linux/sound/firewire/amdtp.c
Takashi Sakamoto 31ea49baa1 ALSA: firewire-lib: fix buffer-over-run when detecting packet discontinuity
When detecting packet discontinuity, handle_in_packet() returns minus value
and this value is assigned to unsigned int variable, then the variable has
huge value. As a result, the variable causes buffer-over-run in
handle_out_packet(). This brings invalid page request and system hangup.

This commit fixes the bug to add a new argument into handle_in_packet()
and the number of handled data blocks is assignd to it. The function
return value is just used to check error.

I also considered to change the type of local variable to 'int' in
in_stream_callback(). This idea is based on type-conversion in C standard,
while it may cause future problems when adding more works. Thus, I dropped
this idea.

Fixes: 6fc6b9ce41c6('ALSA: firewire-lib: pass the number of data blocks in incoming packets to outgoing packets')
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-05-27 17:44:42 +02:00

1107 lines
30 KiB
C

/*
* Audio and Music Data Transmission Protocol (IEC 61883-6) streams
* with Common Isochronous Packet (IEC 61883-1) headers
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/rawmidi.h>
#include "amdtp.h"
#define TICKS_PER_CYCLE 3072
#define CYCLES_PER_SECOND 8000
#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
/*
* Nominally 3125 bytes/second, but the MIDI port's clock might be
* 1% too slow, and the bus clock 100 ppm too fast.
*/
#define MIDI_BYTES_PER_SECOND 3093
/*
* Several devices look only at the first eight data blocks.
* In any case, this is more than enough for the MIDI data rate.
*/
#define MAX_MIDI_RX_BLOCKS 8
#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT 16
#define TAG_CIP 1
/* common isochronous packet header parameters */
#define CIP_EOH_SHIFT 31
#define CIP_EOH (1u << CIP_EOH_SHIFT)
#define CIP_EOH_MASK 0x80000000
#define CIP_SID_SHIFT 24
#define CIP_SID_MASK 0x3f000000
#define CIP_DBS_MASK 0x00ff0000
#define CIP_DBS_SHIFT 16
#define CIP_DBC_MASK 0x000000ff
#define CIP_FMT_SHIFT 24
#define CIP_FMT_MASK 0x3f000000
#define CIP_FDF_MASK 0x00ff0000
#define CIP_FDF_SHIFT 16
#define CIP_SYT_MASK 0x0000ffff
#define CIP_SYT_NO_INFO 0xffff
/*
* Audio and Music transfer protocol specific parameters
* only "Clock-based rate control mode" is supported
*/
#define CIP_FMT_AM (0x10 << CIP_FMT_SHIFT)
#define AMDTP_FDF_AM824 (0 << (CIP_FDF_SHIFT + 3))
#define AMDTP_FDF_NO_DATA 0xff
/* TODO: make these configurable */
#define INTERRUPT_INTERVAL 16
#define QUEUE_LENGTH 48
#define IN_PACKET_HEADER_SIZE 4
#define OUT_PACKET_HEADER_SIZE 0
static void pcm_period_tasklet(unsigned long data);
/**
* amdtp_stream_init - initialize an AMDTP stream structure
* @s: the AMDTP stream to initialize
* @unit: the target of the stream
* @dir: the direction of stream
* @flags: the packet transmission method to use
*/
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
enum amdtp_stream_direction dir, enum cip_flags flags)
{
s->unit = unit;
s->direction = dir;
s->flags = flags;
s->context = ERR_PTR(-1);
mutex_init(&s->mutex);
tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
s->packet_index = 0;
init_waitqueue_head(&s->callback_wait);
s->callbacked = false;
s->sync_slave = NULL;
return 0;
}
EXPORT_SYMBOL(amdtp_stream_init);
/**
* amdtp_stream_destroy - free stream resources
* @s: the AMDTP stream to destroy
*/
void amdtp_stream_destroy(struct amdtp_stream *s)
{
WARN_ON(amdtp_stream_running(s));
mutex_destroy(&s->mutex);
}
EXPORT_SYMBOL(amdtp_stream_destroy);
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
[CIP_SFC_32000] = 8,
[CIP_SFC_44100] = 8,
[CIP_SFC_48000] = 8,
[CIP_SFC_88200] = 16,
[CIP_SFC_96000] = 16,
[CIP_SFC_176400] = 32,
[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
[CIP_SFC_32000] = 32000,
[CIP_SFC_44100] = 44100,
[CIP_SFC_48000] = 48000,
[CIP_SFC_88200] = 88200,
[CIP_SFC_96000] = 96000,
[CIP_SFC_176400] = 176400,
[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);
/**
* amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
* @s: the AMDTP stream, which must be initialized.
