, device_path, device);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* does all the dirty work required for changing file system's UUID.
|
|
*/
|
|
static int btrfs_prepare_sprout(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
|
|
struct btrfs_fs_devices *old_devices;
|
|
struct btrfs_fs_devices *seed_devices;
|
|
struct btrfs_super_block *disk_super = root->fs_info->super_copy;
|
|
struct btrfs_device *device;
|
|
u64 super_flags;
|
|
|
|
BUG_ON(!mutex_is_locked(&uuid_mutex));
|
|
if (!fs_devices->seeding)
|
|
return -EINVAL;
|
|
|
|
seed_devices = __alloc_fs_devices();
|
|
if (IS_ERR(seed_devices))
|
|
return PTR_ERR(seed_devices);
|
|
|
|
old_devices = clone_fs_devices(fs_devices);
|
|
if (IS_ERR(old_devices)) {
|
|
kfree(seed_devices);
|
|
return PTR_ERR(old_devices);
|
|
}
|
|
|
|
list_add(&old_devices->list, &fs_uuids);
|
|
|
|
memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
|
|
seed_devices->opened = 1;
|
|
INIT_LIST_HEAD(&seed_devices->devices);
|
|
INIT_LIST_HEAD(&seed_devices->alloc_list);
|
|
mutex_init(&seed_devices->device_list_mutex);
|
|
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
|
|
synchronize_rcu);
|
|
list_for_each_entry(device, &seed_devices->devices, dev_list)
|
|
device->fs_devices = seed_devices;
|
|
|
|
lock_chunks(root);
|
|
list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
|
|
unlock_chunks(root);
|
|
|
|
fs_devices->seeding = 0;
|
|
fs_devices->num_devices = 0;
|
|
fs_devices->open_devices = 0;
|
|
fs_devices->missing_devices = 0;
|
|
fs_devices->rotating = 0;
|
|
fs_devices->seed = seed_devices;
|
|
|
|
generate_random_uuid(fs_devices->fsid);
|
|
memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
|
|
memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
|
|
super_flags = btrfs_super_flags(disk_super) &
|
|
~BTRFS_SUPER_FLAG_SEEDING;
|
|
btrfs_set_super_flags(disk_super, super_flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* strore the expected generation for seed devices in device items.
|
|
*/
|
|
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct btrfs_device *device;
|
|
struct btrfs_key key;
|
|
u8 fs_uuid[BTRFS_UUID_SIZE];
|
|
u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
u64 devid;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.offset = 0;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
leaf = path->nodes[0];
|
|
next_slot:
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret > 0)
|
|
break;
|
|
if (ret < 0)
|
|
goto error;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
|
|
key.type != BTRFS_DEV_ITEM_KEY)
|
|
break;
|
|
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_item);
|
|
devid = btrfs_device_id(leaf, dev_item);
|
|
read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
device = btrfs_find_device(root->fs_info, devid, dev_uuid,
|
|
fs_uuid);
|
|
BUG_ON(!device); /* Logic error */
|
|
|
|
if (device->fs_devices->seeding) {
|
|
btrfs_set_device_generation(leaf, dev_item,
|
|
device->generation);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
|
|
{
|
|
struct request_queue *q;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_device *device;
|
|
struct block_device *bdev;
|
|
struct list_head *devices;
|
|
struct super_block *sb = root->fs_info->sb;
|
|
struct rcu_string *name;
|
|
u64 tmp;
|
|
int seeding_dev = 0;
|
|
int ret = 0;
|
|
|
|
if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
|
|
return -EROFS;
|
|
|
|
bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
|
|
root->fs_info->bdev_holder);
|
|
if (IS_ERR(bdev))
|
|
return PTR_ERR(bdev);
|
|
|
|
if (root->fs_info->fs_devices->seeding) {
|
|
seeding_dev = 1;
|
|
down_write(&sb->s_umount);
|
|
mutex_lock(&uuid_mutex);
|
|
}
|
|
|
|
filemap_write_and_wait(bdev->bd_inode->i_mapping);
|
|
|
|
devices = &root->fs_info->fs_devices->devices;
|
|
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, devices, dev_list) {
|
|
if (device->bdev == bdev) {
|
|
ret = -EEXIST;
|
|
mutex_unlock(
|
|
&root->fs_info->fs_devices->device_list_mutex);
|
|
goto error;
|
|
}
|
|
}
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
|
|
device = btrfs_alloc_device(root->fs_info, NULL, NULL);
|
|
if (IS_ERR(device)) {
|
|
/* we can safely leave the fs_devices entry around */
|
|
ret = PTR_ERR(device);
|
|
goto error;
|
|
}
|
|
|
|
name = rcu_string_strdup(device_path, GFP_NOFS);
|
|
if (!name) {
|
|
kfree(device);
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
rcu_assign_pointer(device->name, name);
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
rcu_string_free(device->name);
|
|
kfree(device);
|
|
ret = PTR_ERR(trans);
|
|
goto error;
|
|
}
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (blk_queue_discard(q))
|
|
device->can_discard = 1;
|
|
device->writeable = 1;
|
|
device->generation = trans->transid;
|
|
device->io_width = root->sectorsize;
|
|
device->io_align = root->sectorsize;
|
|
device->sector_size = root->sectorsize;
|
|
device->total_bytes = i_size_read(bdev->bd_inode);
|
|
device->disk_total_bytes = device->total_bytes;
|
|
device->commit_total_bytes = device->total_bytes;
|
|
device->dev_root = root->fs_info->dev_root;
|
|
device->bdev = bdev;
|
|
device->in_fs_metadata = 1;
|
|
device->is_tgtdev_for_dev_replace = 0;
|
|
device->mode = FMODE_EXCL;
|
|
device->dev_stats_valid = 1;
|
|
set_blocksize(device->bdev, 4096);
|
|
|
|
if (seeding_dev) {
|
|
sb->s_flags &= ~MS_RDONLY;
|
|
ret = btrfs_prepare_sprout(root);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
|
|
device->fs_devices = root->fs_info->fs_devices;
|
|
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
lock_chunks(root);
|
|
list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
|
|
list_add(&device->dev_alloc_list,
|
|
&root->fs_info->fs_devices->alloc_list);
|
|
root->fs_info->fs_devices->num_devices++;
|
|
root->fs_info->fs_devices->open_devices++;
|
|
root->fs_info->fs_devices->rw_devices++;
|
|
root->fs_info->fs_devices->total_devices++;
|
|
root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
|
|
|
|
spin_lock(&root->fs_info->free_chunk_lock);
|
|
root->fs_info->free_chunk_space += device->total_bytes;
|
|
spin_unlock(&root->fs_info->free_chunk_lock);
|
|
|
|
if (!blk_queue_nonrot(bdev_get_queue(bdev)))
|
|
root->fs_info->fs_devices->rotating = 1;
|
|
|
|
tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
|
|
btrfs_set_super_total_bytes(root->fs_info->super_copy,
|
|
tmp + device->total_bytes);
|
|
|
|
tmp = btrfs_super_num_devices(root->fs_info->super_copy);
|
|
btrfs_set_super_num_devices(root->fs_info->super_copy,
|
|
tmp + 1);
|
|
|
|
/* add sysfs device entry */
|
|
btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
|
|
|
|
/*
|
|
* we've got more storage, clear any full flags on the space
|
|
* infos
|
|
*/
|
|
btrfs_clear_space_info_full(root->fs_info);
|
|
|
|
unlock_chunks(root);
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
|
|
if (seeding_dev) {
|
|
lock_chunks(root);
|
|
ret = init_first_rw_device(trans, root, device);
|
|
unlock_chunks(root);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto error_trans;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_add_device(trans, root, device);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto error_trans;
|
|
}
|
|
|
|
if (seeding_dev) {
|
|
char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
|
|
|
|
ret = btrfs_finish_sprout(trans, root);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto error_trans;
|
|
}
|
|
|
|
/* Sprouting would change fsid of the mounted root,
|
|
* so rename the fsid on the sysfs
|
|
*/
|
|
snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
|
|
root->fs_info->fsid);
|
|
if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
|
|
fsid_buf))
|
|
btrfs_warn(root->fs_info,
|
|
"sysfs: failed to create fsid for sprout");
|
|
}
|
|
|
|
root->fs_info->num_tolerated_disk_barrier_failures =
|
|
btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
|
|
if (seeding_dev) {
|
|
mutex_unlock(&uuid_mutex);
|
|
up_write(&sb->s_umount);
|
|
|
|
if (ret) /* transaction commit */
|
|
return ret;
|
|
|
|
ret = btrfs_relocate_sys_chunks(root);
|
|
if (ret < 0)
|
|
btrfs_std_error(root->fs_info, ret,
|
|
"Failed to relocate sys chunks after "
|
|
"device initialization. This can be fixed "
|
|
"using the \"btrfs balance\" command.");
|
|
trans = btrfs_attach_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) == -ENOENT)
|
|
return 0;
|
|
return PTR_ERR(trans);
|
|
}
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
}
|
|
|
|
/* Update ctime/mtime for libblkid */
|
|
update_dev_time(device_path);
|
|
return ret;
|
|
|
|
error_trans:
|
|
btrfs_end_transaction(trans, root);
|
|
rcu_string_free(device->name);
|
|
btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
|
|
kfree(device);
|
|
error:
|
|
blkdev_put(bdev, FMODE_EXCL);
|
|
if (seeding_dev) {
|
|
mutex_unlock(&uuid_mutex);
|
|
up_write(&sb->s_umount);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
|
|
struct btrfs_device *srcdev,
|
|
struct btrfs_device **device_out)
|
|
{
|
|
struct request_queue *q;
|
|
struct btrfs_device *device;
|
|
struct block_device *bdev;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct list_head *devices;
|
|
struct rcu_string *name;
|
|
u64 devid = BTRFS_DEV_REPLACE_DEVID;
|
|
int ret = 0;
|
|
|
|
*device_out = NULL;
|
|
if (fs_info->fs_devices->seeding) {
|
|
btrfs_err(fs_info, "the filesystem is a seed filesystem!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
|
|
fs_info->bdev_holder);
|
|
if (IS_ERR(bdev)) {
|
|
btrfs_err(fs_info, "target device %s is invalid!", device_path);
|
|
return PTR_ERR(bdev);
|
|
}
|
|
|
|
filemap_write_and_wait(bdev->bd_inode->i_mapping);
|
|
|
|
devices = &fs_info->fs_devices->devices;
|
|
list_for_each_entry(device, devices, dev_list) {
|
|
if (device->bdev == bdev) {
|
|
btrfs_err(fs_info, "target device is in the filesystem!");
|
|
ret = -EEXIST;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
|
|
if (i_size_read(bdev->bd_inode) <
|
|
btrfs_device_get_total_bytes(srcdev)) {
|
|
btrfs_err(fs_info, "target device is smaller than source device!");
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
|
|
device = btrfs_alloc_device(NULL, &devid, NULL);
|
|
if (IS_ERR(device)) {
|
|
ret = PTR_ERR(device);
|
|
goto error;
|
|
}
|
|
|
|
name = rcu_string_strdup(device_path, GFP_NOFS);
|
|
if (!name) {
|
|
kfree(device);
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
rcu_assign_pointer(device->name, name);
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (blk_queue_discard(q))
|
|
device->can_discard = 1;
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
device->writeable = 1;
|
|
device->generation = 0;
|
|
device->io_width = root->sectorsize;
|
|
device->io_align = root->sectorsize;
|
|
device->sector_size = root->sectorsize;
|
|
device->total_bytes = btrfs_device_get_total_bytes(srcdev);
|
|
device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
|
|
device->bytes_used = btrfs_device_get_bytes_used(srcdev);
|
|
ASSERT(list_empty(&srcdev->resized_list));
|
|
device->commit_total_bytes = srcdev->commit_total_bytes;
|
|
device->commit_bytes_used = device->bytes_used;
|
|
device->dev_root = fs_info->dev_root;
|
|
device->bdev = bdev;
|
|
device->in_fs_metadata = 1;
|
|
device->is_tgtdev_for_dev_replace = 1;
|
|
device->mode = FMODE_EXCL;
|
|
device->dev_stats_valid = 1;
|
|
set_blocksize(device->bdev, 4096);
|
|
device->fs_devices = fs_info->fs_devices;
|
|
list_add(&device->dev_list, &fs_info->fs_devices->devices);
|
|
fs_info->fs_devices->num_devices++;
|
|
fs_info->fs_devices->open_devices++;
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
|
|
*device_out = device;
|
|
return ret;
|
|
|
|
error:
|
|
blkdev_put(bdev, FMODE_EXCL);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_device *tgtdev)
|
|
{
|
|
WARN_ON(fs_info->fs_devices->rw_devices == 0);
|
|
tgtdev->io_width = fs_info->dev_root->sectorsize;
|
|
tgtdev->io_align = fs_info->dev_root->sectorsize;
|
|
tgtdev->sector_size = fs_info->dev_root->sectorsize;
|
|
tgtdev->dev_root = fs_info->dev_root;
|
|
tgtdev->in_fs_metadata = 1;
|
|
}
|
|
|
|
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
root = device->dev_root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
|
|
|
|
btrfs_set_device_id(leaf, dev_item, device->devid);
|
|
btrfs_set_device_type(leaf, dev_item, device->type);
|
|
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
|
|
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
|
|
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
|
|
btrfs_set_device_total_bytes(leaf, dev_item,
|
|
btrfs_device_get_disk_total_bytes(device));
|
|
btrfs_set_device_bytes_used(leaf, dev_item,
|
|
btrfs_device_get_bytes_used(device));
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_grow_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device, u64 new_size)
|
|
{
|
|
struct btrfs_super_block *super_copy =
|
|
device->dev_root->fs_info->super_copy;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
u64 old_total;
|
|
u64 diff;
|
|
|
|
if (!device->writeable)
|
|
return -EACCES;
|
|
|
|
lock_chunks(device->dev_root);
|
|
old_total = btrfs_super_total_bytes(super_copy);
|
|
diff = new_size - device->total_bytes;
|
|
|
|
if (new_size <= device->total_bytes ||
|
|
device->is_tgtdev_for_dev_replace) {
|
|
unlock_chunks(device->dev_root);
|
|
return -EINVAL;
|
|
}
|
|
|
|
fs_devices = device->dev_root->fs_info->fs_devices;
|
|
|
|
btrfs_set_super_total_bytes(super_copy, old_total + diff);
|
|
device->fs_devices->total_rw_bytes += diff;
|
|
|
|
btrfs_device_set_total_bytes(device, new_size);
|
|
btrfs_device_set_disk_total_bytes(device, new_size);
|
|
btrfs_clear_space_info_full(device->dev_root->fs_info);
|
|
if (list_empty(&device->resized_list))
|
|
list_add_tail(&device->resized_list,
|
|
&fs_devices->resized_devices);
|
|
unlock_chunks(device->dev_root);
|
|
|
|
return btrfs_update_device(trans, device);
|
|
}
|
|
|
|
static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 chunk_objectid,
|
|
u64 chunk_offset)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = chunk_objectid;
|
|
key.offset = chunk_offset;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0) { /* Logic error or corruption */
|
|
btrfs_std_error(root->fs_info, -ENOENT,
|
|
"Failed lookup while freeing chunk.");
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
if (ret < 0)
|
|
btrfs_std_error(root->fs_info, ret,
|
|
"Failed to delete chunk item.");
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
|
|
chunk_offset)
|
|
{
|
|
struct btrfs_super_block *super_copy = root->fs_info->super_copy;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_chunk *chunk;
|
|
u8 *ptr;
|
|
int ret = 0;
|
|
u32 num_stripes;
|
|
u32 array_size;
|
|
u32 len = 0;
|
|
u32 cur;
|
|
struct btrfs_key key;
|
|
|
|
lock_chunks(root);
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
|
|
ptr = super_copy->sys_chunk_array;
|
|
cur = 0;
|
|
|
|
while (cur < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)ptr;
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
len = sizeof(*disk_key);
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
chunk = (struct btrfs_chunk *)(ptr + len);
|
|
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
|
|
len += btrfs_chunk_item_size(num_stripes);
|
|
} else {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
if (key.objectid == chunk_objectid &&
|
|
key.offset == chunk_offset) {
|
|
memmove(ptr, ptr + len, array_size - (cur + len));
|
|
array_size -= len;
|
|
btrfs_set_super_sys_array_size(super_copy, array_size);
|
|
} else {
|
|
ptr += len;
|
|
cur += len;
|
|
}
|
|
}
|
|
unlock_chunks(root);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 chunk_offset)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
struct btrfs_root *extent_root = root->fs_info->extent_root;
|
|
struct map_lookup *map;
|
|
u64 dev_extent_len = 0;
|
|
u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
int i, ret = 0;
|
|
|
|
/* Just in case */
|
|
root = root->fs_info->chunk_root;
|
|
em_tree = &root->fs_info->mapping_tree.map_tree;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, chunk_offset, 1);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em || em->start > chunk_offset ||
|
|
em->start + em->len < chunk_offset) {
|
|
/*
|
|
* This is a logic error, but we don't want to just rely on the
|
|
* user having built with ASSERT enabled, so if ASSERT doens't
|
|
* do anything we still error out.
