linux/drivers/power/da9150-fg.c
Adam Thomson a419b4fd91 power: Add support for DA9150 Fuel-Gauge
This adds power supply driver support for the Fuel-Gauge part of
the DA9150 combined Charger and Fuel-Gauge device.

Signed-off-by: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
Acked-by: Sebastian Reichel <sre@kernel.org>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
2015-10-13 11:28:07 +01:00

579 lines
14 KiB
C

/*
* DA9150 Fuel-Gauge Driver
*
* Copyright (c) 2015 Dialog Semiconductor
*
* Author: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/power_supply.h>
#include <linux/list.h>
#include <asm/div64.h>
#include <linux/mfd/da9150/core.h>
#include <linux/mfd/da9150/registers.h>
/* Core2Wire */
#define DA9150_QIF_READ (0x0 << 7)
#define DA9150_QIF_WRITE (0x1 << 7)
#define DA9150_QIF_CODE_MASK 0x7F
#define DA9150_QIF_BYTE_SIZE 8
#define DA9150_QIF_BYTE_MASK 0xFF
#define DA9150_QIF_SHORT_SIZE 2
#define DA9150_QIF_LONG_SIZE 4
/* QIF Codes */
#define DA9150_QIF_UAVG 6
#define DA9150_QIF_UAVG_SIZE DA9150_QIF_LONG_SIZE
#define DA9150_QIF_IAVG 8
#define DA9150_QIF_IAVG_SIZE DA9150_QIF_LONG_SIZE
#define DA9150_QIF_NTCAVG 12
#define DA9150_QIF_NTCAVG_SIZE DA9150_QIF_LONG_SIZE
#define DA9150_QIF_SHUNT_VAL 36
#define DA9150_QIF_SHUNT_VAL_SIZE DA9150_QIF_SHORT_SIZE
#define DA9150_QIF_SD_GAIN 38
#define DA9150_QIF_SD_GAIN_SIZE DA9150_QIF_LONG_SIZE
#define DA9150_QIF_FCC_MAH 40
#define DA9150_QIF_FCC_MAH_SIZE DA9150_QIF_SHORT_SIZE
#define DA9150_QIF_SOC_PCT 43
#define DA9150_QIF_SOC_PCT_SIZE DA9150_QIF_SHORT_SIZE
#define DA9150_QIF_CHARGE_LIMIT 44
#define DA9150_QIF_CHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE
#define DA9150_QIF_DISCHARGE_LIMIT 45
#define DA9150_QIF_DISCHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE
#define DA9150_QIF_FW_MAIN_VER 118
#define DA9150_QIF_FW_MAIN_VER_SIZE DA9150_QIF_SHORT_SIZE
#define DA9150_QIF_E_FG_STATUS 126
#define DA9150_QIF_E_FG_STATUS_SIZE DA9150_QIF_SHORT_SIZE
#define DA9150_QIF_SYNC 127
#define DA9150_QIF_SYNC_SIZE DA9150_QIF_SHORT_SIZE
#define DA9150_QIF_MAX_CODES 128
/* QIF Sync Timeout */
#define DA9150_QIF_SYNC_TIMEOUT 1000
#define DA9150_QIF_SYNC_RETRIES 10
/* QIF E_FG_STATUS */
#define DA9150_FG_IRQ_LOW_SOC_MASK (1 << 0)
#define DA9150_FG_IRQ_HIGH_SOC_MASK (1 << 1)
#define DA9150_FG_IRQ_SOC_MASK \
(DA9150_FG_IRQ_LOW_SOC_MASK | DA9150_FG_IRQ_HIGH_SOC_MASK)
/* Private data */
struct da9150_fg {
struct da9150 *da9150;
struct device *dev;
struct mutex io_lock;
struct power_supply *battery;
struct delayed_work work;
u32 interval;
int warn_soc;
int crit_soc;
int soc;
};
/* Battery Properties */
static u32 da9150_fg_read_attr(struct da9150_fg *fg, u8 code, u8 size)
{
u8 buf[size];
u8 read_addr;
u32 res = 0;
int i;
/* Set QIF code (READ mode) */
read_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_READ;
da9150_read_qif(fg->da9150, read_addr, size, buf);
for (i = 0; i < size; ++i)
res |= (buf[i] << (i * DA9150_QIF_BYTE_SIZE));
return res;
}
static void da9150_fg_write_attr(struct da9150_fg *fg, u8 code, u8 size,
u32 val)
{
u8 buf[size];
u8 write_addr;
int i;
/* Set QIF code (WRITE mode) */
write_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_WRITE;
for (i = 0; i < size; ++i) {
buf[i] = (val >> (i * DA9150_QIF_BYTE_SIZE)) &
DA9150_QIF_BYTE_MASK;
}
da9150_write_qif(fg->da9150, write_addr, size, buf);
}
/* Trigger QIF Sync to update QIF readable data */
static void da9150_fg_read_sync_start(struct da9150_fg *fg)
{
int i = 0;
u32 res = 0;
mutex_lock(&fg->io_lock);
/* Check if QIF sync already requested, and write to sync if not */
res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