* @runtime: the PCM substream runtime
*/
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
struct snd_pcm_runtime *runtime)
{
int err;
/* AM824 in IEC 61883-6 can deliver 24bit data */
err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
if (err < 0)
goto end;
/*
* Currently firewire-lib processes 16 packets in one software
* interrupt callback. This equals to 2msec but actually the
* interval of the interrupts has a jitter.
* Additionally, even if adding a constraint to fit period size to
* 2msec, actual calculated frames per period doesn't equal to 2msec,
* depending on sampling rate.
* Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
* Here let us use 5msec for safe period interrupt.
*/
err = snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
5000, UINT_MAX);
if (err < 0)
goto end;
/* Non-Blocking stream has no more constraints */
if (!(s->flags & CIP_BLOCKING))
goto end;
/*
* One AMDTP packet can include some frames. In blocking mode, the
* number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
* depending on its sampling rate. For accurate period interrupt, it's
* preferrable to align period/buffer sizes to current SYT_INTERVAL.
*
* TODO: These constraints can be improved with proper rules.
* Currently apply LCM of SYT_INTERVALs.
*/
err = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
if (err < 0)
goto end;
err = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
/**
* amdtp_stream_set_parameters - set stream parameters
* @s: the AMDTP stream to configure
* @rate: the sample rate
* @pcm_channels: the number of PCM samples in each data block, to be encoded
* as AM824 multi-bit linear audio
* @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
*
* The parameters must be set before the stream is started, and must not be
* changed while the stream is running.
*/
void amdtp_stream_set_parameters(struct amdtp_stream *s,
unsigned int rate,
unsigned int pcm_channels,
unsigned int midi_ports)
{
unsigned int i, sfc, midi_channels;
midi_channels = DIV_ROUND_UP(midi_ports, 8);
if (WARN_ON(amdtp_stream_running(s)) |
WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
return;
for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
if (amdtp_rate_table[sfc] == rate)
goto sfc_found;
WARN_ON(1);
return;
sfc_found:
s->pcm_channels = pcm_channels;
s->sfc = sfc;
s->data_block_quadlets = s->pcm_channels + midi_channels;
s->midi_ports = midi_ports;
s->syt_interval = amdtp_syt_intervals[sfc];
/* default buffering in the device */
s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
if (s->flags & CIP_BLOCKING)
/* additional buffering needed to adjust for no-data packets */
s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
/* init the position map for PCM and MIDI channels */
for (i = 0; i < pcm_channels; i++)
s->pcm_positions[i] = i;
s->midi_position = s->pcm_channels;
/*
* We do not know the actual MIDI FIFO size of most devices. Just
* assume two bytes, i.e., one byte can be received over the bus while
* the previous one is transmitted over MIDI.
* (The value here is adjusted for midi_ratelimit_per_packet().)
*/
s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
}
EXPORT_SYMBOL(amdtp_stream_set_parameters);
/**
* amdtp_stream_get_max_payload - get the stream's packet size
* @s: the AMDTP stream
*
* This function must not be called before the stream has been configured
* with amdtp_stream_set_parameters().
*/
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
{
unsigned int multiplier = 1;
if (s->flags & CIP_JUMBO_PAYLOAD)
multiplier = 5;
return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
}
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
static void write_pcm_s16(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
static void write_pcm_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
static void read_pcm_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
/**
* amdtp_stream_set_pcm_format - set the PCM format
* @s: the AMDTP stream to configure
* @format: the format of the ALSA PCM device
*
* The sample format must be set after the other parameters (rate/PCM channels/
* MIDI) and before the stream is started, and must not be changed while the
* stream is running.
