mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
2402d0eae5
Adds CONFIG_KCSAN_VERBOSE to optionally enable more verbose reports. Currently information about the reporting task's held locks and IRQ trace events are shown, if they are enabled. Signed-off-by: Marco Elver <elver@google.com> Suggested-by: Qian Cai <cai@lca.pw> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
616 lines
18 KiB
C
616 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/stacktrace.h>
|
|
|
|
#include "kcsan.h"
|
|
#include "encoding.h"
|
|
|
|
/*
|
|
* Max. number of stack entries to show in the report.
|
|
*/
|
|
#define NUM_STACK_ENTRIES 64
|
|
|
|
/*
|
|
* Other thread info: communicated from other racing thread to thread that set
|
|
* up the watchpoint, which then prints the complete report atomically. Only
|
|
* need one struct, as all threads should to be serialized regardless to print
|
|
* the reports, with reporting being in the slow-path.
|
|
*/
|
|
static struct {
|
|
const volatile void *ptr;
|
|
size_t size;
|
|
int access_type;
|
|
int task_pid;
|
|
int cpu_id;
|
|
unsigned long stack_entries[NUM_STACK_ENTRIES];
|
|
int num_stack_entries;
|
|
|
|
/*
|
|
* Optionally pass @current. Typically we do not need to pass @current
|
|
* via @other_info since just @task_pid is sufficient. Passing @current
|
|
* has additional overhead.
|
|
*
|
|
* To safely pass @current, we must either use get_task_struct/
|
|
* put_task_struct, or stall the thread that populated @other_info.
|
|
*
|
|
* We cannot rely on get_task_struct/put_task_struct in case
|
|
* release_report() races with a task being released, and would have to
|
|
* free it in release_report(). This may result in deadlock if we want
|
|
* to use KCSAN on the allocators.
|
|
*
|
|
* Since we also want to reliably print held locks for
|
|
* CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
|
|
* that populated @other_info until it has been consumed.
|
|
*/
|
|
struct task_struct *task;
|
|
} other_info;
|
|
|
|
/*
|
|
* Information about reported races; used to rate limit reporting.
|
|
*/
|
|
struct report_time {
|
|
/*
|
|
* The last time the race was reported.
|
|
*/
|
|
unsigned long time;
|
|
|
|
/*
|
|
* The frames of the 2 threads; if only 1 thread is known, one frame
|
|
* will be 0.
|
|
*/
|
|
unsigned long frame1;
|
|
unsigned long frame2;
|
|
};
|
|
|
|
/*
|
|
* Since we also want to be able to debug allocators with KCSAN, to avoid
|
|
* deadlock, report_times cannot be dynamically resized with krealloc in
|
|
* rate_limit_report.
|
|
*
|
|
* Therefore, we use a fixed-size array, which at most will occupy a page. This
|
|
* still adequately rate limits reports, assuming that a) number of unique data
|
|
* races is not excessive, and b) occurrence of unique races within the
|
|
* same time window is limited.
|
|
*/
|
|
#define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
|
|
#define REPORT_TIMES_SIZE \
|
|
(CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ? \
|
|
REPORT_TIMES_MAX : \
|
|
CONFIG_KCSAN_REPORT_ONCE_IN_MS)
|
|
static struct report_time report_times[REPORT_TIMES_SIZE];
|
|
|
|
/*
|
|
* This spinlock protects reporting and other_info, since other_info is usually
|
|
* required when reporting.
|
|
*/
|
|
static DEFINE_SPINLOCK(report_lock);
|
|
|
|
/*
|
|
* Checks if the race identified by thread frames frame1 and frame2 has
|
|
* been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
|
|
*/
|
|
static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
|
|
{
|
|
struct report_time *use_entry = &report_times[0];
|
|
unsigned long invalid_before;
|
|
int i;
|
|
|
|
BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
|
|
|
|
if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
|
|
return false;
|
|
|
|
invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
|
|
|
|
/* Check if a matching race report exists. */
|
|
for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
|
|
struct report_time *rt = &report_times[i];
|
|
|
|
/*
|
|
* Must always select an entry for use to store info as we
|
|
* cannot resize report_times; at the end of the scan, use_entry
|
|
* will be the oldest entry, which ideally also happened before
|
|
* KCSAN_REPORT_ONCE_IN_MS ago.