|
|
*/
|
|
ASSERT(0);
|
|
if (em)
|
|
free_extent_map(em);
|
|
return -EINVAL;
|
|
}
|
|
map = (struct map_lookup *)em->bdev;
|
|
lock_chunks(root->fs_info->chunk_root);
|
|
check_system_chunk(trans, extent_root, map->type);
|
|
unlock_chunks(root->fs_info->chunk_root);
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
struct btrfs_device *device = map->stripes[i].dev;
|
|
ret = btrfs_free_dev_extent(trans, device,
|
|
map->stripes[i].physical,
|
|
&dev_extent_len);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto out;
|
|
}
|
|
|
|
if (device->bytes_used > 0) {
|
|
lock_chunks(root);
|
|
btrfs_device_set_bytes_used(device,
|
|
device->bytes_used - dev_extent_len);
|
|
spin_lock(&root->fs_info->free_chunk_lock);
|
|
root->fs_info->free_chunk_space += dev_extent_len;
|
|
spin_unlock(&root->fs_info->free_chunk_lock);
|
|
btrfs_clear_space_info_full(root->fs_info);
|
|
unlock_chunks(root);
|
|
}
|
|
|
|
if (map->stripes[i].dev) {
|
|
ret = btrfs_update_device(trans, map->stripes[i].dev);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto out;
|
|
}
|
|
|
|
trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, extent_root, ret);
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
/* once for us */
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
|
|
{
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
extent_root = root->fs_info->extent_root;
|
|
|
|
/*
|
|
* Prevent races with automatic removal of unused block groups.
|
|
* After we relocate and before we remove the chunk with offset
|
|
* chunk_offset, automatic removal of the block group can kick in,
|
|
* resulting in a failure when calling btrfs_remove_chunk() below.
|
|
*
|
|
* Make sure to acquire this mutex before doing a tree search (dev
|
|
* or chunk trees) to find chunks. Otherwise the cleaner kthread might
|
|
* call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
|
|
* we release the path used to search the chunk/dev tree and before
|
|
* the current task acquires this mutex and calls us.
|
|
*/
|
|
ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
|
|
|
|
ret = btrfs_can_relocate(extent_root, chunk_offset);
|
|
if (ret)
|
|
return -ENOSPC;
|
|
|
|
/* step one, relocate all the extents inside this chunk */
|
|
btrfs_scrub_pause(root);
|
|
ret = btrfs_relocate_block_group(extent_root, chunk_offset);
|
|
btrfs_scrub_continue(root);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = btrfs_start_trans_remove_block_group(root->fs_info,
|
|
chunk_offset);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
btrfs_std_error(root->fs_info, ret, NULL);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* step two, delete the device extents and the
|
|
* chunk tree entries
|
|
*/
|
|
ret = btrfs_remove_chunk(trans, root, chunk_offset);
|
|
btrfs_end_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *chunk_root = root->fs_info->chunk_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u64 chunk_type;
|
|
bool retried = false;
|
|
int failed = 0;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
again:
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
while (1) {
|
|
mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
|
|
ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
|
|
goto error;
|
|
}
|
|
BUG_ON(ret == 0); /* Corruption */
|
|
|
|
ret = btrfs_previous_item(chunk_root, path, key.objectid,
|
|
key.type);
|
|
if (ret)
|
|
mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
|
|
if (ret < 0)
|
|
goto error;
|
|
if (ret > 0)
|
|
break;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
chunk = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_chunk);
|
|
chunk_type = btrfs_chunk_type(leaf, chunk);
|
|
btrfs_release_path(path);
|
|
|
|
if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = btrfs_relocate_chunk(chunk_root,
|
|
found_key.offset);
|
|
if (ret == -ENOSPC)
|
|
failed++;
|
|
else
|
|
BUG_ON(ret);
|
|
}
|
|
mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
|
|
|
|
if (found_key.offset == 0)
|
|
break;
|
|
key.offset = found_key.offset - 1;
|
|
}
|
|
ret = 0;
|
|
if (failed && !retried) {
|
|
failed = 0;
|
|
retried = true;
|
|
goto again;
|
|
} else if (WARN_ON(failed && retried)) {
|
|
ret = -ENOSPC;
|
|
}
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int insert_balance_item(struct btrfs_root *root,
|
|
struct btrfs_balance_control *bctl)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_balance_item *item;
|
|
struct btrfs_disk_balance_args disk_bargs;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
int ret, err;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(trans);
|
|
}
|
|
|
|
key.objectid = BTRFS_BALANCE_OBJECTID;
|
|
key.type = BTRFS_BALANCE_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(*item));
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
|
|
|
|
memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
|
|
|
|
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
|
|
btrfs_set_balance_data(leaf, item, &disk_bargs);
|
|
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
|
|
btrfs_set_balance_meta(leaf, item, &disk_bargs);
|
|
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
|
|
btrfs_set_balance_sys(leaf, item, &disk_bargs);
|
|
|
|
btrfs_set_balance_flags(leaf, item, bctl->flags);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
err = btrfs_commit_transaction(trans, root);
|
|
if (err && !ret)
|
|
ret = err;
|
|
return ret;
|
|
}
|
|
|
|
static int del_balance_item(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
int ret, err;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(trans);
|
|
}
|
|
|
|
key.objectid = BTRFS_BALANCE_OBJECTID;
|
|
key.type = BTRFS_BALANCE_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
out:
|
|
btrfs_free_path(path);
|
|
err = btrfs_commit_transaction(trans, root);
|
|
if (err && !ret)
|
|
ret = err;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is a heuristic used to reduce the number of chunks balanced on
|
|
* resume after balance was interrupted.
|
|
*/
|
|
static void update_balance_args(struct btrfs_balance_control *bctl)
|
|
{
|
|
/*
|
|
* Turn on soft mode for chunk types that were being converted.
|
|
*/
|
|
if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
|
|
bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
|
|
if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
|
|
bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
|
|
if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
|
|
bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
|
|
|
|
/*
|
|
* Turn on usage filter if is not already used. The idea is
|
|
* that chunks that we have already balanced should be
|
|
* reasonably full. Don't do it for chunks that are being
|
|
* converted - that will keep us from relocating unconverted
|
|
* (albeit full) chunks.
|
|
*/
|
|
if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
|
|
!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
|
|
!(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
|
|
bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
|
|
bctl->data.usage = 90;
|
|
}
|
|
if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
|
|
!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
|
|
!(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
|
|
bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
|
|
bctl->sys.usage = 90;
|
|
}
|
|
if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
|
|
!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
|
|
!(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
|
|
bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
|
|
bctl->meta.usage = 90;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Should be called with both balance and volume mutexes held to
|
|
* serialize other volume operations (add_dev/rm_dev/resize) with
|
|
* restriper. Same goes for unset_balance_control.
|
|
*/
|
|
static void set_balance_control(struct btrfs_balance_control *bctl)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bctl->fs_info;
|
|
|
|
BUG_ON(fs_info->balance_ctl);
|
|
|
|
spin_lock(&fs_info->balance_lock);
|
|
fs_info->balance_ctl = bctl;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
|
|
static void unset_balance_control(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
|
|
BUG_ON(!fs_info->balance_ctl);
|
|
|
|
spin_lock(&fs_info->balance_lock);
|
|
fs_info->balance_ctl = NULL;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
kfree(bctl);
|
|
}
|
|
|
|
/*
|
|
* Balance filters. Return 1 if chunk should be filtered out
|
|
* (should not be balanced).
|
|
*/
|
|
static int chunk_profiles_filter(u64 chunk_type,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
chunk_type = chunk_to_extended(chunk_type) &
|
|
BTRFS_EXTENDED_PROFILE_MASK;
|
|
|
|
if (bargs->profiles & chunk_type)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
u64 chunk_used;
|
|
u64 user_thresh_min;
|
|
u64 user_thresh_max;
|
|
int ret = 1;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
|
|
chunk_used = btrfs_block_group_used(&cache->item);
|
|
|
|
if (bargs->usage_min == 0)
|
|
user_thresh_min = 0;
|
|
else
|
|
user_thresh_min = div_factor_fine(cache->key.offset,
|
|
bargs->usage_min);
|
|
|
|
if (bargs->usage_max == 0)
|
|
user_thresh_max = 1;
|
|
else if (bargs->usage_max > 100)
|
|
user_thresh_max = cache->key.offset;
|
|
else
|
|
user_thresh_max = div_factor_fine(cache->key.offset,
|
|
bargs->usage_max);
|
|
|
|
if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
|
|
ret = 0;
|
|
|
|
btrfs_put_block_group(cache);
|
|
return ret;
|
|
}
|
|
|
|
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
|
|
u64 chunk_offset, struct btrfs_balance_args *bargs)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
u64 chunk_used, user_thresh;
|
|
int ret = 1;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
|
|
chunk_used = btrfs_block_group_used(&cache->item);
|
|
|
|
if (bargs->usage_min == 0)
|
|
user_thresh = 1;
|
|
else if (bargs->usage > 100)
|
|
user_thresh = cache->key.offset;
|
|
else
|
|
user_thresh = div_factor_fine(cache->key.offset,
|
|
bargs->usage);
|
|
|
|
if (chunk_used < user_thresh)
|
|
ret = 0;
|
|
|
|
btrfs_put_block_group(cache);
|
|
return ret;
|
|
}
|
|
|
|
static int chunk_devid_filter(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
struct btrfs_stripe *stripe;
|
|
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
int i;
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
stripe = btrfs_stripe_nr(chunk, i);
|
|
if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* [pstart, pend) */
|
|
static int chunk_drange_filter(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
u64 chunk_offset,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
struct btrfs_stripe *stripe;
|
|
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
u64 stripe_offset;
|
|
u64 stripe_length;
|
|
int factor;
|
|
int i;
|
|
|
|
if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
|
|
return 0;
|
|
|
|
if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
|
|
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
|
|
factor = num_stripes / 2;
|
|
} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
|
|
factor = num_stripes - 1;
|
|
} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
|
|
factor = num_stripes - 2;
|
|
} else {
|
|
factor = num_stripes;
|
|
}
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
stripe = btrfs_stripe_nr(chunk, i);
|
|
if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
|
|
continue;
|
|
|
|
stripe_offset = btrfs_stripe_offset(leaf, stripe);
|
|
stripe_length = btrfs_chunk_length(leaf, chunk);
|
|
stripe_length = div_u64(stripe_length, factor);
|
|
|
|
if (stripe_offset < bargs->pend &&
|
|
stripe_offset + stripe_length > bargs->pstart)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* [vstart, vend) */
|
|
static int chunk_vrange_filter(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
u64 chunk_offset,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
if (chunk_offset < bargs->vend &&
|
|
chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
|
|
/* at least part of the chunk is inside this vrange */
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
|
|
if (bargs->stripes_min <= num_stripes
|
|
&& num_stripes <= bargs->stripes_max)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int chunk_soft_convert_filter(u64 chunk_type,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
|
|
return 0;
|
|
|
|
chunk_type = chunk_to_extended(chunk_type) &
|
|
BTRFS_EXTENDED_PROFILE_MASK;
|
|
|
|
if (bargs->target == chunk_type)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int should_balance_chunk(struct btrfs_root *root,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk, u64 chunk_offset)
|
|
{
|
|
struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
|
|
struct btrfs_balance_args *bargs = NULL;
|
|
u64 chunk_type = btrfs_chunk_type(leaf, chunk);
|
|
|
|
/* type filter */
|
|
if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
|
|
(bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
|
|
return 0;
|
|
}
|
|
|
|
if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
|
|
bargs = &bctl->data;
|
|
else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
bargs = &bctl->sys;
|
|
else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
|
|
bargs = &bctl->meta;
|
|
|
|
/* profiles filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
|
|
chunk_profiles_filter(chunk_type, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* usage filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
|
|
chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
|
|
return 0;
|
|
} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
|
|
chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* devid filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
|
|
chunk_devid_filter(leaf, chunk, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* drange filter, makes sense only with devid filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
|
|
chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* vrange filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
|
|
chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* stripes filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
|
|
chunk_stripes_range_filter(leaf, chunk, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* soft profile changing mode */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
|
|
chunk_soft_convert_filter(chunk_type, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* limited by count, must be the last filter
|
|
*/
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
|
|
if (bargs->limit == 0)
|
|
return 0;
|
|
else
|
|
bargs->limit--;
|
|
} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
|
|
/*
|
|
* Same logic as the 'limit' filter; the minimum cannot be
|
|
* determined here because we do not have the global informatoin
|
|
* about the count of all chunks that satisfy the filters.