*/
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
snd_pcm_format_t format)
{
if (WARN_ON(amdtp_stream_pcm_running(s)))
return;
switch (format) {
default:
WARN_ON(1);
/* fall through */
case SNDRV_PCM_FORMAT_S16:
if (s->direction == AMDTP_OUT_STREAM) {
s->transfer_samples = write_pcm_s16;
break;
}
WARN_ON(1);
/* fall through */
case SNDRV_PCM_FORMAT_S32:
if (s->direction == AMDTP_OUT_STREAM)
s->transfer_samples = write_pcm_s32;
else
s->transfer_samples = read_pcm_s32;
break;
}
}
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
/**
* amdtp_stream_pcm_prepare - prepare PCM device for running
* @s: the AMDTP stream
*
* This function should be called from the PCM device's .prepare callback.
*/
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
{
tasklet_kill(&s->period_tasklet);
s->pcm_buffer_pointer = 0;
s->pcm_period_pointer = 0;
s->pointer_flush = true;
}
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
unsigned int syt)
{
unsigned int phase, data_blocks;
/* Blocking mode. */
if (s->flags & CIP_BLOCKING) {
/* This module generate empty packet for 'no data'. */
if (syt == CIP_SYT_NO_INFO)
data_blocks = 0;
else
data_blocks = s->syt_interval;
/* Non-blocking mode. */
} else {
if (!cip_sfc_is_base_44100(s->sfc)) {
/* Sample_rate / 8000 is an integer, and precomputed. */
data_blocks = s->data_block_state;
} else {
phase = s->data_block_state;
/*
* This calculates the number of data blocks per packet so that
* 1) the overall rate is correct and exactly synchronized to
* the bus clock, and
* 2) packets with a rounded-up number of blocks occur as early
* as possible in the sequence (to prevent underruns of the
* device's buffer).
*/
if (s->sfc == CIP_SFC_44100)
/* 6 6 5 6 5 6 5 ... */
data_blocks = 5 + ((phase & 1) ^
(phase == 0 || phase >= 40));
else
/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
if (++phase >= (80 >> (s->sfc >> 1)))
phase = 0;
s->data_block_state = phase;
}
}
return data_blocks;
}
static unsigned int calculate_syt(struct amdtp_stream *s,
unsigned int cycle)
{
unsigned int syt_offset, phase, index, syt;
if (s->last_syt_offset < TICKS_PER_CYCLE) {
if (!cip_sfc_is_base_44100(s->sfc))
syt_offset = s->last_syt_offset + s->syt_offset_state;
else {
/*
* The time, in ticks, of the n'th SYT_INTERVAL sample is:
* n * SYT_INTERVAL * 24576000 / sample_rate
* Modulo TICKS_PER_CYCLE, the difference between successive
* elements is about 1386.23. Rounding the results of this
* formula to the SYT precision results in a sequence of
* differences that begins with:
* 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
* This code generates _exactly_ the same sequence.