|
|
*/
|
|
if (time_before(rt->time, use_entry->time))
|
|
use_entry = rt;
|
|
|
|
/*
|
|
* Initially, no need to check any further as this entry as well
|
|
* as following entries have never been used.
|
|
*/
|
|
if (rt->time == 0)
|
|
break;
|
|
|
|
/* Check if entry expired. */
|
|
if (time_before(rt->time, invalid_before))
|
|
continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
|
|
|
|
/* Reported recently, check if race matches. */
|
|
if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
|
|
(rt->frame1 == frame2 && rt->frame2 == frame1))
|
|
return true;
|
|
}
|
|
|
|
use_entry->time = jiffies;
|
|
use_entry->frame1 = frame1;
|
|
use_entry->frame2 = frame2;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Special rules to skip reporting.
|
|
*/
|
|
static bool
|
|
skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
|
|
{
|
|
/* Should never get here if value_change==FALSE. */
|
|
WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
|
|
|
|
/*
|
|
* The first call to skip_report always has value_change==TRUE, since we
|
|
* cannot know the value written of an instrumented access. For the 2nd
|
|
* call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
|
|
*
|
|
* 1. read watchpoint, conflicting write (value_change==TRUE): report;
|
|
* 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
|
|
* 3. write watchpoint, conflicting write (value_change==TRUE): report;
|
|
* 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
|
|
* 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
|
|
* 6. write watchpoint, conflicting read (value_change==TRUE): report;
|
|
*
|
|
* Cases 1-4 are intuitive and expected; case 5 ensures we do not report
|
|
* data races where the write may have rewritten the same value; case 6
|
|
* is possible either if the size is larger than what we check value
|
|
* changes for or the access type is KCSAN_ACCESS_ASSERT.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
|
|
value_change == KCSAN_VALUE_CHANGE_MAYBE) {
|
|
/*
|
|
* The access is a write, but the data value did not change.
|
|
*
|
|
* We opt-out of this filter for certain functions at request of
|
|
* maintainers.
|
|
*/
|
|
char buf[64];
|
|
|
|
snprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
|
|
if (!strnstr(buf, "rcu_", sizeof(buf)) &&
|
|
!strnstr(buf, "_rcu", sizeof(buf)) &&
|
|
!strnstr(buf, "_srcu", sizeof(buf)))
|
|
return true;
|
|
}
|
|
|
|
return kcsan_skip_report_debugfs(top_frame);
|
|
}
|
|
|
|
static const char *get_access_type(int type)
|
|
{
|
|
switch (type) {
|
|
case 0:
|
|
return "read";
|
|
case KCSAN_ACCESS_ATOMIC:
|
|
return "read (marked)";
|
|
case KCSAN_ACCESS_WRITE:
|
|
return "write";
|
|
case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
|
|
return "write (marked)";
|
|
|
|
/*
|
|
* ASSERT variants:
|
|
*/
|
|
case KCSAN_ACCESS_ASSERT:
|
|
case KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_ATOMIC:
|
|
return "assert no writes";
|
|
case KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE:
|
|
case KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
|
|
return "assert no accesses";
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static const char *get_bug_type(int type)
|
|
{
|
|
return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
|
|
}
|
|
|
|
/* Return thread description: in task or interrupt. */
|
|
static const char *get_thread_desc(int task_id)
|
|
{
|
|
if (task_id != -1) {
|
|
static char buf[32]; /* safe: protected by report_lock */
|
|
|
|
snprintf(buf, sizeof(buf), "task %i", task_id);
|
|
return buf;
|
|
}
|
|
return "interrupt";
|
|
}
|
|
|
|
/* Helper to skip KCSAN-related functions in stack-trace. */
|
|
static int get_stack_skipnr(unsigned long stack_entries[], int num_entries)
|
|
{
|
|
char buf[64];
|
|
int skip = 0;
|
|
|
|
for (; skip < num_entries; ++skip) {
|
|
snprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
|
|
if (!strnstr(buf, "csan_", sizeof(buf)) &&
|
|
!strnstr(buf, "tsan_", sizeof(buf)) &&
|
|
!strnstr(buf, "_once_size", sizeof(buf))) {
|
|
break;
|
|
}
|
|
}
|
|
return skip;
|
|
}
|
|
|
|
/* Compares symbolized strings of addr1 and addr2. */
|
|
static int sym_strcmp(void *addr1, void *addr2)
|
|
{
|
|
char buf1[64];
|
|
char buf2[64];
|
|
|
|
snprintf(buf1, sizeof(buf1), "%pS", addr1);
|
|
snprintf(buf2, sizeof(buf2), "%pS", addr2);
|
|
|
|
return strncmp(buf1, buf2, sizeof(buf1));
|
|
}
|
|
|
|
static void print_verbose_info(struct task_struct *task)
|
|
{
|
|
if (!task)
|
|
return;
|
|
|
|
pr_err("\n");
|
|
debug_show_held_locks(task);
|
|
print_irqtrace_events(task);
|
|
}
|
|
|
|
/*
|
|
* Returns true if a report was generated, false otherwise.