DA9150_QIF_SYNC_SIZE);
if (res > 0)
da9150_fg_write_attr(fg, DA9150_QIF_SYNC,
DA9150_QIF_SYNC_SIZE, 0);
/* Wait for sync to complete */
res = 0;
while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
usleep_range(DA9150_QIF_SYNC_TIMEOUT,
DA9150_QIF_SYNC_TIMEOUT * 2);
res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
DA9150_QIF_SYNC_SIZE);
}
/* Check if sync completed */
if (res == 0)
dev_err(fg->dev, "Failed to perform QIF read sync!\n");
}
/*
* Should always be called after QIF sync read has been performed, and all
* attributes required have been accessed.
*/
static inline void da9150_fg_read_sync_end(struct da9150_fg *fg)
{
mutex_unlock(&fg->io_lock);
}
/* Sync read of single QIF attribute */
static u32 da9150_fg_read_attr_sync(struct da9150_fg *fg, u8 code, u8 size)
{
u32 val;
da9150_fg_read_sync_start(fg);
val = da9150_fg_read_attr(fg, code, size);
da9150_fg_read_sync_end(fg);
return val;
}
/* Wait for QIF Sync, write QIF data and wait for ack */
static void da9150_fg_write_attr_sync(struct da9150_fg *fg, u8 code, u8 size,
u32 val)
{
int i = 0;
u32 res = 0, sync_val;
mutex_lock(&fg->io_lock);
/* Check if QIF sync already requested */
res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
DA9150_QIF_SYNC_SIZE);
/* Wait for an existing sync to complete */
while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
usleep_range(DA9150_QIF_SYNC_TIMEOUT,
DA9150_QIF_SYNC_TIMEOUT * 2);
res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
DA9150_QIF_SYNC_SIZE);
}
if (res == 0) {
dev_err(fg->dev, "Timeout waiting for existing QIF sync!\n");
mutex_unlock(&fg->io_lock);
return;
}
/* Write value for QIF code */
da9150_fg_write_attr(fg, code, size, val);
/* Wait for write acknowledgment */
i = 0;
sync_val = res;
while ((res == sync_val) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
usleep_range(DA9150_QIF_SYNC_TIMEOUT,
DA9150_QIF_SYNC_TIMEOUT * 2);
res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
DA9150_QIF_SYNC_SIZE);
}
mutex_unlock(&fg->io_lock);
/* Check write was actually successful */
if (res != (sync_val + 1))
dev_err(fg->dev, "Error performing QIF sync write for code %d\n",
code);
}
/* Power Supply attributes */
static int da9150_fg_capacity(struct da9150_fg *fg,
union power_supply_propval *val)
{
val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
DA9150_QIF_SOC_PCT_SIZE);
if (val->intval > 100)
val->intval = 100;
return 0;
}
static int da9150_fg_current_avg(struct da9150_fg *fg,
union power_supply_propval *val)
{
u32 iavg, sd_gain, shunt_val;
u64 div, res;
da9150_fg_read_sync_start(fg);
iavg = da9150_fg_read_attr(fg, DA9150_QIF_IAVG,
DA9150_QIF_IAVG_SIZE);
shunt_val = da9150_fg_read_attr(fg, DA9150_QIF_SHUNT_VAL,
DA9150_QIF_SHUNT_VAL_SIZE);
sd_gain = da9150_fg_read_attr(fg, DA9150_QIF_SD_GAIN,
DA9150_QIF_SD_GAIN_SIZE);
da9150_fg_read_sync_end(fg);
div = (u64) (sd_gain * shunt_val * 65536ULL);
do_div(div, 1000000);
res = (u64) (iavg * 1000000ULL);
do_div(res, div);
val->intval = (int) res;
return 0;
}
static int da9150_fg_voltage_avg(struct da9150_fg *fg,
union power_supply_propval *val)
{
u64 res;
val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_UAVG,
DA9150_QIF_UAVG_SIZE);
res = (u64) (val->intval * 186ULL);
do_div(res, 10000);
val->intval = (int) res;
return 0;
}
static int da9150_fg_charge_full(struct da9150_fg *fg,
union power_supply_propval *val)
{
val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_FCC_MAH,
DA9150_QIF_FCC_MAH_SIZE);
val->intval = val->intval * 1000;
return 0;
}
/*
* Temperature reading from device is only valid if battery/system provides
* valid NTC to associated pin of DA9150 chip.