*/
phase = s->syt_offset_state;
index = phase % 13;
syt_offset = s->last_syt_offset;
syt_offset += 1386 + ((index && !(index & 3)) ||
phase == 146);
if (++phase >= 147)
phase = 0;
s->syt_offset_state = phase;
}
} else
syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
s->last_syt_offset = syt_offset;
if (syt_offset < TICKS_PER_CYCLE) {
syt_offset += s->transfer_delay;
syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
syt += syt_offset % TICKS_PER_CYCLE;
return syt & CIP_SYT_MASK;
} else {
return CIP_SYT_NO_INFO;
}
}
static void write_pcm_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
const u32 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
buffer[s->pcm_positions[c]] =
cpu_to_be32((*src >> 8) | 0x40000000);
src++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void write_pcm_s16(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
const u16 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
buffer[s->pcm_positions[c]] =
cpu_to_be32((*src << 8) | 0x42000000);
src++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void read_pcm_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
u32 *dst;
channels = s->pcm_channels;
dst = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
dst++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
dst = (void *)runtime->dma_area;
}
}
static void write_pcm_silence(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int i, c;
for (i = 0; i < frames; ++i) {
for (c = 0; c < s->pcm_channels; ++c)
buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
buffer += s->data_block_quadlets;
}
}
/*
* To avoid sending MIDI bytes at too high a rate, assume that the receiving
* device has a FIFO, and track how much it is filled. This values increases
* by one whenever we send one byte in a packet, but the FIFO empties at
* a constant rate independent of our packet rate. One packet has syt_interval
* samples, so the number of bytes that empty out of the FIFO, per packet(!),
* is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate. To avoid storing
* fractional values, the values in midi_fifo_used[] are measured in bytes
* multiplied by the sample rate.
*/
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
{
int used;
used = s->midi_fifo_used[port];
if (used == 0) /* common shortcut */
return true;
used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
used = max(used, 0);
s->midi_fifo_used[port] = used;
return used < s->midi_fifo_limit;
}
static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
{
s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
}
static void write_midi_messages(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int f, port;
u8 *b;
for (f = 0; f < frames; f++) {
b = (u8 *)&buffer[s->midi_position];
port = (s->data_block_counter + f) % 8;
if (f < MAX_MIDI_RX_BLOCKS &&
midi_ratelimit_per_packet(s, port) &&
s->midi[port] != NULL &&
snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
midi_rate_use_one_byte(s, port);
b[0] = 0x81;
} else {
b[0] = 0x80;
b[1] = 0;
}
b[2] = 0;
b[3] = 0;
buffer += s->data_block_quadlets;
}
}
static void read_midi_messages(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int f, port;
int len;
u8 *b;
for (f = 0; f < frames; f++) {
port = (s->data_block_counter + f) % 8;
b = (u8 *)&buffer[s->midi_position];
len = b[0] - 0x80;
if ((1 <= len) && (len <= 3) && (s->midi[port]))
snd_rawmidi_receive(s->midi[port], b + 1, len);
buffer += s->data_block_quadlets;
}
}
static void update_pcm_pointers(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
unsigned int frames)
{
unsigned int ptr;
/*
* In IEC 61883-6, one data block represents one event. In ALSA, one
* event equals to one PCM frame. But Dice has a quirk to transfer
* two PCM frames in one data block.
*/
if (s->double_pcm_frames)
frames *= 2;
ptr = s->pcm_buffer_pointer + frames;
if (ptr >= pcm->runtime->buffer_size)
ptr -= pcm->runtime->buffer_size;
ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
s->pcm_period_pointer += frames;
if (s->pcm_period_pointer >= pcm->runtime->period_size) {
s->pcm_period_pointer -= pcm->runtime->period_size;
s->pointer_flush = false;
tasklet_hi_schedule(&s->period_tasklet);
}
}
static void pcm_period_tasklet(unsigned long data)
{
struct amdtp_stream *s = (void *)data;
struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
if (pcm)
snd_pcm_period_elapsed(pcm);
}
static int queue_packet(struct amdtp_stream *s,
unsigned int header_length,
unsigned int payload_length, bool skip)
{