|
|
*/
|
|
static bool print_report(const volatile void *ptr, size_t size, int access_type,
|
|
enum kcsan_value_change value_change, int cpu_id,
|
|
enum kcsan_report_type type)
|
|
{
|
|
unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
|
|
int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
|
|
int skipnr = get_stack_skipnr(stack_entries, num_stack_entries);
|
|
unsigned long this_frame = stack_entries[skipnr];
|
|
unsigned long other_frame = 0;
|
|
int other_skipnr = 0; /* silence uninit warnings */
|
|
|
|
/*
|
|
* Must check report filter rules before starting to print.
|
|
*/
|
|
if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
|
|
return false;
|
|
|
|
if (type == KCSAN_REPORT_RACE_SIGNAL) {
|
|
other_skipnr = get_stack_skipnr(other_info.stack_entries,
|
|
other_info.num_stack_entries);
|
|
other_frame = other_info.stack_entries[other_skipnr];
|
|
|
|
/* @value_change is only known for the other thread */
|
|
if (skip_report(value_change, other_frame))
|
|
return false;
|
|
}
|
|
|
|
if (rate_limit_report(this_frame, other_frame))
|
|
return false;
|
|
|
|
/* Print report header. */
|
|
pr_err("==================================================================\n");
|
|
switch (type) {
|
|
case KCSAN_REPORT_RACE_SIGNAL: {
|
|
int cmp;
|
|
|
|
/*
|
|
* Order functions lexographically for consistent bug titles.
|
|
* Do not print offset of functions to keep title short.
|
|
*/
|
|
cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
|
|
pr_err("BUG: KCSAN: %s in %ps / %ps\n",
|
|
get_bug_type(access_type | other_info.access_type),
|
|
(void *)(cmp < 0 ? other_frame : this_frame),
|
|
(void *)(cmp < 0 ? this_frame : other_frame));
|
|
} break;
|
|
|
|
case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
|
|
pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(access_type),
|
|
(void *)this_frame);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
pr_err("\n");
|
|
|
|
/* Print information about the racing accesses. */
|
|
switch (type) {
|
|
case KCSAN_REPORT_RACE_SIGNAL:
|
|
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
|
get_access_type(other_info.access_type), other_info.ptr,
|
|
other_info.size, get_thread_desc(other_info.task_pid),
|
|
other_info.cpu_id);
|
|
|
|
/* Print the other thread's stack trace. */
|
|
stack_trace_print(other_info.stack_entries + other_skipnr,
|
|
other_info.num_stack_entries - other_skipnr,
|
|
0);
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
|
print_verbose_info(other_info.task);
|
|
|
|
pr_err("\n");
|
|
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
|
get_access_type(access_type), ptr, size,
|
|
get_thread_desc(in_task() ? task_pid_nr(current) : -1),
|
|
cpu_id);
|
|
break;
|
|
|
|
case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
|
|
pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
|
get_access_type(access_type), ptr, size,
|
|
get_thread_desc(in_task() ? task_pid_nr(current) : -1),
|
|
cpu_id);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
/* Print stack trace of this thread. */
|
|
stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr,
|
|
0);
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
|
print_verbose_info(current);
|
|
|
|
/* Print report footer. */
|
|
pr_err("\n");
|
|
pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
|
|
dump_stack_print_info(KERN_DEFAULT);
|
|
pr_err("==================================================================\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static void release_report(unsigned long *flags, enum kcsan_report_type type)
|
|
{
|
|
if (type == KCSAN_REPORT_RACE_SIGNAL)
|
|
other_info.ptr = NULL; /* mark for reuse */
|
|
|
|
spin_unlock_irqrestore(&report_lock, *flags);
|
|
}
|
|
|
|
/*
|
|
* Sets @other_info.task and awaits consumption of @other_info.