|
|
*/
|
|
if (bargs->limit_max == 0)
|
|
return 0;
|
|
else
|
|
bargs->limit_max--;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
struct btrfs_root *chunk_root = fs_info->chunk_root;
|
|
struct btrfs_root *dev_root = fs_info->dev_root;
|
|
struct list_head *devices;
|
|
struct btrfs_device *device;
|
|
u64 old_size;
|
|
u64 size_to_free;
|
|
u64 chunk_type;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_trans_handle *trans;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
int ret;
|
|
int enospc_errors = 0;
|
|
bool counting = true;
|
|
/* The single value limit and min/max limits use the same bytes in the */
|
|
u64 limit_data = bctl->data.limit;
|
|
u64 limit_meta = bctl->meta.limit;
|
|
u64 limit_sys = bctl->sys.limit;
|
|
u32 count_data = 0;
|
|
u32 count_meta = 0;
|
|
u32 count_sys = 0;
|
|
int chunk_reserved = 0;
|
|
|
|
/* step one make some room on all the devices */
|
|
devices = &fs_info->fs_devices->devices;
|
|
list_for_each_entry(device, devices, dev_list) {
|
|
old_size = btrfs_device_get_total_bytes(device);
|
|
size_to_free = div_factor(old_size, 1);
|
|
size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
|
|
if (!device->writeable ||
|
|
btrfs_device_get_total_bytes(device) -
|
|
btrfs_device_get_bytes_used(device) > size_to_free ||
|
|
device->is_tgtdev_for_dev_replace)
|
|
continue;
|
|
|
|
ret = btrfs_shrink_device(device, old_size - size_to_free);
|
|
if (ret == -ENOSPC)
|
|
break;
|
|
BUG_ON(ret);
|
|
|
|
trans = btrfs_start_transaction(dev_root, 0);
|
|
BUG_ON(IS_ERR(trans));
|
|
|
|
ret = btrfs_grow_device(trans, device, old_size);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_end_transaction(trans, dev_root);
|
|
}
|
|
|
|
/* step two, relocate all the chunks */
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
/* zero out stat counters */
|
|
spin_lock(&fs_info->balance_lock);
|
|
memset(&bctl->stat, 0, sizeof(bctl->stat));
|
|
spin_unlock(&fs_info->balance_lock);
|
|
again:
|
|
if (!counting) {
|
|
/*
|
|
* The single value limit and min/max limits use the same bytes
|
|
* in the
|
|
*/
|
|
bctl->data.limit = limit_data;
|
|
bctl->meta.limit = limit_meta;
|
|
bctl->sys.limit = limit_sys;
|
|
}
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
while (1) {
|
|
if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
|
|
atomic_read(&fs_info->balance_cancel_req)) {
|
|
ret = -ECANCELED;
|
|
goto error;
|
|
}
|
|
|
|
mutex_lock(&fs_info->delete_unused_bgs_mutex);
|
|
ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* this shouldn't happen, it means the last relocate
|
|
* failed
|
|
*/
|
|
if (ret == 0)
|
|
BUG(); /* FIXME break ? */
|
|
|
|
ret = btrfs_previous_item(chunk_root, path, 0,
|
|
BTRFS_CHUNK_ITEM_KEY);
|
|
if (ret) {
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
if (found_key.objectid != key.objectid) {
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
break;
|
|
}
|
|
|
|
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
|
|
chunk_type = btrfs_chunk_type(leaf, chunk);
|
|
|
|
if (!counting) {
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->stat.considered++;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
|
|
ret = should_balance_chunk(chunk_root, leaf, chunk,
|
|
found_key.offset);
|
|
|
|
btrfs_release_path(path);
|
|
if (!ret) {
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
goto loop;
|
|
}
|
|
|
|
if (counting) {
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->stat.expected++;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
|
|
count_data++;
|
|
else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
count_sys++;
|
|
else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
|
|
count_meta++;
|
|
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* Apply limit_min filter, no need to check if the LIMITS
|
|
* filter is used, limit_min is 0 by default
|
|
*/
|
|
if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
|
|
count_data < bctl->data.limit_min)
|
|
|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
|
|
count_meta < bctl->meta.limit_min)
|
|
|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
|
|
count_sys < bctl->sys.limit_min)) {
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
goto loop;
|
|
}
|
|
|
|
if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
|
|
trans = btrfs_start_transaction(chunk_root, 0);
|
|
if (IS_ERR(trans)) {
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
ret = PTR_ERR(trans);
|
|
goto error;
|
|
}
|
|
|
|
ret = btrfs_force_chunk_alloc(trans, chunk_root,
|
|
BTRFS_BLOCK_GROUP_DATA);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
goto error;
|
|
}
|
|
|
|
btrfs_end_transaction(trans, chunk_root);
|
|
chunk_reserved = 1;
|
|
}
|
|
|
|
ret = btrfs_relocate_chunk(chunk_root,
|
|
found_key.offset);
|
|
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
|
|
if (ret && ret != -ENOSPC)
|
|
goto error;
|
|
if (ret == -ENOSPC) {
|
|
enospc_errors++;
|
|
} else {
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->stat.completed++;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
loop:
|
|
if (found_key.offset == 0)
|
|
break;
|
|
key.offset = found_key.offset - 1;
|
|
}
|
|
|
|
if (counting) {
|
|
btrfs_release_path(path);
|
|
counting = false;
|
|
goto again;
|
|
}
|
|
error:
|
|
btrfs_free_path(path);
|
|
if (enospc_errors) {
|
|
btrfs_info(fs_info, "%d enospc errors during balance",
|
|
enospc_errors);
|
|
if (!ret)
|
|
ret = -ENOSPC;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* alloc_profile_is_valid - see if a given profile is valid and reduced
|
|
* @flags: profile to validate
|
|
* @extended: if true @flags is treated as an extended profile
|
|
*/
|
|
static int alloc_profile_is_valid(u64 flags, int extended)
|
|
{
|
|
u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
|
|
BTRFS_BLOCK_GROUP_PROFILE_MASK);
|
|
|
|
flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
|
|
|
|
/* 1) check that all other bits are zeroed */
|
|
if (flags & ~mask)
|
|
return 0;
|
|
|
|
/* 2) see if profile is reduced */
|
|
if (flags == 0)
|
|
return !extended; /* "0" is valid for usual profiles */
|
|
|
|
/* true if exactly one bit set */
|
|
return (flags & (flags - 1)) == 0;
|
|
}
|
|
|
|
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
|
|
{
|
|
/* cancel requested || normal exit path */
|
|
return atomic_read(&fs_info->balance_cancel_req) ||
|
|
(atomic_read(&fs_info->balance_pause_req) == 0 &&
|
|
atomic_read(&fs_info->balance_cancel_req) == 0);
|
|
}
|
|
|
|
static void __cancel_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret;
|
|
|
|
unset_balance_control(fs_info);
|
|
ret = del_balance_item(fs_info->tree_root);
|
|
if (ret)
|
|
btrfs_std_error(fs_info, ret, NULL);
|
|
|
|
atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
|
|
}
|
|
|
|
/* Non-zero return value signifies invalidity */
|
|
static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
|
|
u64 allowed)
|
|
{
|
|
return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
|
|
(!alloc_profile_is_valid(bctl_arg->target, 1) ||
|
|
(bctl_arg->target & ~allowed)));
|
|
}
|
|
|
|
/*
|
|
* Should be called with both balance and volume mutexes held
|
|
*/
|
|
int btrfs_balance(struct btrfs_balance_control *bctl,
|
|
struct btrfs_ioctl_balance_args *bargs)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bctl->fs_info;
|
|
u64 allowed;
|
|
int mixed = 0;
|
|
int ret;
|
|
u64 num_devices;
|
|
unsigned seq;
|
|
|
|
if (btrfs_fs_closing(fs_info) ||
|
|
atomic_read(&fs_info->balance_pause_req) ||
|
|
atomic_read(&fs_info->balance_cancel_req)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
allowed = btrfs_super_incompat_flags(fs_info->super_copy);
|
|
if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
|
|
mixed = 1;
|
|
|
|
/*
|
|
* In case of mixed groups both data and meta should be picked,
|
|
* and identical options should be given for both of them.
|
|
*/
|
|
allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
|
|
if (mixed && (bctl->flags & allowed)) {
|
|
if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
|
|
!(bctl->flags & BTRFS_BALANCE_METADATA) ||
|
|
memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
|
|
btrfs_err(fs_info, "with mixed groups data and "
|
|
"metadata balance options must be the same");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
num_devices = fs_info->fs_devices->num_devices;
|
|
btrfs_dev_replace_lock(&fs_info->dev_replace);
|
|
if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
|
|
BUG_ON(num_devices < 1);
|
|
num_devices--;
|
|
}
|
|
btrfs_dev_replace_unlock(&fs_info->dev_replace);
|
|
allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
|
|
if (num_devices == 1)
|
|
allowed |= BTRFS_BLOCK_GROUP_DUP;
|
|
else if (num_devices > 1)
|
|
allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
|
|
if (num_devices > 2)
|
|
allowed |= BTRFS_BLOCK_GROUP_RAID5;
|
|
if (num_devices > 3)
|
|
allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_RAID6);
|
|
if (validate_convert_profile(&bctl->data, allowed)) {
|
|
btrfs_err(fs_info, "unable to start balance with target "
|
|
"data profile %llu",
|
|
bctl->data.target);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (validate_convert_profile(&bctl->meta, allowed)) {
|
|
btrfs_err(fs_info,
|
|
"unable to start balance with target metadata profile %llu",
|
|
bctl->meta.target);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (validate_convert_profile(&bctl->sys, allowed)) {
|
|
btrfs_err(fs_info,
|
|
"unable to start balance with target system profile %llu",
|
|
bctl->sys.target);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* allow dup'ed data chunks only in mixed mode */
|
|
if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
|
|
(bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
|
|
btrfs_err(fs_info, "dup for data is not allowed");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* allow to reduce meta or sys integrity only if force set */
|
|
allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_RAID5 |
|
|
BTRFS_BLOCK_GROUP_RAID6;
|
|
do {
|
|
seq = read_seqbegin(&fs_info->profiles_lock);
|
|
|
|
if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
|
|
(fs_info->avail_system_alloc_bits & allowed) &&
|
|
!(bctl->sys.target & allowed)) ||
|
|
((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
|
|
(fs_info->avail_metadata_alloc_bits & allowed) &&
|
|
!(bctl->meta.target & allowed))) {
|
|
if (bctl->flags & BTRFS_BALANCE_FORCE) {
|
|
btrfs_info(fs_info, "force reducing metadata integrity");
|
|
} else {
|
|
btrfs_err(fs_info, "balance will reduce metadata "
|
|
"integrity, use force if you want this");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
} while (read_seqretry(&fs_info->profiles_lock, seq));
|
|
|
|
if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
|
|
fs_info->num_tolerated_disk_barrier_failures = min(
|
|
btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
|
|
btrfs_get_num_tolerated_disk_barrier_failures(
|
|
bctl->sys.target));
|
|
}
|
|
|
|
ret = insert_balance_item(fs_info->tree_root, bctl);
|
|
if (ret && ret != -EEXIST)
|
|
goto out;
|
|
|
|
if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
|
|
BUG_ON(ret == -EEXIST);
|
|
set_balance_control(bctl);
|
|
} else {
|
|
BUG_ON(ret != -EEXIST);
|
|
spin_lock(&fs_info->balance_lock);
|
|
update_balance_args(bctl);
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
|
|
atomic_inc(&fs_info->balance_running);
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
|
|
ret = __btrfs_balance(fs_info);
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
atomic_dec(&fs_info->balance_running);
|
|
|
|
if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
|
|
fs_info->num_tolerated_disk_barrier_failures =
|
|
btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
|
|
}
|
|
|
|
if (bargs) {
|
|
memset(bargs, 0, sizeof(*bargs));
|
|
update_ioctl_balance_args(fs_info, 0, bargs);
|
|
}
|
|
|
|
if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
|
|
balance_need_close(fs_info)) {
|
|
__cancel_balance(fs_info);
|
|
}
|
|
|
|
wake_up(&fs_info->balance_wait_q);
|
|
|
|
return ret;
|
|
out:
|
|
if (bctl->flags & BTRFS_BALANCE_RESUME)
|
|
__cancel_balance(fs_info);
|
|
else {
|
|
kfree(bctl);
|
|
atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int balance_kthread(void *data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = data;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&fs_info->volume_mutex);
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
|
|
if (fs_info->balance_ctl) {
|
|
btrfs_info(fs_info, "continuing balance");
|
|
ret = btrfs_balance(fs_info->balance_ctl, NULL);
|
|
}
|
|
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
mutex_unlock(&fs_info->volume_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct task_struct *tsk;
|
|
|
|
spin_lock(&fs_info->balance_lock);
|
|
if (!fs_info->balance_ctl) {
|
|
spin_unlock(&fs_info->balance_lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
|
|
btrfs_info(fs_info, "force skipping balance");
|
|
return 0;
|
|
}
|
|
|
|
tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
|
|
return PTR_ERR_OR_ZERO(tsk);
|
|
}
|
|
|
|
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_balance_control *bctl;
|
|
struct btrfs_balance_item *item;
|
|
struct btrfs_disk_balance_args disk_bargs;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_BALANCE_OBJECTID;
|
|
key.type = BTRFS_BALANCE_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) { /* ret = -ENOENT; */
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
|
|
if (!bctl) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
|
|
|
|
bctl->fs_info = fs_info;
|
|
bctl->flags = btrfs_balance_flags(leaf, item);
|
|
bctl->flags |= BTRFS_BALANCE_RESUME;
|
|
|
|
btrfs_balance_data(leaf, item, &disk_bargs);
|
|
btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
|
|
btrfs_balance_meta(leaf, item, &disk_bargs);
|
|
btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
|
|
btrfs_balance_sys(leaf, item, &disk_bargs);
|
|
btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
|
|
|
|
WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
|
|
|
|
mutex_lock(&fs_info->volume_mutex);
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
|
|
set_balance_control(bctl);
|
|
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
mutex_unlock(&fs_info->volume_mutex);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (!fs_info->balance_ctl) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return -ENOTCONN;
|
|
}
|
|
|
|
if (atomic_read(&fs_info->balance_running)) {
|
|
atomic_inc(&fs_info->balance_pause_req);
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
|
|
wait_event(fs_info->balance_wait_q,
|
|
atomic_read(&fs_info->balance_running) == 0);
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
/* we are good with balance_ctl ripped off from under us */
|
|
BUG_ON(atomic_read(&fs_info->balance_running));
|
|
atomic_dec(&fs_info->balance_pause_req);
|
|
} else {
|
|
ret = -ENOTCONN;
|
|
}
|
|
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (fs_info->sb->s_flags & MS_RDONLY)
|
|
return -EROFS;
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (!fs_info->balance_ctl) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return -ENOTCONN;
|
|
}
|
|
|
|
atomic_inc(&fs_info->balance_cancel_req);
|
|
/*
|
|
* if we are running just wait and return, balance item is
|
|
* deleted in btrfs_balance in this case
|
|
*/
|
|
if (atomic_read(&fs_info->balance_running)) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
wait_event(fs_info->balance_wait_q,
|
|
atomic_read(&fs_info->balance_running) == 0);
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
} else {
|
|
/* __cancel_balance needs volume_mutex */
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
mutex_lock(&fs_info->volume_mutex);
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
|
|
if (fs_info->balance_ctl)
|
|
__cancel_balance(fs_info);
|
|
|
|
mutex_unlock(&fs_info->volume_mutex);
|
|
}
|
|
|
|
BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
|
|
atomic_dec(&fs_info->balance_cancel_req);
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_uuid_scan_kthread(void *data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = data;
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_key max_key;
|
|
struct btrfs_path *path = NULL;
|
|
int ret = 0;
|
|
struct extent_buffer *eb;
|
|
int slot;
|
|
struct btrfs_root_item root_item;
|
|
u32 item_size;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
max_key.objectid = (u64)-1;
|
|
max_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
max_key.offset = (u64)-1;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_forward(root, &key, path, 0);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
if (key.type != BTRFS_ROOT_ITEM_KEY ||
|
|
(key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
|
|
key.objectid != BTRFS_FS_TREE_OBJECTID) ||
|
|
key.objectid > BTRFS_LAST_FREE_OBJECTID)
|
|
goto skip;
|
|
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
item_size = btrfs_item_size_nr(eb, slot);
|
|
if (item_size < sizeof(root_item))
|
|
goto skip;
|
|
|
|
read_extent_buffer(eb, &root_item,
|
|
btrfs_item_ptr_offset(eb, slot),
|
|
(int)sizeof(root_item));
|
|
if (btrfs_root_refs(&root_item) == 0)
|
|
goto skip;
|
|
|
|
if (!btrfs_is_empty_uuid(root_item.uuid) ||
|
|
!btrfs_is_empty_uuid(root_item.received_uuid)) {
|
|
if (trans)
|
|
goto update_tree;
|
|
|
|
btrfs_release_path(path);
|
|
/*
|
|
* 1 - subvol uuid item
|
|
* 1 - received_subvol uuid item
|
|
*/
|
|
trans = btrfs_start_transaction(fs_info->uuid_root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
break;
|
|
}
|
|
continue;
|
|
} else {
|
|
goto skip;
|
|
}
|
|
update_tree:
|
|
if (!btrfs_is_empty_uuid(root_item.uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
|
|
root_item.uuid,
|
|
BTRFS_UUID_KEY_SUBVOL,
|
|
key.objectid);
|
|
if (ret < 0) {
|
|
btrfs_warn(fs_info, "uuid_tree_add failed %d",
|
|
ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
|
|
root_item.received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
key.objectid);
|
|
if (ret < 0) {
|
|
btrfs_warn(fs_info, "uuid_tree_add failed %d",
|
|
ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
skip:
|
|
if (trans) {
|
|
ret = btrfs_end_transaction(trans, fs_info->uuid_root);
|
|
trans = NULL;
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
if (key.offset < (u64)-1) {
|
|
key.offset++;
|
|
} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
|
|
key.offset = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
} else if (key.objectid < (u64)-1) {
|
|
key.offset = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.objectid++;
|
|
} else {
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (trans && !IS_ERR(trans))
|
|
btrfs_end_transaction(trans, fs_info->uuid_root);
|
|
if (ret)
|
|
btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
|
|
else
|
|
fs_info->update_uuid_tree_gen = 1;
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Callback for btrfs_uuid_tree_iterate().
|
|
* returns:
|
|
* 0 check succeeded, the entry is not outdated.
|
|
* < 0 if an error occured.
|
|
* > 0 if the check failed, which means the caller shall remove the entry.
|
|
*/
|
|
static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
|
|
u8 *uuid, u8 type, u64 subid)
|
|
{
|
|
struct btrfs_key key;
|
|
int ret = 0;
|
|
struct btrfs_root *subvol_root;
|
|
|
|
if (type != BTRFS_UUID_KEY_SUBVOL &&
|
|
type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
|
|
goto out;
|
|
|
|
key.objectid = subid;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
|
|
if (IS_ERR(subvol_root)) {
|
|
ret = PTR_ERR(subvol_root);
|
|
if (ret == -ENOENT)
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
switch (type) {
|
|
case BTRFS_UUID_KEY_SUBVOL:
|
|
if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
|
|
ret = 1;
|
|
break;
|
|
case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
|
|
if (memcmp(uuid, subvol_root->root_item.received_uuid,
|
|
BTRFS_UUID_SIZE))
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_uuid_rescan_kthread(void *data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
|
|
int ret;
|
|
|
|
/*
|
|
* 1st step is to iterate through the existing UUID tree and
|
|
* to delete all entries that contain outdated data.
|
|
* 2nd step is to add all missing entries to the UUID tree.