struct fw_iso_packet p = {0};
int err = 0;
if (IS_ERR(s->context))
goto end;
p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
p.tag = TAG_CIP;
p.header_length = header_length;
p.payload_length = (!skip) ? payload_length : 0;
p.skip = skip;
err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
s->buffer.packets[s->packet_index].offset);
if (err < 0) {
dev_err(&s->unit->device, "queueing error: %d\n", err);
goto end;
}
if (++s->packet_index >= QUEUE_LENGTH)
s->packet_index = 0;
end:
return err;
}
static inline int queue_out_packet(struct amdtp_stream *s,
unsigned int payload_length, bool skip)
{
return queue_packet(s, OUT_PACKET_HEADER_SIZE,
payload_length, skip);
}
static inline int queue_in_packet(struct amdtp_stream *s)
{
return queue_packet(s, IN_PACKET_HEADER_SIZE,
amdtp_stream_get_max_payload(s), false);
}
static int handle_out_packet(struct amdtp_stream *s, unsigned int data_blocks,
unsigned int syt)
{
__be32 *buffer;
unsigned int payload_length;
struct snd_pcm_substream *pcm;
buffer = s->buffer.packets[s->packet_index].buffer;
buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
(s->data_block_quadlets << CIP_DBS_SHIFT) |
s->data_block_counter);
buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
(s->sfc << CIP_FDF_SHIFT) | syt);
buffer += 2;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
s->transfer_samples(s, pcm, buffer, data_blocks);
else
write_pcm_silence(s, buffer, data_blocks);
if (s->midi_ports)
write_midi_messages(s, buffer, data_blocks);
s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
if (queue_out_packet(s, payload_length, false) < 0)
return -EIO;
if (pcm)
update_pcm_pointers(s, pcm, data_blocks);
/* No need to return the number of handled data blocks. */
return 0;
}
static int handle_in_packet(struct amdtp_stream *s,
unsigned int payload_quadlets, __be32 *buffer,
unsigned int *data_blocks)
{
u32 cip_header[2];
unsigned int data_block_quadlets, data_block_counter, dbc_interval;
struct snd_pcm_substream *pcm = NULL;
bool lost;
cip_header[0] = be32_to_cpu(buffer[0]);
cip_header[1] = be32_to_cpu(buffer[1]);
/*
* This module supports 'Two-quadlet CIP header with SYT field'.
* For convenience, also check FMT field is AM824 or not.
*/
if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
dev_info_ratelimited(&s->unit->device,
"Invalid CIP header for AMDTP: %08X:%08X\n",
cip_header[0], cip_header[1]);
*data_blocks = 0;
goto end;
}
/* Calculate data blocks */
if (payload_quadlets < 3 ||
((cip_header[1] & CIP_FDF_MASK) ==
(AMDTP_FDF_NO_DATA << CIP_FDF_SHIFT))) {
*data_blocks = 0;
} else {
data_block_quadlets =
(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
/* avoid division by zero */
if (data_block_quadlets == 0) {
dev_err(&s->unit->device,
"Detect invalid value in dbs field: %08X\n",
cip_header[0]);
return -EPROTO;
}
if (s->flags & CIP_WRONG_DBS)
data_block_quadlets = s->data_block_quadlets;
*data_blocks = (payload_quadlets - 2) / data_block_quadlets;
}
/* Check data block counter continuity */
data_block_counter = cip_header[0] & CIP_DBC_MASK;
if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
s->data_block_counter != UINT_MAX)
data_block_counter = s->data_block_counter;
if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
(s->data_block_counter == UINT_MAX)) {
lost = false;
} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
lost = data_block_counter != s->data_block_counter;
} else {
if ((*data_blocks > 0) && (s->tx_dbc_interval > 0))
dbc_interval = s->tx_dbc_interval;
else
dbc_interval = *data_blocks;
lost = data_block_counter !=
((s->data_block_counter + dbc_interval) & 0xff);
}
if (lost) {
dev_err(&s->unit->device,
"Detect discontinuity of CIP: %02X %02X\n",
s->data_block_counter, data_block_counter);
return -EIO;
}
if (*data_blocks > 0) {
buffer += 2;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
s->transfer_samples(s, pcm, buffer, *data_blocks);
if (s->midi_ports)
read_midi_messages(s, buffer, *data_blocks);
}
if (s->flags & CIP_DBC_IS_END_EVENT)
s->data_block_counter = data_block_counter;
else
s->data_block_counter =
(data_block_counter + *data_blocks) & 0xff;
end:
if (queue_in_packet(s) < 0)
return -EIO;
if (pcm)
update_pcm_pointers(s, pcm, *data_blocks);
return 0;
}
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
struct amdtp_stream *s = private_data;
unsigned int i, syt, packets = header_length / 4;
unsigned int data_blocks;
if (s->packet_index < 0)
return;
/*
* Compute the cycle of the last queued packet.