*/
static int da9150_fg_temp(struct da9150_fg *fg,
union power_supply_propval *val)
{
val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_NTCAVG,
DA9150_QIF_NTCAVG_SIZE);
val->intval = (val->intval * 10) / 1048576;
return 0;
}
static enum power_supply_property da9150_fg_props[] = {
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_VOLTAGE_AVG,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_TEMP,
};
static int da9150_fg_get_prop(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct da9150_fg *fg = dev_get_drvdata(psy->dev.parent);
int ret;
switch (psp) {
case POWER_SUPPLY_PROP_CAPACITY:
ret = da9150_fg_capacity(fg, val);
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
ret = da9150_fg_current_avg(fg, val);
break;
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
ret = da9150_fg_voltage_avg(fg, val);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
ret = da9150_fg_charge_full(fg, val);
break;
case POWER_SUPPLY_PROP_TEMP:
ret = da9150_fg_temp(fg, val);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/* Repeated SOC check */
static bool da9150_fg_soc_changed(struct da9150_fg *fg)
{
union power_supply_propval val;
da9150_fg_capacity(fg, &val);
if (val.intval != fg->soc) {
fg->soc = val.intval;
return true;
}
return false;
}
static void da9150_fg_work(struct work_struct *work)
{
struct da9150_fg *fg = container_of(work, struct da9150_fg, work.work);
/* Report if SOC has changed */
if (da9150_fg_soc_changed(fg))
power_supply_changed(fg->battery);
schedule_delayed_work(&fg->work, msecs_to_jiffies(fg->interval));
}
/* SOC level event configuration */
static void da9150_fg_soc_event_config(struct da9150_fg *fg)
{
int soc;
soc = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
DA9150_QIF_SOC_PCT_SIZE);
if (soc > fg->warn_soc) {
/* If SOC > warn level, set discharge warn level event */
da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
DA9150_QIF_DISCHARGE_LIMIT_SIZE,
fg->warn_soc + 1);
} else if ((soc <= fg->warn_soc) && (soc > fg->crit_soc)) {
/*
* If SOC <= warn level, set discharge crit level event,
* and set charge warn level event.
*/
da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
DA9150_QIF_DISCHARGE_LIMIT_SIZE,
fg->crit_soc + 1);
da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
DA9150_QIF_CHARGE_LIMIT_SIZE,
fg->warn_soc);
} else if (soc <= fg->crit_soc) {
/* If SOC <= crit level, set charge crit level event */
da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
DA9150_QIF_CHARGE_LIMIT_SIZE,
fg->crit_soc);
}
}
static irqreturn_t da9150_fg_irq(int irq, void *data)
{
struct da9150_fg *fg = data;
u32 e_fg_status;
/* Read FG IRQ status info */
e_fg_status = da9150_fg_read_attr(fg, DA9150_QIF_E_FG_STATUS,
DA9150_QIF_E_FG_STATUS_SIZE);
/* Handle warning/critical threhold events */
if (e_fg_status & DA9150_FG_IRQ_SOC_MASK)
da9150_fg_soc_event_config(fg);
/* Clear any FG IRQs */
da9150_fg_write_attr(fg, DA9150_QIF_E_FG_STATUS,
DA9150_QIF_E_FG_STATUS_SIZE, e_fg_status);
return IRQ_HANDLED;
}
static struct da9150_fg_pdata *da9150_fg_dt_pdata(struct device *dev)
{
struct device_node *fg_node = dev->of_node;
struct da9150_fg_pdata *pdata;
pdata = devm_kzalloc(dev, sizeof(struct da9150_fg_pdata), GFP_KERNEL);
if (!pdata)
return NULL;
of_property_read_u32(fg_node, "dlg,update-interval",