|
|
*/
|
|
ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
|
|
if (ret < 0) {
|
|
btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
return ret;
|
|
}
|
|
return btrfs_uuid_scan_kthread(data);
|
|
}
|
|
|
|
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *uuid_root;
|
|
struct task_struct *task;
|
|
int ret;
|
|
|
|
/*
|
|
* 1 - root node
|
|
* 1 - root item
|
|
*/
|
|
trans = btrfs_start_transaction(tree_root, 2);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
uuid_root = btrfs_create_tree(trans, fs_info,
|
|
BTRFS_UUID_TREE_OBJECTID);
|
|
if (IS_ERR(uuid_root)) {
|
|
ret = PTR_ERR(uuid_root);
|
|
btrfs_abort_transaction(trans, tree_root, ret);
|
|
return ret;
|
|
}
|
|
|
|
fs_info->uuid_root = uuid_root;
|
|
|
|
ret = btrfs_commit_transaction(trans, tree_root);
|
|
if (ret)
|
|
return ret;
|
|
|
|
down(&fs_info->uuid_tree_rescan_sem);
|
|
task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
|
|
if (IS_ERR(task)) {
|
|
/* fs_info->update_uuid_tree_gen remains 0 in all error case */
|
|
btrfs_warn(fs_info, "failed to start uuid_scan task");
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
return PTR_ERR(task);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
down(&fs_info->uuid_tree_rescan_sem);
|
|
task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
|
|
if (IS_ERR(task)) {
|
|
/* fs_info->update_uuid_tree_gen remains 0 in all error case */
|
|
btrfs_warn(fs_info, "failed to start uuid_rescan task");
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
return PTR_ERR(task);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* shrinking a device means finding all of the device extents past
|
|
* the new size, and then following the back refs to the chunks.
|
|
* The chunk relocation code actually frees the device extent
|
|
*/
|
|
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *dev_extent = NULL;
|
|
struct btrfs_path *path;
|
|
u64 length;
|
|
u64 chunk_offset;
|
|
int ret;
|
|
int slot;
|
|
int failed = 0;
|
|
bool retried = false;
|
|
bool checked_pending_chunks = false;
|
|
struct extent_buffer *l;
|
|
struct btrfs_key key;
|
|
struct btrfs_super_block *super_copy = root->fs_info->super_copy;
|
|
u64 old_total = btrfs_super_total_bytes(super_copy);
|
|
u64 old_size = btrfs_device_get_total_bytes(device);
|
|
u64 diff = old_size - new_size;
|
|
|
|
if (device->is_tgtdev_for_dev_replace)
|
|
return -EINVAL;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 2;
|
|
|
|
lock_chunks(root);
|
|
|
|
btrfs_device_set_total_bytes(device, new_size);
|
|
if (device->writeable) {
|
|
device->fs_devices->total_rw_bytes -= diff;
|
|
spin_lock(&root->fs_info->free_chunk_lock);
|
|
root->fs_info->free_chunk_space -= diff;
|
|
spin_unlock(&root->fs_info->free_chunk_lock);
|
|
}
|
|
unlock_chunks(root);
|
|
|
|
again:
|
|
key.objectid = device->devid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
do {
|
|
mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
|
|
goto done;
|
|
}
|
|
|
|
ret = btrfs_previous_item(root, path, 0, key.type);
|
|
if (ret)
|
|
mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
|
|
if (ret < 0)
|
|
goto done;
|
|
if (ret) {
|
|
ret = 0;
|
|
btrfs_release_path(path);
|
|
break;
|
|
}
|
|
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
|
|
|
|
if (key.objectid != device->devid) {
|
|
mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
|
|
btrfs_release_path(path);
|
|
break;
|
|
}
|
|
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
length = btrfs_dev_extent_length(l, dev_extent);
|
|
|
|
if (key.offset + length <= new_size) {
|
|
mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
|
|
btrfs_release_path(path);
|
|
break;
|
|
}
|
|
|
|
chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
|
|
btrfs_release_path(path);
|
|
|
|
ret = btrfs_relocate_chunk(root, chunk_offset);
|
|
mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
|
|
if (ret && ret != -ENOSPC)
|
|
goto done;
|
|
if (ret == -ENOSPC)
|
|
failed++;
|
|
} while (key.offset-- > 0);
|
|
|
|
if (failed && !retried) {
|
|
failed = 0;
|
|
retried = true;
|
|
goto again;
|
|
} else if (failed && retried) {
|
|
ret = -ENOSPC;
|
|
goto done;
|
|
}
|
|
|
|
/* Shrinking succeeded, else we would be at "done". */
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto done;
|
|
}
|
|
|
|
lock_chunks(root);
|
|
|
|
/*
|
|
* We checked in the above loop all device extents that were already in
|
|
* the device tree. However before we have updated the device's
|
|
* total_bytes to the new size, we might have had chunk allocations that
|
|
* have not complete yet (new block groups attached to transaction
|
|
* handles), and therefore their device extents were not yet in the
|
|
* device tree and we missed them in the loop above. So if we have any
|
|
* pending chunk using a device extent that overlaps the device range
|
|
* that we can not use anymore, commit the current transaction and
|
|
* repeat the search on the device tree - this way we guarantee we will
|
|
* not have chunks using device extents that end beyond 'new_size'.
|
|
*/
|
|
if (!checked_pending_chunks) {
|
|
u64 start = new_size;
|
|
u64 len = old_size - new_size;
|
|
|
|
if (contains_pending_extent(trans->transaction, device,
|
|
&start, len)) {
|
|
unlock_chunks(root);
|
|
checked_pending_chunks = true;
|
|
failed = 0;
|
|
retried = false;
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret)
|
|
goto done;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
btrfs_device_set_disk_total_bytes(device, new_size);
|
|
if (list_empty(&device->resized_list))
|
|
list_add_tail(&device->resized_list,
|
|
&root->fs_info->fs_devices->resized_devices);
|
|
|
|
WARN_ON(diff > old_total);
|
|
btrfs_set_super_total_bytes(super_copy, old_total - diff);
|
|
unlock_chunks(root);
|
|
|
|
/* Now btrfs_update_device() will change the on-disk size. */
|
|
ret = btrfs_update_device(trans, device);
|
|
btrfs_end_transaction(trans, root);
|
|
done:
|
|
btrfs_free_path(path);
|
|
if (ret) {
|
|
lock_chunks(root);
|
|
btrfs_device_set_total_bytes(device, old_size);
|
|
if (device->writeable)
|
|
device->fs_devices->total_rw_bytes += diff;
|
|
spin_lock(&root->fs_info->free_chunk_lock);
|
|
root->fs_info->free_chunk_space += diff;
|
|
spin_unlock(&root->fs_info->free_chunk_lock);
|
|
unlock_chunks(root);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_add_system_chunk(struct btrfs_root *root,
|
|
struct btrfs_key *key,
|
|
struct btrfs_chunk *chunk, int item_size)
|
|
{
|
|
struct btrfs_super_block *super_copy = root->fs_info->super_copy;
|
|
struct btrfs_disk_key disk_key;
|
|
u32 array_size;
|
|
u8 *ptr;
|
|
|
|
lock_chunks(root);
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
if (array_size + item_size + sizeof(disk_key)
|
|
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
|
|
unlock_chunks(root);
|
|
return -EFBIG;
|
|
}
|
|
|
|
ptr = super_copy->sys_chunk_array + array_size;
|
|
btrfs_cpu_key_to_disk(&disk_key, key);
|
|
memcpy(ptr, &disk_key, sizeof(disk_key));
|
|
ptr += sizeof(disk_key);
|
|
memcpy(ptr, chunk, item_size);
|
|
item_size += sizeof(disk_key);
|
|
btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
|
|
unlock_chunks(root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sort the devices in descending order by max_avail, total_avail
|
|
*/
|
|
static int btrfs_cmp_device_info(const void *a, const void *b)
|
|
{
|
|
const struct btrfs_device_info *di_a = a;
|
|
const struct btrfs_device_info *di_b = b;
|
|
|
|
if (di_a->max_avail > di_b->max_avail)
|
|
return -1;
|
|
if (di_a->max_avail < di_b->max_avail)
|
|
return 1;
|
|
if (di_a->total_avail > di_b->total_avail)
|
|
return -1;
|
|
if (di_a->total_avail < di_b->total_avail)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
|
|
{
|
|
/* TODO allow them to set a preferred stripe size */
|
|
return 64 * 1024;
|
|
}
|
|
|
|
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
|
|
{
|
|
if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
|
|
return;
|
|
|
|
btrfs_set_fs_incompat(info, RAID56);
|
|
}
|
|
|
|
#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
|
|
- sizeof(struct btrfs_item) \
|
|
- sizeof(struct btrfs_chunk)) \
|
|
/ sizeof(struct btrfs_stripe) + 1)
|
|
|
|
#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
|
|
- 2 * sizeof(struct btrfs_disk_key) \
|
|
- 2 * sizeof(struct btrfs_chunk)) \
|
|
/ sizeof(struct btrfs_stripe) + 1)
|
|
|
|
static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 start,
|
|
u64 type)
|
|
{
|
|
struct btrfs_fs_info *info = extent_root->fs_info;
|
|
struct btrfs_fs_devices *fs_devices = info->fs_devices;
|
|
struct list_head *cur;
|
|
struct map_lookup *map = NULL;
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
struct btrfs_device_info *devices_info = NULL;
|
|
u64 total_avail;
|
|
int num_stripes; /* total number of stripes to allocate */
|
|
int data_stripes; /* number of stripes that count for
|
|
block group size */
|
|
int sub_stripes; /* sub_stripes info for map */
|
|
int dev_stripes; /* stripes per dev */
|
|
int devs_max; /* max devs to use */
|
|
int devs_min; /* min devs needed */
|
|
int devs_increment; /* ndevs has to be a multiple of this */
|
|
int ncopies; /* how many copies to data has */
|
|
int ret;
|
|
u64 max_stripe_size;
|
|
u64 max_chunk_size;
|
|
u64 stripe_size;
|
|
u64 num_bytes;
|
|
u64 raid_stripe_len = BTRFS_STRIPE_LEN;
|
|
int ndevs;
|
|
int i;
|
|
int j;
|
|
int index;
|
|
|
|
BUG_ON(!alloc_profile_is_valid(type, 0));
|
|
|
|
if (list_empty(&fs_devices->alloc_list))
|
|
return -ENOSPC;
|
|
|
|
index = __get_raid_index(type);
|
|
|
|
sub_stripes = btrfs_raid_array[index].sub_stripes;
|
|
dev_stripes = btrfs_raid_array[index].dev_stripes;
|
|
devs_max = btrfs_raid_array[index].devs_max;
|
|
devs_min = btrfs_raid_array[index].devs_min;
|
|
devs_increment = btrfs_raid_array[index].devs_increment;
|
|
ncopies = btrfs_raid_array[index].ncopies;
|
|
|
|
if (type & BTRFS_BLOCK_GROUP_DATA) {
|
|
max_stripe_size = 1024 * 1024 * 1024;
|
|
max_chunk_size = 10 * max_stripe_size;
|
|
if (!devs_max)
|
|
devs_max = BTRFS_MAX_DEVS(info->chunk_root);
|
|
} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
|
|
/* for larger filesystems, use larger metadata chunks */
|
|
if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
|
|
max_stripe_size = 1024 * 1024 * 1024;
|
|
else
|
|
max_stripe_size = 256 * 1024 * 1024;
|
|
max_chunk_size = max_stripe_size;
|
|
if (!devs_max)
|
|
devs_max = BTRFS_MAX_DEVS(info->chunk_root);
|
|
} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
max_stripe_size = 32 * 1024 * 1024;
|
|
max_chunk_size = 2 * max_stripe_size;
|
|
if (!devs_max)
|
|
devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
|
|
} else {
|
|
btrfs_err(info, "invalid chunk type 0x%llx requested",
|
|
type);
|
|
BUG_ON(1);
|
|
}
|
|
|
|
/* we don't want a chunk larger than 10% of writeable space */
|
|
max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
|
|
max_chunk_size);
|
|
|
|
devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
|
|
GFP_NOFS);
|
|
if (!devices_info)
|
|
return -ENOMEM;
|
|
|
|
cur = fs_devices->alloc_list.next;
|
|
|
|
/*
|
|
* in the first pass through the devices list, we gather information
|
|
* about the available holes on each device.
|
|
*/
|
|
ndevs = 0;
|
|
while (cur != &fs_devices->alloc_list) {
|
|
struct btrfs_device *device;
|
|
u64 max_avail;
|
|
u64 dev_offset;
|
|
|
|
device = list_entry(cur, struct btrfs_device, dev_alloc_list);
|
|
|
|
cur = cur->next;
|
|
|
|
if (!device->writeable) {
|
|
WARN(1, KERN_ERR
|
|
"BTRFS: read-only device in alloc_list\n");
|
|
continue;
|
|
}
|
|
|
|
if (!device->in_fs_metadata ||
|
|
device->is_tgtdev_for_dev_replace)
|
|
continue;
|
|
|
|
if (device->total_bytes > device->bytes_used)
|
|
total_avail = device->total_bytes - device->bytes_used;
|
|
else
|
|
total_avail = 0;
|
|
|
|
/* If there is no space on this device, skip it. */
|
|
if (total_avail == 0)
|
|
continue;
|
|
|
|
ret = find_free_dev_extent(trans, device,
|
|
max_stripe_size * dev_stripes,
|
|
&dev_offset, &max_avail);
|
|
if (ret && ret != -ENOSPC)
|
|
goto error;
|
|
|
|
if (ret == 0)
|
|
max_avail = max_stripe_size * dev_stripes;
|
|
|
|
if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
|
|
continue;
|
|
|
|
if (ndevs == fs_devices->rw_devices) {
|
|
WARN(1, "%s: found more than %llu devices\n",
|
|
__func__, fs_devices->rw_devices);
|
|
break;
|
|
}
|
|
devices_info[ndevs].dev_offset = dev_offset;
|
|
devices_info[ndevs].max_avail = max_avail;
|
|
devices_info[ndevs].total_avail = total_avail;
|
|
devices_info[ndevs].dev = device;
|
|
++ndevs;
|
|
}
|
|
|
|
/*
|
|
* now sort the devices by hole size / available space
|
|
*/
|
|
sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
|
|
btrfs_cmp_device_info, NULL);
|
|
|
|
/* round down to number of usable stripes */
|
|
ndevs -= ndevs % devs_increment;
|
|
|
|
if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
|
|
ret = -ENOSPC;
|
|
goto error;
|
|
}
|
|
|
|
if (devs_max && ndevs > devs_max)
|
|
ndevs = devs_max;
|
|
/*
|
|
* the primary goal is to maximize the number of stripes, so use as many
|
|
* devices as possible, even if the stripes are not maximum sized.