* (We need only the four lowest bits for the SYT, so we can ignore
* that bits 0-11 must wrap around at 3072.)
*/
cycle += QUEUE_LENGTH - packets;
for (i = 0; i < packets; ++i) {
syt = calculate_syt(s, ++cycle);
data_blocks = calculate_data_blocks(s, syt);
if (handle_out_packet(s, data_blocks, syt) < 0) {
s->packet_index = -1;
amdtp_stream_pcm_abort(s);
return;
}
}
fw_iso_context_queue_flush(s->context);
}
static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
struct amdtp_stream *s = private_data;
unsigned int p, syt, packets;
unsigned int payload_quadlets, max_payload_quadlets;
unsigned int data_blocks;
__be32 *buffer, *headers = header;
if (s->packet_index < 0)
return;
/* The number of packets in buffer */
packets = header_length / IN_PACKET_HEADER_SIZE;
/* For buffer-over-run prevention. */
max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;
for (p = 0; p < packets; p++) {
buffer = s->buffer.packets[s->packet_index].buffer;
/* The number of quadlets in this packet */
payload_quadlets =
(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
if (payload_quadlets > max_payload_quadlets) {
dev_err(&s->unit->device,
"Detect jumbo payload: %02x %02x\n",
payload_quadlets, max_payload_quadlets);
s->packet_index = -1;
break;
}
if (handle_in_packet(s, payload_quadlets, buffer,
&data_blocks) < 0) {
s->packet_index = -1;
break;
}
/* Process sync slave stream */
if (s->sync_slave && s->sync_slave->callbacked) {
syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
if (handle_out_packet(s->sync_slave,
data_blocks, syt) < 0) {
s->packet_index = -1;
break;
}
}
}
/* Queueing error or detecting discontinuity */
if (s->packet_index < 0) {
amdtp_stream_pcm_abort(s);
/* Abort sync slave. */
if (s->sync_slave) {
s->sync_slave->packet_index = -1;
amdtp_stream_pcm_abort(s->sync_slave);
}
return;
}
/* when sync to device, flush the packets for slave stream */
if (s->sync_slave && s->sync_slave->callbacked)
fw_iso_context_queue_flush(s->sync_slave->context);
fw_iso_context_queue_flush(s->context);
}
/* processing is done by master callback */
static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
return;
}
/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
u32 cycle, size_t header_length,
void *header, void *private_data)
{
struct amdtp_stream *s = private_data;
/*
* For in-stream, first packet has come.
* For out-stream, prepared to transmit first packet
*/
s->callbacked = true;
wake_up(&s->callback_wait);
if (s->direction == AMDTP_IN_STREAM)
context->callback.sc = in_stream_callback;
else if (s->flags & CIP_SYNC_TO_DEVICE)
context->callback.sc = slave_stream_callback;
else
context->callback.sc = out_stream_callback;
context->callback.sc(context, cycle, header_length, header, s);
}
/**
* amdtp_stream_start - start transferring packets
* @s: the AMDTP stream to start
* @channel: the isochronous channel on the bus
* @speed: firewire speed code
*
* The stream cannot be started until it has been configured with
* amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
* device can be started.