&pdata->update_interval);
of_property_read_u8(fg_node, "dlg,warn-soc-level",
&pdata->warn_soc_lvl);
of_property_read_u8(fg_node, "dlg,crit-soc-level",
&pdata->crit_soc_lvl);
return pdata;
}
static const struct power_supply_desc fg_desc = {
.name = "da9150-fg",
.type = POWER_SUPPLY_TYPE_BATTERY,
.properties = da9150_fg_props,
.num_properties = ARRAY_SIZE(da9150_fg_props),
.get_property = da9150_fg_get_prop,
};
static int da9150_fg_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct da9150 *da9150 = dev_get_drvdata(dev->parent);
struct da9150_fg_pdata *fg_pdata = dev_get_platdata(dev);
struct da9150_fg *fg;
int ver, irq, ret = 0;
fg = devm_kzalloc(dev, sizeof(*fg), GFP_KERNEL);
if (fg == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, fg);
fg->da9150 = da9150;
fg->dev = dev;
mutex_init(&fg->io_lock);
/* Enable QIF */
da9150_set_bits(da9150, DA9150_CORE2WIRE_CTRL_A, DA9150_FG_QIF_EN_MASK,
DA9150_FG_QIF_EN_MASK);
fg->battery = devm_power_supply_register(dev, &fg_desc, NULL);
if (IS_ERR(fg->battery)) {
ret = PTR_ERR(fg->battery);
return ret;
}
ver = da9150_fg_read_attr(fg, DA9150_QIF_FW_MAIN_VER,
DA9150_QIF_FW_MAIN_VER_SIZE);
dev_info(dev, "Version: 0x%x\n", ver);
/* Handle DT data if provided */
if (dev->of_node) {
fg_pdata = da9150_fg_dt_pdata(dev);
dev->platform_data = fg_pdata;
}
/* Handle any pdata provided */
if (fg_pdata) {
fg->interval = fg_pdata->update_interval;
if (fg_pdata->warn_soc_lvl > 100)
dev_warn(dev, "Invalid SOC warning level provided, Ignoring");
else
fg->warn_soc = fg_pdata->warn_soc_lvl;
if ((fg_pdata->crit_soc_lvl > 100) ||
(fg_pdata->crit_soc_lvl >= fg_pdata->warn_soc_lvl))
dev_warn(dev, "Invalid SOC critical level provided, Ignoring");
else
fg->crit_soc = fg_pdata->crit_soc_lvl;
}
/* Configure initial SOC level events */
da9150_fg_soc_event_config(fg);
/*
* If an interval period has been provided then setup repeating
* work for reporting data updates.
*/
if (fg->interval) {
INIT_DELAYED_WORK(&fg->work, da9150_fg_work);
schedule_delayed_work(&fg->work,
msecs_to_jiffies(fg->interval));
}
/* Register IRQ */
irq = platform_get_irq_byname(pdev, "FG");
if (irq < 0) {
dev_err(dev, "Failed to get IRQ FG: %d\n", irq);
ret = irq;
goto irq_fail;
}
ret = devm_request_threaded_irq(dev, irq, NULL, da9150_fg_irq,
IRQF_ONESHOT, "FG", fg);
if (ret) {
dev_err(dev, "Failed to request IRQ %d: %d\n", irq, ret);
goto irq_fail;
}
return 0;
irq_fail:
if (fg->interval)
cancel_delayed_work(&fg->work);
return ret;
}
static int da9150_fg_remove(struct platform_device *pdev)
{
struct da9150_fg *fg = platform_get_drvdata(pdev);
if (fg->interval)
cancel_delayed_work(&fg->work);
return 0;
}
static int da9150_fg_resume(struct platform_device *pdev)
{
struct da9150_fg *fg = platform_get_drvdata(pdev);
/*
* Trigger SOC check to happen now so as to indicate any value change
* since last check before suspend.
*/
if (fg->interval)
flush_delayed_work(&fg->work);
return 0;
}
static struct platform_driver da9150_fg_driver = {
.driver = {
.name = "da9150-fuel-gauge",
},
.probe = da9150_fg_probe,
.remove = da9150_fg_remove,
.resume = da9150_fg_resume,
};
module_platform_driver(da9150_fg_driver);
MODULE_DESCRIPTION("Fuel-Gauge Driver for DA9150");
MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>");
MODULE_LICENSE("GPL");