|
|
*/
|
|
stripe_size = devices_info[ndevs-1].max_avail;
|
|
num_stripes = ndevs * dev_stripes;
|
|
|
|
/*
|
|
* this will have to be fixed for RAID1 and RAID10 over
|
|
* more drives
|
|
*/
|
|
data_stripes = num_stripes / ncopies;
|
|
|
|
if (type & BTRFS_BLOCK_GROUP_RAID5) {
|
|
raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
|
|
btrfs_super_stripesize(info->super_copy));
|
|
data_stripes = num_stripes - 1;
|
|
}
|
|
if (type & BTRFS_BLOCK_GROUP_RAID6) {
|
|
raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
|
|
btrfs_super_stripesize(info->super_copy));
|
|
data_stripes = num_stripes - 2;
|
|
}
|
|
|
|
/*
|
|
* Use the number of data stripes to figure out how big this chunk
|
|
* is really going to be in terms of logical address space,
|
|
* and compare that answer with the max chunk size
|
|
*/
|
|
if (stripe_size * data_stripes > max_chunk_size) {
|
|
u64 mask = (1ULL << 24) - 1;
|
|
|
|
stripe_size = div_u64(max_chunk_size, data_stripes);
|
|
|
|
/* bump the answer up to a 16MB boundary */
|
|
stripe_size = (stripe_size + mask) & ~mask;
|
|
|
|
/* but don't go higher than the limits we found
|
|
* while searching for free extents
|
|
*/
|
|
if (stripe_size > devices_info[ndevs-1].max_avail)
|
|
stripe_size = devices_info[ndevs-1].max_avail;
|
|
}
|
|
|
|
stripe_size = div_u64(stripe_size, dev_stripes);
|
|
|
|
/* align to BTRFS_STRIPE_LEN */
|
|
stripe_size = div_u64(stripe_size, raid_stripe_len);
|
|
stripe_size *= raid_stripe_len;
|
|
|
|
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
map->num_stripes = num_stripes;
|
|
|
|
for (i = 0; i < ndevs; ++i) {
|
|
for (j = 0; j < dev_stripes; ++j) {
|
|
int s = i * dev_stripes + j;
|
|
map->stripes[s].dev = devices_info[i].dev;
|
|
map->stripes[s].physical = devices_info[i].dev_offset +
|
|
j * stripe_size;
|
|
}
|
|
}
|
|
map->sector_size = extent_root->sectorsize;
|
|
map->stripe_len = raid_stripe_len;
|
|
map->io_align = raid_stripe_len;
|
|
map->io_width = raid_stripe_len;
|
|
map->type = type;
|
|
map->sub_stripes = sub_stripes;
|
|
|
|
num_bytes = stripe_size * data_stripes;
|
|
|
|
trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
kfree(map);
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
|
|
em->bdev = (struct block_device *)map;
|
|
em->start = start;
|
|
em->len = num_bytes;
|
|
em->block_start = 0;
|
|
em->block_len = em->len;
|
|
em->orig_block_len = stripe_size;
|
|
|
|
em_tree = &extent_root->fs_info->mapping_tree.map_tree;
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 0);
|
|
if (!ret) {
|
|
list_add_tail(&em->list, &trans->transaction->pending_chunks);
|
|
atomic_inc(&em->refs);
|
|
}
|
|
write_unlock(&em_tree->lock);
|
|
if (ret) {
|
|
free_extent_map(em);
|
|
goto error;
|
|
}
|
|
|
|
ret = btrfs_make_block_group(trans, extent_root, 0, type,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
start, num_bytes);
|
|
if (ret)
|
|
goto error_del_extent;
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
|
|
btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
|
|
}
|
|
|
|
spin_lock(&extent_root->fs_info->free_chunk_lock);
|
|
extent_root->fs_info->free_chunk_space -= (stripe_size *
|
|
map->num_stripes);
|
|
spin_unlock(&extent_root->fs_info->free_chunk_lock);
|
|
|
|
free_extent_map(em);
|
|
check_raid56_incompat_flag(extent_root->fs_info, type);
|
|
|
|
kfree(devices_info);
|
|
return 0;
|
|
|
|
error_del_extent:
|
|
write_lock(&em_tree->lock);
|
|
remove_extent_mapping(em_tree, em);
|
|
write_unlock(&em_tree->lock);
|
|
|
|
/* One for our allocation */
|
|
free_extent_map(em);
|
|
/* One for the tree reference */
|
|
free_extent_map(em);
|
|
/* One for the pending_chunks list reference */
|
|
free_extent_map(em);
|
|
error:
|
|
kfree(devices_info);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
u64 chunk_offset, u64 chunk_size)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
|
|
struct btrfs_device *device;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_stripe *stripe;
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
size_t item_size;
|
|
u64 dev_offset;
|
|
u64 stripe_size;
|
|
int i = 0;
|
|
int ret;
|
|
|
|
em_tree = &extent_root->fs_info->mapping_tree.map_tree;
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em) {
|
|
btrfs_crit(extent_root->fs_info, "unable to find logical "
|
|
"%Lu len %Lu", chunk_offset, chunk_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (em->start != chunk_offset || em->len != chunk_size) {
|
|
btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
|
|
" %Lu-%Lu, found %Lu-%Lu", chunk_offset,
|
|
chunk_size, em->start, em->len);
|
|
free_extent_map(em);
|
|
return -EINVAL;
|
|
}
|
|
|
|
map = (struct map_lookup *)em->bdev;
|
|
item_size = btrfs_chunk_item_size(map->num_stripes);
|
|
stripe_size = em->orig_block_len;
|
|
|
|
chunk = kzalloc(item_size, GFP_NOFS);
|
|
if (!chunk) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
device = map->stripes[i].dev;
|
|
dev_offset = map->stripes[i].physical;
|
|
|
|
ret = btrfs_update_device(trans, device);
|
|
if (ret)
|
|
goto out;
|
|
ret = btrfs_alloc_dev_extent(trans, device,
|
|
chunk_root->root_key.objectid,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
chunk_offset, dev_offset,
|
|
stripe_size);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
stripe = &chunk->stripe;
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
device = map->stripes[i].dev;
|
|
dev_offset = map->stripes[i].physical;
|
|
|
|
btrfs_set_stack_stripe_devid(stripe, device->devid);
|
|
btrfs_set_stack_stripe_offset(stripe, dev_offset);
|
|
memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
|
|
stripe++;
|
|
}
|
|
|
|
btrfs_set_stack_chunk_length(chunk, chunk_size);
|
|
btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
|
|
btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
|
|
btrfs_set_stack_chunk_type(chunk, map->type);
|
|
btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
|
|
btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
|
|
btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
|
|
btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
|
|
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
key.offset = chunk_offset;
|
|
|
|
ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
|
|
if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
/*
|
|
* TODO: Cleanup of inserted chunk root in case of
|
|
* failure.
|
|
*/
|
|
ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
|
|
item_size);
|
|
}
|
|
|
|
out:
|
|
kfree(chunk);
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Chunk allocation falls into two parts. The first part does works
|
|
* that make the new allocated chunk useable, but not do any operation
|
|
* that modifies the chunk tree. The second part does the works that
|
|
* require modifying the chunk tree. This division is important for the
|
|
* bootstrap process of adding storage to a seed btrfs.
|
|
*/
|
|
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 type)
|
|
{
|
|
u64 chunk_offset;
|
|
|
|
ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
|
|
chunk_offset = find_next_chunk(extent_root->fs_info);
|
|
return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
|
|
}
|
|
|
|
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_device *device)
|
|
{
|
|
u64 chunk_offset;
|
|
u64 sys_chunk_offset;
|
|
u64 alloc_profile;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_root *extent_root = fs_info->extent_root;
|
|
int ret;
|
|
|
|
chunk_offset = find_next_chunk(fs_info);
|
|
alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
|
|
ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
|
|
alloc_profile);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sys_chunk_offset = find_next_chunk(root->fs_info);
|
|
alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
|
|
ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
|
|
alloc_profile);
|
|
return ret;
|
|
}
|
|
|
|
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
|
|
{
|
|
int max_errors;
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_RAID5 |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
max_errors = 1;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
|
|
max_errors = 2;
|
|
} else {
|
|
max_errors = 0;
|
|
}
|
|
|
|
return max_errors;
|
|
}
|
|
|
|
int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
|
|
int readonly = 0;
|
|
int miss_ndevs = 0;
|
|
int i;
|
|
|
|
read_lock(&map_tree->map_tree.lock);
|
|
em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
|
|
read_unlock(&map_tree->map_tree.lock);
|
|
if (!em)
|
|
return 1;
|
|
|
|
map = (struct map_lookup *)em->bdev;
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
if (map->stripes[i].dev->missing) {
|
|
miss_ndevs++;
|
|
continue;
|
|
}
|
|
|
|
if (!map->stripes[i].dev->writeable) {
|
|
readonly = 1;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the number of missing devices is larger than max errors,
|
|
* we can not write the data into that chunk successfully, so
|
|
* set it readonly.
|
|
*/
|
|
if (miss_ndevs > btrfs_chunk_max_errors(map))
|
|
readonly = 1;
|
|
end:
|
|
free_extent_map(em);
|
|
return readonly;
|
|
}
|
|
|
|
void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
|
|
{
|
|
extent_map_tree_init(&tree->map_tree);
|
|
}
|
|
|
|
void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
|
|
{
|
|
struct extent_map *em;
|
|
|
|
while (1) {
|
|
write_lock(&tree->map_tree.lock);
|
|
em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
|
|
if (em)
|
|
remove_extent_mapping(&tree->map_tree, em);
|
|
write_unlock(&tree->map_tree.lock);
|
|
if (!em)
|
|
break;
|
|
/* once for us */
|
|
free_extent_map(em);
|
|
/* once for the tree */
|
|
free_extent_map(em);
|
|
}
|
|
}
|
|
|
|
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct extent_map_tree *em_tree = &map_tree->map_tree;
|
|
int ret;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, logical, len);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
/*
|
|
* We could return errors for these cases, but that could get ugly and
|
|
* we'd probably do the same thing which is just not do anything else
|
|
* and exit, so return 1 so the callers don't try to use other copies.
|
|
*/
|
|
if (!em) {
|
|
btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
|
|
logical+len);
|
|
return 1;
|
|
}
|
|
|
|
if (em->start > logical || em->start + em->len < logical) {
|
|
btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
|
|
"%Lu-%Lu", logical, logical+len, em->start,
|
|
em->start + em->len);
|
|
free_extent_map(em);
|
|
return 1;
|
|
}
|
|
|
|
map = (struct map_lookup *)em->bdev;
|
|
if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
|
|
ret = map->num_stripes;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
|
|
ret = map->sub_stripes;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
|
|
ret = 2;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
ret = 3;
|
|
else
|
|
ret = 1;
|
|
free_extent_map(em);
|
|
|
|
btrfs_dev_replace_lock(&fs_info->dev_replace);
|
|
if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
|
|
ret++;
|
|
btrfs_dev_replace_unlock(&fs_info->dev_replace);
|
|
|
|
return ret;
|
|
}
|
|
|
|
unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
|
|
struct btrfs_mapping_tree *map_tree,
|
|
u64 logical)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct extent_map_tree *em_tree = &map_tree->map_tree;
|
|
unsigned long len = root->sectorsize;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, logical, len);
|
|
read_unlock(&em_tree->lock);
|
|
BUG_ON(!em);
|
|
|
|
BUG_ON(em->start > logical || em->start + em->len < logical);
|
|
map = (struct map_lookup *)em->bdev;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
|
|
len = map->stripe_len * nr_data_stripes(map);
|
|
free_extent_map(em);
|
|
return len;
|
|
}
|
|
|
|
int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
|
|
u64 logical, u64 len, int mirror_num)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct extent_map_tree *em_tree = &map_tree->map_tree;
|
|
int ret = 0;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, logical, len);
|
|
read_unlock(&em_tree->lock);
|
|
BUG_ON(!em);
|
|
|
|
BUG_ON(em->start > logical || em->start + em->len < logical);
|
|
map = (struct map_lookup *)em->bdev;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
|
|
ret = 1;
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static int find_live_mirror(struct btrfs_fs_info *fs_info,
|
|
struct map_lookup *map, int first, int num,
|
|
int optimal, int dev_replace_is_ongoing)
|
|
{
|
|
int i;
|
|
int tolerance;
|
|
struct btrfs_device *srcdev;
|
|
|
|
if (dev_replace_is_ongoing &&
|
|
fs_info->dev_replace.cont_reading_from_srcdev_mode ==
|
|
BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
|
|
srcdev = fs_info->dev_replace.srcdev;
|
|
else
|
|
srcdev = NULL;
|
|
|
|
/*
|
|
* try to avoid the drive that is the source drive for a
|
|
* dev-replace procedure, only choose it if no other non-missing
|
|
* mirror is available
|
|
*/
|
|
for (tolerance = 0; tolerance < 2; tolerance++) {
|
|
if (map->stripes[optimal].dev->bdev &&
|
|
(tolerance || map->stripes[optimal].dev != srcdev))
|
|
return optimal;
|
|
for (i = first; i < first + num; i++) {
|
|
if (map->stripes[i].dev->bdev &&
|
|
(tolerance || map->stripes[i].dev != srcdev))
|
|
return i;
|
|
}
|
|
}
|
|
|
|
/* we couldn't find one that doesn't fail. Just return something
|
|
* and the io error handling code will clean up eventually
|
|
*/
|
|
return optimal;
|
|
}
|
|
|
|
static inline int parity_smaller(u64 a, u64 b)
|
|
{
|
|
return a > b;
|
|
}
|
|
|
|
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
|
|
static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
|
|
{
|
|
struct btrfs_bio_stripe s;
|
|
int i;
|
|
u64 l;
|
|
int again = 1;
|
|
|
|
while (again) {
|
|
again = 0;
|
|
for (i = 0; i < num_stripes - 1; i++) {
|
|
if (parity_smaller(bbio->raid_map[i],
|
|
bbio->raid_map[i+1])) {
|
|
s = bbio->stripes[i];
|
|
l = bbio->raid_map[i];
|
|
bbio->stripes[i] = bbio->stripes[i+1];
|
|
bbio->raid_map[i] = bbio->raid_map[i+1];
|
|
bbio->stripes[i+1] = s;
|
|
bbio->raid_map[i+1] = l;
|
|
|
|
again = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
|
|
{
|
|
struct btrfs_bio *bbio = kzalloc(
|
|
/* the size of the btrfs_bio */
|
|
sizeof(struct btrfs_bio) +
|
|
/* plus the variable array for the stripes */
|
|
sizeof(struct btrfs_bio_stripe) * (total_stripes) +
|
|
/* plus the variable array for the tgt dev */
|
|
sizeof(int) * (real_stripes) +
|
|
/*
|
|
* plus the raid_map, which includes both the tgt dev
|
|
* and the stripes
|
|
*/
|
|
sizeof(u64) * (total_stripes),
|
|
GFP_NOFS|__GFP_NOFAIL);
|
|
|
|
atomic_set(&bbio->error, 0);
|
|
atomic_set(&bbio->refs, 1);
|
|
|
|
return bbio;
|
|
}
|
|
|
|
void btrfs_get_bbio(struct btrfs_bio *bbio)
|
|
{
|
|
WARN_ON(!atomic_read(&bbio->refs));
|
|
atomic_inc(&bbio->refs);
|
|
}
|
|
|
|
void btrfs_put_bbio(struct btrfs_bio *bbio)
|
|
{
|
|
if (!bbio)
|
|
return;
|
|
if (atomic_dec_and_test(&bbio->refs))
|
|
kfree(bbio);
|
|
}
|
|
|
|
static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
|
|
u64 logical, u64 *length,
|
|
struct btrfs_bio **bbio_ret,
|
|
int mirror_num, int need_raid_map)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
|
struct extent_map_tree *em_tree = &map_tree->map_tree;
|
|
u64 offset;
|
|
u64 stripe_offset;
|
|
u64 stripe_end_offset;
|
|
u64 stripe_nr;
|
|
u64 stripe_nr_orig;
|
|
u64 stripe_nr_end;
|
|
u64 stripe_len;
|
|
u32 stripe_index;
|
|
int i;
|
|
int ret = 0;
|
|
int num_stripes;
|
|
int max_errors = 0;
|
|
int tgtdev_indexes = 0;
|
|
struct btrfs_bio *bbio = NULL;
|
|
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
|
|
int dev_replace_is_ongoing = 0;
|
|
int num_alloc_stripes;
|
|
int patch_the_first_stripe_for_dev_replace = 0;
|
|
u64 physical_to_patch_in_first_stripe = 0;
|
|
u64 raid56_full_stripe_start = (u64)-1;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, logical, *length);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em) {
|
|
btrfs_crit(fs_info, "unable to find logical %llu len %llu",
|
|
logical, *length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (em->start > logical || em->start + em->len < logical) {
|
|
btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
|
|
"found %Lu-%Lu", logical, em->start,
|
|
em->start + em->len);
|
|
free_extent_map(em);
|
|
return -EINVAL;
|
|
}
|
|
|
|
map = (struct map_lookup *)em->bdev;
|
|
offset = logical - em->start;
|
|
|
|
stripe_len = map->stripe_len;
|
|
stripe_nr = offset;
|
|
/*
|
|
* stripe_nr counts the total number of stripes we have to stride
|
|
* to get to this block
|
|
*/
|
|
stripe_nr = div64_u64(stripe_nr, stripe_len);
|
|
|
|
stripe_offset = stripe_nr * stripe_len;
|
|
BUG_ON(offset < stripe_offset);
|
|
|
|
/* stripe_offset is the offset of this block in its stripe*/
|
|
stripe_offset = offset - stripe_offset;
|
|
|
|
/* if we're here for raid56, we need to know the stripe aligned start */
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
|
|
raid56_full_stripe_start = offset;
|
|
|
|
/* allow a write of a full stripe, but make sure we don't
|
|
* allow straddling of stripes
|
|
*/
|
|
raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
|
|
full_stripe_len);
|
|
raid56_full_stripe_start *= full_stripe_len;
|
|
}
|
|
|
|
if (rw & REQ_DISCARD) {
|
|
/* we don't discard raid56 yet */
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
*length = min_t(u64, em->len - offset, *length);
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
|
|
u64 max_len;
|
|
/* For writes to RAID[56], allow a full stripeset across all disks.