*/
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
{
static const struct {
unsigned int data_block;
unsigned int syt_offset;
} initial_state[] = {
[CIP_SFC_32000] = { 4, 3072 },
[CIP_SFC_48000] = { 6, 1024 },
[CIP_SFC_96000] = { 12, 1024 },
[CIP_SFC_192000] = { 24, 1024 },
[CIP_SFC_44100] = { 0, 67 },
[CIP_SFC_88200] = { 0, 67 },
[CIP_SFC_176400] = { 0, 67 },
};
unsigned int header_size;
enum dma_data_direction dir;
int type, tag, err;
mutex_lock(&s->mutex);
if (WARN_ON(amdtp_stream_running(s) ||
(s->data_block_quadlets < 1))) {
err = -EBADFD;
goto err_unlock;
}
if (s->direction == AMDTP_IN_STREAM &&
s->flags & CIP_SKIP_INIT_DBC_CHECK)
s->data_block_counter = UINT_MAX;
else
s->data_block_counter = 0;
s->data_block_state = initial_state[s->sfc].data_block;
s->syt_offset_state = initial_state[s->sfc].syt_offset;
s->last_syt_offset = TICKS_PER_CYCLE;
/* initialize packet buffer */
if (s->direction == AMDTP_IN_STREAM) {
dir = DMA_FROM_DEVICE;
type = FW_ISO_CONTEXT_RECEIVE;
header_size = IN_PACKET_HEADER_SIZE;
} else {
dir = DMA_TO_DEVICE;
type = FW_ISO_CONTEXT_TRANSMIT;
header_size = OUT_PACKET_HEADER_SIZE;
}
err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
amdtp_stream_get_max_payload(s), dir);
if (err < 0)
goto err_unlock;
s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
type, channel, speed, header_size,
amdtp_stream_first_callback, s);
if (IS_ERR(s->context)) {
err = PTR_ERR(s->context);
if (err == -EBUSY)
dev_err(&s->unit->device,
"no free stream on this controller\n");
goto err_buffer;
}
amdtp_stream_update(s);
s->packet_index = 0;
do {
if (s->direction == AMDTP_IN_STREAM)
err = queue_in_packet(s);
else
err = queue_out_packet(s, 0, true);
if (err < 0)
goto err_context;
} while (s->packet_index > 0);
/* NOTE: TAG1 matches CIP. This just affects in stream. */
tag = FW_ISO_CONTEXT_MATCH_TAG1;
if (s->flags & CIP_EMPTY_WITH_TAG0)
tag |= FW_ISO_CONTEXT_MATCH_TAG0;
s->callbacked = false;
err = fw_iso_context_start(s->context, -1, 0, tag);
if (err < 0)
goto err_context;
mutex_unlock(&s->mutex);
return 0;
err_context:
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
err_buffer:
iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
mutex_unlock(&s->mutex);
return err;
}
EXPORT_SYMBOL(amdtp_stream_start);
/**
* amdtp_stream_pcm_pointer - get the PCM buffer position
* @s: the AMDTP stream that transports the PCM data
*
* Returns the current buffer position, in frames.
*/
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
{
/* this optimization is allowed to be racy */
if (s->pointer_flush && amdtp_stream_running(s))
fw_iso_context_flush_completions(s->context);
else
s->pointer_flush = true;
return ACCESS_ONCE(s->pcm_buffer_pointer);
}
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
/**
* amdtp_stream_update - update the stream after a bus reset
* @s: the AMDTP stream
*/
void amdtp_stream_update(struct amdtp_stream *s)
{
/* Precomputing. */
ACCESS_ONCE(s->source_node_id_field) =
(fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) &
CIP_SID_MASK;
}
EXPORT_SYMBOL(amdtp_stream_update);
/**
* amdtp_stream_stop - stop sending packets
* @s: the AMDTP stream to stop
*
* All PCM and MIDI devices of the stream must be stopped before the stream
* itself can be stopped.
*/
void amdtp_stream_stop(struct amdtp_stream *s)
{
mutex_lock(&s->mutex);
if (!amdtp_stream_running(s)) {
mutex_unlock(&s->mutex);
return;
}
tasklet_kill(&s->period_tasklet);
fw_iso_context_stop(s->context);
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
iso_packets_buffer_destroy(&s->buffer, s->unit);
s->callbacked = false;
mutex_unlock(&s->mutex);
}
EXPORT_SYMBOL(amdtp_stream_stop);
/**
* amdtp_stream_pcm_abort - abort the running PCM device
* @s: the AMDTP stream about to be stopped
*
* If the isochronous stream needs to be stopped asynchronously, call this
* function first to stop the PCM device.
*/
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
{
struct snd_pcm_substream *pcm;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
snd_pcm_stop_xrun(pcm);
}
EXPORT_SYMBOL(amdtp_stream_pcm_abort);