|
|
For other RAID types and for RAID[56] reads, just allow a single
|
|
stripe (on a single disk). */
|
|
if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
|
|
(rw & REQ_WRITE)) {
|
|
max_len = stripe_len * nr_data_stripes(map) -
|
|
(offset - raid56_full_stripe_start);
|
|
} else {
|
|
/* we limit the length of each bio to what fits in a stripe */
|
|
max_len = stripe_len - stripe_offset;
|
|
}
|
|
*length = min_t(u64, em->len - offset, max_len);
|
|
} else {
|
|
*length = em->len - offset;
|
|
}
|
|
|
|
/* This is for when we're called from btrfs_merge_bio_hook() and all
|
|
it cares about is the length */
|
|
if (!bbio_ret)
|
|
goto out;
|
|
|
|
btrfs_dev_replace_lock(dev_replace);
|
|
dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
|
|
if (!dev_replace_is_ongoing)
|
|
btrfs_dev_replace_unlock(dev_replace);
|
|
|
|
if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
|
|
!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
|
|
dev_replace->tgtdev != NULL) {
|
|
/*
|
|
* in dev-replace case, for repair case (that's the only
|
|
* case where the mirror is selected explicitly when
|
|
* calling btrfs_map_block), blocks left of the left cursor
|
|
* can also be read from the target drive.
|
|
* For REQ_GET_READ_MIRRORS, the target drive is added as
|
|
* the last one to the array of stripes. For READ, it also
|
|
* needs to be supported using the same mirror number.
|
|
* If the requested block is not left of the left cursor,
|
|
* EIO is returned. This can happen because btrfs_num_copies()
|
|
* returns one more in the dev-replace case.
|
|
*/
|
|
u64 tmp_length = *length;
|
|
struct btrfs_bio *tmp_bbio = NULL;
|
|
int tmp_num_stripes;
|
|
u64 srcdev_devid = dev_replace->srcdev->devid;
|
|
int index_srcdev = 0;
|
|
int found = 0;
|
|
u64 physical_of_found = 0;
|
|
|
|
ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
|
|
logical, &tmp_length, &tmp_bbio, 0, 0);
|
|
if (ret) {
|
|
WARN_ON(tmp_bbio != NULL);
|
|
goto out;
|
|
}
|
|
|
|
tmp_num_stripes = tmp_bbio->num_stripes;
|
|
if (mirror_num > tmp_num_stripes) {
|
|
/*
|
|
* REQ_GET_READ_MIRRORS does not contain this
|
|
* mirror, that means that the requested area
|
|
* is not left of the left cursor
|
|
*/
|
|
ret = -EIO;
|
|
btrfs_put_bbio(tmp_bbio);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* process the rest of the function using the mirror_num
|
|
* of the source drive. Therefore look it up first.
|
|
* At the end, patch the device pointer to the one of the
|
|
* target drive.
|
|
*/
|
|
for (i = 0; i < tmp_num_stripes; i++) {
|
|
if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
|
|
/*
|
|
* In case of DUP, in order to keep it
|
|
* simple, only add the mirror with the
|
|
* lowest physical address
|
|
*/
|
|
if (found &&
|
|
physical_of_found <=
|
|
tmp_bbio->stripes[i].physical)
|
|
continue;
|
|
index_srcdev = i;
|
|
found = 1;
|
|
physical_of_found =
|
|
tmp_bbio->stripes[i].physical;
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
mirror_num = index_srcdev + 1;
|
|
patch_the_first_stripe_for_dev_replace = 1;
|
|
physical_to_patch_in_first_stripe = physical_of_found;
|
|
} else {
|
|
WARN_ON(1);
|
|
ret = -EIO;
|
|
btrfs_put_bbio(tmp_bbio);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_put_bbio(tmp_bbio);
|
|
} else if (mirror_num > map->num_stripes) {
|
|
mirror_num = 0;
|
|
}
|
|
|
|
num_stripes = 1;
|
|
stripe_index = 0;
|
|
stripe_nr_orig = stripe_nr;
|
|
stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
|
|
stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
|
|
stripe_end_offset = stripe_nr_end * map->stripe_len -
|
|
(offset + *length);
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
|
|
if (rw & REQ_DISCARD)
|
|
num_stripes = min_t(u64, map->num_stripes,
|
|
stripe_nr_end - stripe_nr_orig);
|
|
stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
|
|
&stripe_index);
|
|
if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
|
|
mirror_num = 1;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
|
|
if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
|
|
num_stripes = map->num_stripes;
|
|
else if (mirror_num)
|
|
stripe_index = mirror_num - 1;
|
|
else {
|
|
stripe_index = find_live_mirror(fs_info, map, 0,
|
|
map->num_stripes,
|
|
current->pid % map->num_stripes,
|
|
dev_replace_is_ongoing);
|
|
mirror_num = stripe_index + 1;
|
|
}
|
|
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
|
|
if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
|
|
num_stripes = map->num_stripes;
|
|
} else if (mirror_num) {
|
|
stripe_index = mirror_num - 1;
|
|
} else {
|
|
mirror_num = 1;
|
|
}
|
|
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
u32 factor = map->num_stripes / map->sub_stripes;
|
|
|
|
stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
|
|
stripe_index *= map->sub_stripes;
|
|
|
|
if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
|
|
num_stripes = map->sub_stripes;
|
|
else if (rw & REQ_DISCARD)
|
|
num_stripes = min_t(u64, map->sub_stripes *
|
|
(stripe_nr_end - stripe_nr_orig),
|
|
map->num_stripes);
|
|
else if (mirror_num)
|
|
stripe_index += mirror_num - 1;
|
|
else {
|
|
int old_stripe_index = stripe_index;
|
|
stripe_index = find_live_mirror(fs_info, map,
|
|
stripe_index,
|
|
map->sub_stripes, stripe_index +
|
|
current->pid % map->sub_stripes,
|
|
dev_replace_is_ongoing);
|
|
mirror_num = stripe_index - old_stripe_index + 1;
|
|
}
|
|
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
if (need_raid_map &&
|
|
((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
|
|
mirror_num > 1)) {
|
|
/* push stripe_nr back to the start of the full stripe */
|
|
stripe_nr = div_u64(raid56_full_stripe_start,
|
|
stripe_len * nr_data_stripes(map));
|
|
|
|
/* RAID[56] write or recovery. Return all stripes */
|
|
num_stripes = map->num_stripes;
|
|
max_errors = nr_parity_stripes(map);
|
|
|
|
*length = map->stripe_len;
|
|
stripe_index = 0;
|
|
stripe_offset = 0;
|
|
} else {
|
|
/*
|
|
* Mirror #0 or #1 means the original data block.
|
|
* Mirror #2 is RAID5 parity block.
|
|
* Mirror #3 is RAID6 Q block.
|
|
*/
|
|
stripe_nr = div_u64_rem(stripe_nr,
|
|
nr_data_stripes(map), &stripe_index);
|
|
if (mirror_num > 1)
|
|
stripe_index = nr_data_stripes(map) +
|
|
mirror_num - 2;
|
|
|
|
/* We distribute the parity blocks across stripes */
|
|
div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
|
|
&stripe_index);
|
|
if (!(rw & (REQ_WRITE | REQ_DISCARD |
|
|
REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
|
|
mirror_num = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* after this, stripe_nr is the number of stripes on this
|
|
* device we have to walk to find the data, and stripe_index is
|
|
* the number of our device in the stripe array
|
|
*/
|
|
stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
|
|
&stripe_index);
|
|
mirror_num = stripe_index + 1;
|
|
}
|
|
BUG_ON(stripe_index >= map->num_stripes);
|
|
|
|
num_alloc_stripes = num_stripes;
|
|
if (dev_replace_is_ongoing) {
|
|
if (rw & (REQ_WRITE | REQ_DISCARD))
|
|
num_alloc_stripes <<= 1;
|
|
if (rw & REQ_GET_READ_MIRRORS)
|
|
num_alloc_stripes++;
|
|
tgtdev_indexes = num_stripes;
|
|
}
|
|
|
|
bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
|
|
if (!bbio) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
if (dev_replace_is_ongoing)
|
|
bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
|
|
|
|
/* build raid_map */
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
|
|
need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
|
|
mirror_num > 1)) {
|
|
u64 tmp;
|
|
unsigned rot;
|
|
|
|
bbio->raid_map = (u64 *)((void *)bbio->stripes +
|
|
sizeof(struct btrfs_bio_stripe) *
|
|
num_alloc_stripes +
|
|
sizeof(int) * tgtdev_indexes);
|
|
|
|
/* Work out the disk rotation on this stripe-set */
|
|
div_u64_rem(stripe_nr, num_stripes, &rot);
|
|
|
|
/* Fill in the logical address of each stripe */
|
|
tmp = stripe_nr * nr_data_stripes(map);
|
|
for (i = 0; i < nr_data_stripes(map); i++)
|
|
bbio->raid_map[(i+rot) % num_stripes] =
|
|
em->start + (tmp + i) * map->stripe_len;
|
|
|
|
bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
bbio->raid_map[(i+rot+1) % num_stripes] =
|
|
RAID6_Q_STRIPE;
|
|
}
|
|
|
|
if (rw & REQ_DISCARD) {
|
|
u32 factor = 0;
|
|
u32 sub_stripes = 0;
|
|
u64 stripes_per_dev = 0;
|
|
u32 remaining_stripes = 0;
|
|
u32 last_stripe = 0;
|
|
|
|
if (map->type &
|
|
(BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID0)
|
|
sub_stripes = 1;
|
|
else
|
|
sub_stripes = map->sub_stripes;
|
|
|
|
factor = map->num_stripes / sub_stripes;
|
|
stripes_per_dev = div_u64_rem(stripe_nr_end -
|
|
stripe_nr_orig,
|
|
factor,
|
|
&remaining_stripes);
|
|
div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
|
|
last_stripe *= sub_stripes;
|
|
}
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
bbio->stripes[i].physical =
|
|
map->stripes[stripe_index].physical +
|
|
stripe_offset + stripe_nr * map->stripe_len;
|
|
bbio->stripes[i].dev = map->stripes[stripe_index].dev;
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID10)) {
|
|
bbio->stripes[i].length = stripes_per_dev *
|
|
map->stripe_len;
|
|
|
|
if (i / sub_stripes < remaining_stripes)
|
|
bbio->stripes[i].length +=
|
|
map->stripe_len;
|
|
|
|
/*
|
|
* Special for the first stripe and
|
|
* the last stripe:
|
|
*
|
|
* |-------|...|-------|
|
|
* |----------|
|
|
* off end_off
|
|
*/
|
|
if (i < sub_stripes)
|
|
bbio->stripes[i].length -=
|
|
stripe_offset;
|
|
|
|
if (stripe_index >= last_stripe &&
|
|
stripe_index <= (last_stripe +
|
|
sub_stripes - 1))
|
|
bbio->stripes[i].length -=
|
|
stripe_end_offset;
|
|
|
|
if (i == sub_stripes - 1)
|
|
stripe_offset = 0;
|
|
} else
|
|
bbio->stripes[i].length = *length;
|
|
|
|
stripe_index++;
|
|
if (stripe_index == map->num_stripes) {
|
|
/* This could only happen for RAID0/10 */
|
|
stripe_index = 0;
|
|
stripe_nr++;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < num_stripes; i++) {
|
|
bbio->stripes[i].physical =
|
|
map->stripes[stripe_index].physical +
|
|
stripe_offset +
|
|
stripe_nr * map->stripe_len;
|
|
bbio->stripes[i].dev =
|
|
map->stripes[stripe_index].dev;
|
|
stripe_index++;
|
|
}
|
|
}
|
|
|
|
if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
|
|
max_errors = btrfs_chunk_max_errors(map);
|
|
|
|
if (bbio->raid_map)
|
|
sort_parity_stripes(bbio, num_stripes);
|
|
|
|
tgtdev_indexes = 0;
|
|
if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
|
|
dev_replace->tgtdev != NULL) {
|
|
int index_where_to_add;
|
|
u64 srcdev_devid = dev_replace->srcdev->devid;
|
|
|
|
/*
|
|
* duplicate the write operations while the dev replace
|
|
* procedure is running. Since the copying of the old disk
|
|
* to the new disk takes place at run time while the
|
|
* filesystem is mounted writable, the regular write
|
|
* operations to the old disk have to be duplicated to go
|
|
* to the new disk as well.
|
|
* Note that device->missing is handled by the caller, and
|
|
* that the write to the old disk is already set up in the
|
|
* stripes array.
|
|
*/
|
|
index_where_to_add = num_stripes;
|
|
for (i = 0; i < num_stripes; i++) {
|
|
if (bbio->stripes[i].dev->devid == srcdev_devid) {
|
|
/* write to new disk, too */
|
|
struct btrfs_bio_stripe *new =
|
|
bbio->stripes + index_where_to_add;
|
|
struct btrfs_bio_stripe *old =
|
|
bbio->stripes + i;
|
|
|
|
new->physical = old->physical;
|
|
new->length = old->length;
|
|
new->dev = dev_replace->tgtdev;
|
|
bbio->tgtdev_map[i] = index_where_to_add;
|
|
index_where_to_add++;
|
|
max_errors++;
|
|
tgtdev_indexes++;
|
|
}
|
|
}
|
|
num_stripes = index_where_to_add;
|
|
} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
|
|
dev_replace->tgtdev != NULL) {
|
|
u64 srcdev_devid = dev_replace->srcdev->devid;
|
|
int index_srcdev = 0;
|
|
int found = 0;
|
|
u64 physical_of_found = 0;
|
|
|
|
/*
|
|
* During the dev-replace procedure, the target drive can
|
|
* also be used to read data in case it is needed to repair
|
|
* a corrupt block elsewhere. This is possible if the
|
|
* requested area is left of the left cursor. In this area,
|
|
* the target drive is a full copy of the source drive.
|
|
*/
|
|
for (i = 0; i < num_stripes; i++) {
|
|
if (bbio->stripes[i].dev->devid == srcdev_devid) {
|
|
/*
|
|
* In case of DUP, in order to keep it
|
|
* simple, only add the mirror with the
|
|
* lowest physical address
|
|
*/
|
|
if (found &&
|
|
physical_of_found <=
|
|
bbio->stripes[i].physical)
|
|
continue;
|
|
index_srcdev = i;
|
|
found = 1;
|
|
physical_of_found = bbio->stripes[i].physical;
|
|
}
|
|
}
|
|
if (found) {
|
|
if (physical_of_found + map->stripe_len <=
|
|
dev_replace->cursor_left) {
|
|
struct btrfs_bio_stripe *tgtdev_stripe =
|
|
bbio->stripes + num_stripes;
|
|
|
|
tgtdev_stripe->physical = physical_of_found;
|
|
tgtdev_stripe->length =
|
|
bbio->stripes[index_srcdev].length;
|
|
tgtdev_stripe->dev = dev_replace->tgtdev;
|
|
bbio->tgtdev_map[index_srcdev] = num_stripes;
|
|
|
|
tgtdev_indexes++;
|
|
num_stripes++;
|
|
}
|
|
}
|
|
}
|
|
|
|
*bbio_ret = bbio;
|
|
bbio->map_type = map->type;
|
|
bbio->num_stripes = num_stripes;
|
|
bbio->max_errors = max_errors;
|
|
bbio->mirror_num = mirror_num;
|
|
bbio->num_tgtdevs = tgtdev_indexes;
|
|
|
|
/*
|
|
* this is the case that REQ_READ && dev_replace_is_ongoing &&
|
|
* mirror_num == num_stripes + 1 && dev_replace target drive is
|
|
* available as a mirror
|
|
*/
|
|
if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
|
|
WARN_ON(num_stripes > 1);
|
|
bbio->stripes[0].dev = dev_replace->tgtdev;
|
|
bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
|
|
bbio->mirror_num = map->num_stripes + 1;
|
|
}
|
|
out:
|
|
if (dev_replace_is_ongoing)
|
|
btrfs_dev_replace_unlock(dev_replace);
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
|
|
u64 logical, u64 *length,
|
|
struct btrfs_bio **bbio_ret, int mirror_num)
|
|
{
|
|
return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
|
|
mirror_num, 0);
|
|
}
|
|
|
|
/* For Scrub/replace */
|
|
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
|
|
u64 logical, u64 *length,
|
|
struct btrfs_bio **bbio_ret, int mirror_num,
|
|
int need_raid_map)
|
|
{
|
|
return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
|
|
mirror_num, need_raid_map);
|
|
}
|
|
|
|
int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
|
|
u64 chunk_start, u64 physical, u64 devid,
|
|
u64 **logical, int *naddrs, int *stripe_len)
|
|
{
|
|
struct extent_map_tree *em_tree = &map_tree->map_tree;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
u64 *buf;
|
|
u64 bytenr;
|
|
u64 length;
|
|
u64 stripe_nr;
|
|
u64 rmap_len;
|
|
int i, j, nr = 0;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, chunk_start, 1);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em) {
|
|
printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
|
|
chunk_start);
|
|
return -EIO;
|
|
}
|
|
|
|
if (em->start != chunk_start) {
|
|
printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
|
|
em->start, chunk_start);
|
|
free_extent_map(em);
|
|
return -EIO;
|
|
}
|
|
map = (struct map_lookup *)em->bdev;
|
|
|
|
length = em->len;
|
|
rmap_len = map->stripe_len;
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID10)
|
|
length = div_u64(length, map->num_stripes / map->sub_stripes);
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
|
|
length = div_u64(length, map->num_stripes);
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
length = div_u64(length, nr_data_stripes(map));
|
|
rmap_len = map->stripe_len * nr_data_stripes(map);
|
|
}
|
|
|
|
buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
|
|
BUG_ON(!buf); /* -ENOMEM */
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
if (devid && map->stripes[i].dev->devid != devid)
|
|
continue;
|
|
if (map->stripes[i].physical > physical ||
|
|
map->stripes[i].physical + length <= physical)
|
|
continue;
|
|
|
|
stripe_nr = physical - map->stripes[i].physical;
|
|
stripe_nr = div_u64(stripe_nr, map->stripe_len);
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
stripe_nr = stripe_nr * map->num_stripes + i;
|
|
stripe_nr = div_u64(stripe_nr, map->sub_stripes);
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
|
|
stripe_nr = stripe_nr * map->num_stripes + i;
|
|
} /* else if RAID[56], multiply by nr_data_stripes().
|
|
* Alternatively, just use rmap_len below instead of
|
|
* map->stripe_len */
|
|
|
|
bytenr = chunk_start + stripe_nr * rmap_len;
|
|
WARN_ON(nr >= map->num_stripes);
|
|
for (j = 0; j < nr; j++) {
|
|
if (buf[j] == bytenr)
|
|
break;
|
|
}
|
|
if (j == nr) {
|
|
WARN_ON(nr >= map->num_stripes);
|
|
buf[nr++] = bytenr;
|
|
}
|
|
}
|
|
|
|
*logical = buf;
|
|
*naddrs = nr;
|
|
*stripe_len = rmap_len;
|
|
|
|
free_extent_map(em);
|
|
return 0;
|
|
}
|
|
|
|
static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
|
|
{
|
|
bio->bi_private = bbio->private;
|
|
bio->bi_end_io = bbio->end_io;
|
|
bio_endio(bio);
|
|
|
|
btrfs_put_bbio(bbio);
|
|
}
|
|
|
|
static void btrfs_end_bio(struct bio *bio)
|
|
{
|
|
struct btrfs_bio *bbio = bio->bi_private;
|
|
int is_orig_bio = 0;
|
|
|
|
if (bio->bi_error) {
|
|
atomic_inc(&bbio->error);
|
|
if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
|
|
unsigned int stripe_index =
|
|
btrfs_io_bio(bio)->stripe_index;
|
|
struct btrfs_device *dev;
|
|
|
|
BUG_ON(stripe_index >= bbio->num_stripes);
|
|
dev = bbio->stripes[stripe_index].dev;
|
|
if (dev->bdev) {
|
|
if (bio->bi_rw & WRITE)
|
|
btrfs_dev_stat_inc(dev,
|
|
BTRFS_DEV_STAT_WRITE_ERRS);
|
|
else
|
|
btrfs_dev_stat_inc(dev,
|
|
BTRFS_DEV_STAT_READ_ERRS);
|
|
if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
|
|
btrfs_dev_stat_inc(dev,
|
|
BTRFS_DEV_STAT_FLUSH_ERRS);
|
|
btrfs_dev_stat_print_on_error(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bio == bbio->orig_bio)
|
|
is_orig_bio = 1;
|
|
|
|
btrfs_bio_counter_dec(bbio->fs_info);
|
|
|
|
if (atomic_dec_and_test(&bbio->stripes_pending)) {
|
|
if (!is_orig_bio) {
|
|
bio_put(bio);
|
|
bio = bbio->orig_bio;
|
|
}
|
|
|
|
btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
|
|
/* only send an error to the higher layers if it is
|
|
* beyond the tolerance of the btrfs bio
|
|
*/
|
|
if (atomic_read(&bbio->error) > bbio->max_errors) {
|
|
bio->bi_error = -EIO;
|
|
} else {
|
|
/*
|
|
* this bio is actually up to date, we didn't
|
|
* go over the max number of errors
|
|
*/
|
|
bio->bi_error = 0;
|
|
}
|
|
|
|
btrfs_end_bbio(bbio, bio);
|
|
} else if (!is_orig_bio) {
|
|
bio_put(bio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* see run_scheduled_bios for a description of why bios are collected for
|
|
* async submit.
|
|
*
|
|
* This will add one bio to the pending list for a device and make sure
|
|
* the work struct is scheduled.
|
|
*/
|
|
static noinline void btrfs_schedule_bio(struct btrfs_root *root,
|
|
struct btrfs_device *device,
|
|
int rw, struct bio *bio)
|
|
{
|
|
int should_queue = 1;
|
|
struct btrfs_pending_bios *pending_bios;
|
|
|
|
if (device->missing || !device->bdev) {
|
|
bio_io_error(bio);
|
|
return;
|
|
}
|
|
|
|
/* don't bother with additional async steps for reads, right now */
|
|
if (!(rw & REQ_WRITE)) {
|
|
bio_get(bio);
|
|
btrfsic_submit_bio(rw, bio);
|
|
bio_put(bio);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* nr_async_bios allows us to reliably return congestion to the
|
|
* higher layers. Otherwise, the async bio makes it appear we have
|
|
* made progress against dirty pages when we've really just put it
|
|
* on a queue for later
|
|
*/
|
|
atomic_inc(&root->fs_info->nr_async_bios);
|
|
WARN_ON(bio->bi_next);
|
|
bio->bi_next = NULL;
|
|
bio->bi_rw |= rw;
|
|
|
|
spin_lock(&device->io_lock);
|
|
if (bio->bi_rw & REQ_SYNC)
|
|
pending_bios = &device->pending_sync_bios;
|
|
else
|
|
pending_bios = &device->pending_bios;
|
|
|
|
if (pending_bios->tail)
|
|
pending_bios->tail->bi_next = bio;
|
|
|
|
pending_bios->tail = bio;
|
|
if (!pending_bios->head)
|
|
pending_bios->head = bio;
|
|
if (device->running_pending)
|
|
should_queue = 0;
|
|
|
|
spin_unlock(&device->io_lock);
|
|
|
|
if (should_queue)
|
|
btrfs_queue_work(root->fs_info->submit_workers,
|
|
&device->work);
|
|
}
|
|
|
|
static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
|
|
struct bio *bio, u64 physical, int dev_nr,
|
|
int rw, int async)
|
|
{
|
|
struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
|
|
|
|
bio->bi_private = bbio;
|
|
btrfs_io_bio(bio)->stripe_index = dev_nr;
|
|
bio->bi_end_io = btrfs_end_bio;
|
|
bio->bi_iter.bi_sector = physical >> 9;
|
|
#ifdef DEBUG
|
|
{
|
|
struct rcu_string *name;
|
|
|
|
rcu_read_lock();
|
|
name = rcu_dereference(dev->name);
|
|
pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
|
|
"(%s id %llu), size=%u\n", rw,
|
|
(u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
|
|
name->str, dev->devid, bio->bi_iter.bi_size);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
bio->bi_bdev = dev->bdev;
|
|
|
|
btrfs_bio_counter_inc_noblocked(root->fs_info);
|
|
|
|
if (async)
|
|
btrfs_schedule_bio(root, dev, rw, bio);
|
|
else
|
|
btrfsic_submit_bio(rw, bio);
|
|
}
|
|
|
|
static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
|
|
{
|
|
atomic_inc(&bbio->error);
|
|
if (atomic_dec_and_test(&bbio->stripes_pending)) {
|
|
/* Shoud be the original bio. */
|
|
WARN_ON(bio != bbio->orig_bio);
|
|
|
|
btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
|
|
bio->bi_iter.bi_sector = logical >> 9;
|
|
bio->bi_error = -EIO;
|
|
btrfs_end_bbio(bbio, bio);
|
|
}
|
|
}
|
|
|
|
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
|
|
int mirror_num, int async_submit)
|
|
{
|
|
struct btrfs_device *dev;
|
|
struct bio *first_bio = bio;
|
|
u64 logical = (u64)bio->bi_iter.bi_sector << 9;
|
|
u64 length = 0;
|
|
u64 map_length;
|
|
int ret;
|
|
int dev_nr;
|
|
int total_devs;
|
|
struct btrfs_bio *bbio = NULL;
|
|
|
|
length = bio->bi_iter.bi_size;
|
|
map_length = length;
|
|
|
|
btrfs_bio_counter_inc_blocked(root->fs_info);
|
|
ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
|
|
mirror_num, 1);
|
|
if (ret) {
|
|
btrfs_bio_counter_dec(root->fs_info);
|
|
return ret;
|
|
}
|
|
|
|
total_devs = bbio->num_stripes;
|
|
bbio->orig_bio = first_bio;
|
|
bbio->private = first_bio->bi_private;
|
|
bbio->end_io = first_bio->bi_end_io;
|
|
bbio->fs_info = root->fs_info;
|
|
atomic_set(&bbio->stripes_pending, bbio->num_stripes);
|
|
|
|
if (bbio->raid_map) {
|
|
/* In this case, map_length has been set to the length of
|
|
a single stripe; not the whole write */
|
|
if (rw & WRITE) {
|
|
ret = raid56_parity_write(root, bio, bbio, map_length);
|
|
} else {
|
|
ret = raid56_parity_recover(root, bio, bbio, map_length,
|
|
mirror_num, 1);
|
|
}
|
|
|
|
btrfs_bio_counter_dec(root->fs_info);
|
|
return ret;
|
|
}
|
|
|
|
if (map_length < length) {
|
|
btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
|
|
logical, length, map_length);
|
|
BUG();
|
|
}
|
|
|
|
for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
|
|
dev = bbio->stripes[dev_nr].dev;
|
|
if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
|
|
bbio_error(bbio, first_bio, logical);
|
|
continue;
|
|
}
|
|
|
|
if (dev_nr < total_devs - 1) {
|
|
bio = btrfs_bio_clone(first_bio, GFP_NOFS);
|
|
BUG_ON(!bio); /* -ENOMEM */
|
|
} else
|
|
bio = first_bio;
|
|
|
|
submit_stripe_bio(root, bbio, bio,
|
|
bbio->stripes[dev_nr].physical, dev_nr, rw,
|
|
async_submit);
|
|
}
|
|
btrfs_bio_counter_dec(root->fs_info);
|
|
return 0;
|
|
}
|
|
|
|
struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
|
|
u8 *uuid, u8 *fsid)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *cur_devices;
|
|
|
|
cur_devices = fs_info->fs_devices;
|
|
while (cur_devices) {
|
|
if (!fsid ||
|
|
!memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
|
|
device = __find_device(&cur_devices->devices,
|
|
devid, uuid);
|
|
if (device)
|
|
return device;
|
|
}
|
|
cur_devices = cur_devices->seed;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
|
|
struct btrfs_fs_devices *fs_devices,
|
|
u64 devid, u8 *dev_uuid)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
device = btrfs_alloc_device(NULL, &devid, dev_uuid);
|
|
if (IS_ERR(device))
|
|
return NULL;
|
|
|
|
list_add(&device->dev_list, &fs_devices->devices);
|
|
device->fs_devices = fs_devices;
|
|
fs_devices->num_devices++;
|
|
|
|
device->missing = 1;
|
|
fs_devices->missing_devices++;
|
|
|
|
return device;
|
|
}
|
|
|
|
/**
|
|
* btrfs_alloc_device - allocate struct btrfs_device
|
|
* @fs_info: used only for generating a new devid, can be NULL if
|
|
* devid is provided (i.e. @devid != NULL).
|
|
* @devid: a pointer to devid for this device. If NULL a new devid
|
|
* is generated.
|
|
* @uuid: a pointer to UUID for this device. If NULL a new UUID
|
|
* is generated.
|
|
*
|
|
* Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
|
|
* on error. Returned struct is not linked onto any lists and can be
|
|
* destroyed with kfree() right away.
|
|
*/
|
|
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
|
|
const u64 *devid,
|
|
const u8 *uuid)
|
|
{
|
|
struct btrfs_device *dev;
|
|
u64 tmp;
|
|
|
|
if (WARN_ON(!devid && !fs_info))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
dev = __alloc_device();
|
|
if (IS_ERR(dev))
|
|
return dev;
|
|
|
|
if (devid)
|
|
tmp = *devid;
|
|
else {
|
|
int ret;
|
|
|
|
ret = find_next_devid(fs_info, &tmp);
|
|
if (ret) {
|
|
kfree(dev);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
dev->devid = tmp;
|
|
|
|
if (uuid)
|
|
memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
|
|
else
|
|
generate_random_uuid(dev->uuid);
|
|
|
|
btrfs_init_work(&dev->work, btrfs_submit_helper,
|
|
pending_bios_fn, NULL, NULL);
|
|
|
|
return dev;
|
|
}
|
|
|
|
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
|
|
struct map_lookup *map;
|
|
struct extent_map *em;
|
|
u64 logical;
|
|
u64 length;
|
|
u64 devid;
|
|
u8 uuid[BTRFS_UUID_SIZE];
|
|
int num_stripes;
|
|
int ret;
|
|
int i;
|
|
|
|
logical = key->offset;
|
|
length = btrfs_chunk_length(leaf, chunk);
|
|
|
|
read_lock(&map_tree->map_tree.lock);
|
|
em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
|
|
read_unlock(&map_tree->map_tree.lock);
|
|
|
|
/* already mapped? */
|
|
if (em && em->start <= logical && em->start + em->len > logical) {
|
|
free_extent_map(em);
|
|
return 0;
|
|
} else if (em) {
|
|
free_extent_map(em);
|
|
}
|
|
|
|
em = alloc_extent_map();
|
|
if (!em)
|
|
return -ENOMEM;
|
|
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map) {
|
|
free_extent_map(em);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
|
|
em->bdev = (struct block_device *)map;
|
|
em->start = logical;
|
|
em->len = length;
|
|
em->orig_start = 0;
|
|
em->block_start = 0;
|
|
em->block_len = em->len;
|
|
|
|
map->num_stripes = num_stripes;
|
|
map->io_width = btrfs_chunk_io_width(leaf, chunk);
|
|
map->io_align = btrfs_chunk_io_align(leaf, chunk);
|
|
map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
|
|
map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
|
|
map->type = btrfs_chunk_type(leaf, chunk);
|
|
map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
|
|
for (i = 0; i < num_stripes; i++) {
|
|
map->stripes[i].physical =
|
|
btrfs_stripe_offset_nr(leaf, chunk, i);
|
|
devid = btrfs_stripe_devid_nr(leaf, chunk, i);
|
|
read_extent_buffer(leaf, uuid, (unsigned long)
|
|
btrfs_stripe_dev_uuid_nr(chunk, i),
|
|
BTRFS_UUID_SIZE);
|
|
map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
|
|
uuid, NULL);
|
|
if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
|
|
free_extent_map(em);
|
|
return -EIO;
|
|
}
|
|
if (!map->stripes[i].dev) {
|
|
map->stripes[i].dev =
|
|
add_missing_dev(root, root->fs_info->fs_devices,
|
|
devid, uuid);
|
|
if (!map->stripes[i].dev) {
|
|
free_extent_map(em);
|
|
return -EIO;
|
|
}
|
|
btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
|
|
devid, uuid);
|
|
}
|
|
map->stripes[i].dev->in_fs_metadata = 1;
|
|
}
|
|
|
|
write_lock(&map_tree->map_tree.lock);
|
|
ret = add_extent_mapping(&map_tree->map_tree, em, 0);
|
|
write_unlock(&map_tree->map_tree.lock);
|
|
BUG_ON(ret); /* Tree corruption */
|
|
free_extent_map(em);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fill_device_from_item(struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item,
|
|
struct btrfs_device *device)
|
|
{
|
|
unsigned long ptr;
|
|
|
|
device->devid = btrfs_device_id(leaf, dev_item);
|
|
device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
|
|
device->total_bytes = device->disk_total_bytes;
|
|
device->commit_total_bytes = device->disk_total_bytes;
|
|
device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
|
|
device->commit_bytes_used = device->bytes_used;
|
|
device->type = btrfs_device_type(leaf, dev_item);
|
|
device->io_align = btrfs_device_io_align(leaf, dev_item);
|
|
device->io_width = btrfs_device_io_width(leaf, dev_item);
|
|
device->sector_size = btrfs_device_sector_size(leaf, dev_item);
|
|
WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
|
|
device->is_tgtdev_for_dev_replace = 0;
|
|
|
|
ptr = btrfs_device_uuid(dev_item);
|
|
read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
}
|
|
|
|
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
|
|
u8 *fsid)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
int ret;
|
|
|
|
BUG_ON(!mutex_is_locked(&uuid_mutex));
|
|
|
|
fs_devices = root->fs_info->fs_devices->seed;
|
|
while (fs_devices) {
|
|
if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
|
|
return fs_devices;
|
|
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
|
|
fs_devices = find_fsid(fsid);
|
|
if (!fs_devices) {
|
|
if (!btrfs_test_opt(root, DEGRADED))
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
fs_devices = alloc_fs_devices(fsid);
|
|
if (IS_ERR(fs_devices))
|
|
return fs_devices;
|
|
|
|
fs_devices->seeding = 1;
|
|
fs_devices->opened = 1;
|
|
return fs_devices;
|
|
}
|
|
|
|
fs_devices = clone_fs_devices(fs_devices);
|
|
if (IS_ERR(fs_devices))
|
|
return fs_devices;
|
|
|
|
ret = __btrfs_open_devices(fs_devices, FMODE_READ,
|
|
root->fs_info->bdev_holder);
|
|
if (ret) {
|
|
free_fs_devices(fs_devices);
|
|
fs_devices = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
|
|
if (!fs_devices->seeding) {
|
|
__btrfs_close_devices(fs_devices);
|
|
free_fs_devices(fs_devices);
|
|
fs_devices = ERR_PTR(-EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
fs_devices->seed = root->fs_info->fs_devices->seed;
|
|
root->fs_info->fs_devices->seed = fs_devices;
|
|
out:
|
|
return fs_devices;
|
|
}
|
|
|
|
static int read_one_dev(struct btrfs_root *root,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
|
|
struct btrfs_device *device;
|
|
u64 devid;
|
|
int ret;
|
|
u8 fs_uuid[BTRFS_UUID_SIZE];
|
|
u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
|
|
devid = btrfs_device_id(leaf, dev_item);
|
|
read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
|
|
fs_devices = open_seed_devices(root, fs_uuid);
|
|
if (IS_ERR(fs_devices))
|
|
return PTR_ERR(fs_devices);
|
|
}
|
|
|
|
device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
|
|
if (!device) {
|
|
if (!btrfs_test_opt(root, DEGRADED))
|
|
return -EIO;
|
|
|
|
device = add_missing_dev(root, fs_devices, devid, dev_uuid);
|
|
if (!device)
|
|
return -ENOMEM;
|
|
btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
|
|
devid, dev_uuid);
|
|
} else {
|
|
if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
|
|
return -EIO;
|
|
|
|
if(!device->bdev && !device->missing) {
|
|
/*
|
|
* this happens when a device that was properly setup
|
|
* in the device info lists suddenly goes bad.
|
|
* device->bdev is NULL, and so we have to set
|
|
* device->missing to one here
|
|
*/
|
|
device->fs_devices->missing_devices++;
|
|
device->missing = 1;
|
|
}
|
|
|
|
/* Move the device to its own fs_devices */
|
|
if (device->fs_devices != fs_devices) {
|
|
ASSERT(device->missing);
|
|
|
|
list_move(&device->dev_list, &fs_devices->devices);
|
|
device->fs_devices->num_devices--;
|
|
fs_devices->num_devices++;
|
|
|
|
device->fs_devices->missing_devices--;
|
|
fs_devices->missing_devices++;
|
|
|
|
device->fs_devices = fs_devices;
|
|
}
|
|
}
|
|
|
|
if (device->fs_devices != root->fs_info->fs_devices) {
|
|
BUG_ON(device->writeable);
|
|
if (device->generation !=
|
|
btrfs_device_generation(leaf, dev_item))
|
|
return -EINVAL;
|
|
}
|
|
|
|
fill_device_from_item(leaf, dev_item, device);
|
|
device->in_fs_metadata = 1;
|
|
if (device->writeable && !device->is_tgtdev_for_dev_replace) {
|
|
device->fs_devices->total_rw_bytes += device->total_bytes;
|
|
spin_lock(&root->fs_info->free_chunk_lock);
|
|
root->fs_info->free_chunk_space += device->total_bytes -
|
|
device->bytes_used;
|
|
spin_unlock(&root->fs_info->free_chunk_lock);
|
|
}
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_read_sys_array(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_super_block *super_copy = root->fs_info->super_copy;
|
|
struct extent_buffer *sb;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_chunk *chunk;
|
|
u8 *array_ptr;
|
|
unsigned long sb_array_offset;
|
|
int ret = 0;
|
|
u32 num_stripes;
|
|
u32 array_size;
|
|
u32 len = 0;
|
|
u32 cur_offset;
|
|
struct btrfs_key key;
|
|
|
|
ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
|
|
/*
|
|
* This will create extent buffer of nodesize, superblock size is
|
|
* fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
|
|
* overallocate but we can keep it as-is, only the first page is used.
|
|
*/
|
|
sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
|
|
if (!sb)
|
|
return -ENOMEM;
|
|
btrfs_set_buffer_uptodate(sb);
|
|
btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
|
|
/*
|
|
* The sb extent buffer is artifical and just used to read the system array.
|
|
* btrfs_set_buffer_uptodate() call does not properly mark all it's
|
|
* pages up-to-date when the page is larger: extent does not cover the
|
|
* whole page and consequently check_page_uptodate does not find all
|
|
* the page's extents up-to-date (the hole beyond sb),
|
|
* write_extent_buffer then triggers a WARN_ON.
|
|
*
|
|
* Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
|
|
* but sb spans only this function. Add an explicit SetPageUptodate call
|
|
* to silence the warning eg. on PowerPC 64.
|
|
*/
|
|
if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
|
|
SetPageUptodate(sb->pages[0]);
|
|
|
|
write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
|
|
array_ptr = super_copy->sys_chunk_array;
|
|
sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
|
|
cur_offset = 0;
|
|
|
|
while (cur_offset < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)array_ptr;
|
|
len = sizeof(*disk_key);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
array_ptr += len;
|
|
sb_array_offset += len;
|
|
cur_offset += len;
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
chunk = (struct btrfs_chunk *)sb_array_offset;
|
|
/*
|
|
* At least one btrfs_chunk with one stripe must be
|
|
* present, exact stripe count check comes afterwards
|
|
*/
|
|
len = btrfs_chunk_item_size(1);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
|
|
len = btrfs_chunk_item_size(num_stripes);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
ret = read_one_chunk(root, &key, sb, chunk);
|
|
if (ret)
|
|
break;
|
|
} else {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
array_ptr += len;
|
|
sb_array_offset += len;
|
|
cur_offset += len;
|
|
}
|
|
free_extent_buffer(sb);
|
|
return ret;
|
|
|
|
out_short_read:
|
|
printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
|
|
len, cur_offset);
|
|
free_extent_buffer(sb);
|
|
return -EIO;
|
|
}
|
|
|
|
int btrfs_read_chunk_tree(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
int ret;
|
|
int slot;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
lock_chunks(root);
|
|
|
|
/*
|
|
* Read all device items, and then all the chunk items. All
|
|
* device items are found before any chunk item (their object id
|
|
* is smaller than the lowest possible object id for a chunk
|
|
* item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
|
|
*/
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.offset = 0;
|
|
key.type = 0;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto error;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
if (found_key.type == BTRFS_DEV_ITEM_KEY) {
|
|
struct btrfs_dev_item *dev_item;
|
|
dev_item = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_dev_item);
|
|
ret = read_one_dev(root, leaf, dev_item);
|
|
if (ret)
|
|
goto error;
|
|
} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
struct btrfs_chunk *chunk;
|
|
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
|
|
ret = read_one_chunk(root, &found_key, leaf, chunk);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
unlock_chunks(root);
|
|
mutex_unlock(&uuid_mutex);
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_device *device;
|
|
|
|
while (fs_devices) {
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list)
|
|
device->dev_root = fs_info->dev_root;
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
}
|
|
|
|
static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
|
|
btrfs_dev_stat_reset(dev, i);
|
|
}
|
|
|
|
int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_root *dev_root = fs_info->dev_root;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct extent_buffer *eb;
|
|
int slot;
|
|
int ret = 0;
|
|
struct btrfs_device *device;
|
|
struct btrfs_path *path = NULL;
|
|
int i;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
int item_size;
|
|
struct btrfs_dev_stats_item *ptr;
|
|
|
|
key.objectid = 0;
|
|
key.type = BTRFS_DEV_STATS_KEY;
|
|
key.offset = device->devid;
|
|
ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
|
|
if (ret) {
|
|
__btrfs_reset_dev_stats(device);
|
|
device->dev_stats_valid = 1;
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
slot = path->slots[0];
|
|
eb = path->nodes[0];
|
|
btrfs_item_key_to_cpu(eb, &found_key, slot);
|
|
item_size = btrfs_item_size_nr(eb, slot);
|
|
|
|
ptr = btrfs_item_ptr(eb, slot,
|
|
struct btrfs_dev_stats_item);
|
|
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
|
|
if (item_size >= (1 + i) * sizeof(__le64))
|
|
btrfs_dev_stat_set(device, i,
|
|
btrfs_dev_stats_value(eb, ptr, i));
|
|
else
|
|
btrfs_dev_stat_reset(device, i);
|
|
}
|
|
|
|
device->dev_stats_valid = 1;
|
|
btrfs_dev_stat_print_on_load(device);
|
|
btrfs_release_path(path);
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
static int update_dev_stat_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *dev_root,
|
|
struct btrfs_device *device)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_dev_stats_item *ptr;
|
|
int ret;
|
|
int i;
|
|
|
|
key.objectid = 0;
|
|
key.type = BTRFS_DEV_STATS_KEY;
|
|
key.offset = device->devid;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
|
|
if (ret < 0) {
|
|
btrfs_warn_in_rcu(dev_root->fs_info,
|
|
"error %d while searching for dev_stats item for device %s",
|
|
ret, rcu_str_deref(device->name));
|
|
goto out;
|
|
}
|
|
|
|
if (ret == 0 &&
|
|
btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
|
|
/* need to delete old one and insert a new one */
|
|
ret = btrfs_del_item(trans, dev_root, path);
|
|
if (ret != 0) {
|
|
btrfs_warn_in_rcu(dev_root->fs_info,
|
|
"delete too small dev_stats item for device %s failed %d",
|
|
rcu_str_deref(device->name), ret);
|
|
goto out;
|
|
}
|
|
ret = 1;
|
|
}
|
|
|
|
if (ret == 1) {
|
|
/* need to insert a new item */
|
|
btrfs_release_path(path);
|
|
ret = btrfs_insert_empty_item(trans, dev_root, path,
|
|
&key, sizeof(*ptr));
|
|
if (ret < 0) {
|
|
btrfs_warn_in_rcu(dev_root->fs_info,
|
|
"insert dev_stats item for device %s failed %d",
|
|
rcu_str_deref(device->name), ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
eb = path->nodes[0];
|
|
ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
|
|
btrfs_set_dev_stats_value(eb, ptr, i,
|
|
btrfs_dev_stat_read(device, i));
|
|
btrfs_mark_buffer_dirty(eb);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* called from commit_transaction. Writes all changed device stats to disk.
|
|
*/
|
|
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *dev_root = fs_info->dev_root;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_device *device;
|
|
int stats_cnt;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
|
|
continue;
|
|
|
|
stats_cnt = atomic_read(&device->dev_stats_ccnt);
|
|
ret = update_dev_stat_item(trans, dev_root, device);
|
|
if (!ret)
|
|
atomic_sub(stats_cnt, &device->dev_stats_ccnt);
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
|
|
{
|
|
btrfs_dev_stat_inc(dev, index);
|
|
btrfs_dev_stat_print_on_error(dev);
|
|
}
|
|
|
|
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
|
|
{
|
|
if (!dev->dev_stats_valid)
|
|
return;
|
|
btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
|
|
"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
|
|
rcu_str_deref(dev->name),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
|
|
}
|
|
|
|
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
|
|
if (btrfs_dev_stat_read(dev, i) != 0)
|
|
break;
|
|
if (i == BTRFS_DEV_STAT_VALUES_MAX)
|
|
return; /* all values == 0, suppress message */
|
|
|
|
btrfs_info_in_rcu(dev->dev_root->fs_info,
|
|
"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
|
|
rcu_str_deref(dev->name),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
|
|
}
|
|
|
|
int btrfs_get_dev_stats(struct btrfs_root *root,
|
|
struct btrfs_ioctl_get_dev_stats *stats)
|
|
{
|
|
struct btrfs_device *dev;
|
|
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
|
|
int i;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
if (!dev) {
|
|
btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
|
|
return -ENODEV;
|
|
} else if (!dev->dev_stats_valid) {
|
|
btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
|
|
return -ENODEV;
|
|
} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
|
|
if (stats->nr_items > i)
|
|
stats->values[i] =
|
|
btrfs_dev_stat_read_and_reset(dev, i);
|
|
else
|
|
btrfs_dev_stat_reset(dev, i);
|
|
}
|
|
} else {
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
|
|
if (stats->nr_items > i)
|
|
stats->values[i] = btrfs_dev_stat_read(dev, i);
|
|
}
|
|
if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
|
|
stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct btrfs_super_block *disk_super;
|
|
int copy_num;
|
|
|
|
if (!bdev)
|
|
return;
|
|
|
|
for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
|
|
copy_num++) {
|
|
|
|
if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
|
|
continue;
|
|
|
|
disk_super = (struct btrfs_super_block *)bh->b_data;
|
|
|
|
memset(&disk_super->magic, 0, sizeof(disk_super->magic));
|
|
set_buffer_dirty(bh);
|
|
sync_dirty_buffer(bh);
|
|
brelse(bh);
|
|
}
|
|
|
|
/* Notify udev that device has changed */
|
|
btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
|
|
|
|
/* Update ctime/mtime for device path for libblkid */
|
|
update_dev_time(device_path);
|
|
}
|
|
|
|
/*
|
|
* Update the size of all devices, which is used for writing out the
|
|
* super blocks.
|
|
*/
|
|
void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_device *curr, *next;
|
|
|
|
if (list_empty(&fs_devices->resized_devices))
|
|
return;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
lock_chunks(fs_info->dev_root);
|
|
list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
|
|
resized_list) {
|
|
list_del_init(&curr->resized_list);
|
|
curr->commit_total_bytes = curr->disk_total_bytes;
|
|
}
|
|
unlock_chunks(fs_info->dev_root);
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
}
|
|
|
|
/* Must be invoked during the transaction commit */
|
|
void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
|
|
struct btrfs_transaction *transaction)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct btrfs_device *dev;
|
|
int i;
|
|
|
|
if (list_empty(&transaction->pending_chunks))
|
|
return;
|
|
|
|
/* In order to kick the device replace finish process */
|
|
lock_chunks(root);
|
|
list_for_each_entry(em, &transaction->pending_chunks, list) {
|
|
map = (struct map_lookup *)em->bdev;
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
dev = map->stripes[i].dev;
|
|
dev->commit_bytes_used = dev->bytes_used;
|
|
}
|
|
}
|
|
unlock_chunks(root);
|
|
}
|
|
|
|
void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
while (fs_devices) {
|
|
fs_devices->fs_info = fs_info;
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
}
|
|
|
|
void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
while (fs_devices) {
|
|
fs_devices->fs_info = NULL;
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
}
|
|
|
|
void btrfs_close_one_device(struct btrfs_device *device)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = device->fs_devices;
|
|
struct btrfs_device *new_device;
|
|
struct rcu_string *name;
|
|
|
|
if (device->bdev)
|
|
fs_devices->open_devices--;
|
|
|
|
if (device->writeable &&
|
|
device->devid != BTRFS_DEV_REPLACE_DEVID) {
|
|
list_del_init(&device->dev_alloc_list);
|
|
fs_devices->rw_devices--;
|
|
}
|
|
|
|
if (device->missing)
|
|
fs_devices->missing_devices--;
|
|
|
|
new_device = btrfs_alloc_device(NULL, &device->devid,
|
|
device->uuid);
|
|
BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
|
|
|
|
/* Safe because we are under uuid_mutex */
|
|
if (device->name) {
|
|
name = rcu_string_strdup(device->name->str, GFP_NOFS);
|
|
BUG_ON(!name); /* -ENOMEM */
|
|
rcu_assign_pointer(new_device->name, name);
|
|
}
|
|
|
|
list_replace_rcu(&device->dev_list, &new_device->dev_list);
|
|
new_device->fs_devices = device->fs_devices;
|
|
|
|
call_rcu(&device->rcu, free_device);
|
|
}
|