|
|
*
|
|
* Precondition: report_lock is held.
|
|
* Postcondition: report_lock is held.
|
|
*/
|
|
static void
|
|
set_other_info_task_blocking(unsigned long *flags, const volatile void *ptr)
|
|
{
|
|
/*
|
|
* We may be instrumenting a code-path where current->state is already
|
|
* something other than TASK_RUNNING.
|
|
*/
|
|
const bool is_running = current->state == TASK_RUNNING;
|
|
/*
|
|
* To avoid deadlock in case we are in an interrupt here and this is a
|
|
* race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
|
|
* timeout to ensure this works in all contexts.
|
|
*
|
|
* Await approximately the worst case delay of the reporting thread (if
|
|
* we are not interrupted).
|
|
*/
|
|
int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
|
|
|
|
other_info.task = current;
|
|
do {
|
|
if (is_running) {
|
|
/*
|
|
* Let lockdep know the real task is sleeping, to print
|
|
* the held locks (recall we turned lockdep off, so
|
|
* locking/unlocking @report_lock won't be recorded).
|
|
*/
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
}
|
|
spin_unlock_irqrestore(&report_lock, *flags);
|
|
/*
|
|
* We cannot call schedule() since we also cannot reliably
|
|
* determine if sleeping here is permitted -- see in_atomic().
|
|
*/
|
|
|
|
udelay(1);
|
|
spin_lock_irqsave(&report_lock, *flags);
|
|
if (timeout-- < 0) {
|
|
/*
|
|
* Abort. Reset other_info.task to NULL, since it
|
|
* appears the other thread is still going to consume
|
|
* it. It will result in no verbose info printed for
|
|
* this task.
|
|
*/
|
|
other_info.task = NULL;
|
|
break;
|
|
}
|
|
/*
|
|
* If @ptr nor @current matches, then our information has been
|
|
* consumed and we may continue. If not, retry.
|
|
*/
|
|
} while (other_info.ptr == ptr && other_info.task == current);
|
|
if (is_running)
|
|
set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
/*
|
|
* Depending on the report type either sets other_info and returns false, or
|
|
* acquires the matching other_info and returns true. If other_info is not
|
|
* required for the report type, simply acquires report_lock and returns true.
|
|
*/
|
|
static bool prepare_report(unsigned long *flags, const volatile void *ptr,
|
|
size_t size, int access_type, int cpu_id,
|
|
enum kcsan_report_type type)
|
|
{
|
|
if (type != KCSAN_REPORT_CONSUMED_WATCHPOINT &&
|
|
type != KCSAN_REPORT_RACE_SIGNAL) {
|
|
/* other_info not required; just acquire report_lock */
|
|
spin_lock_irqsave(&report_lock, *flags);
|
|
return true;
|
|
}
|
|
|
|
retry:
|
|
spin_lock_irqsave(&report_lock, *flags);
|
|
|
|
switch (type) {
|
|
case KCSAN_REPORT_CONSUMED_WATCHPOINT:
|
|
if (other_info.ptr != NULL)
|
|
break; /* still in use, retry */
|
|
|
|
other_info.ptr = ptr;
|
|
other_info.size = size;
|
|
other_info.access_type = access_type;
|
|
other_info.task_pid = in_task() ? task_pid_nr(current) : -1;
|
|
other_info.cpu_id = cpu_id;
|
|
other_info.num_stack_entries = stack_trace_save(other_info.stack_entries, NUM_STACK_ENTRIES, 1);
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
|
set_other_info_task_blocking(flags, ptr);
|
|
|
|
spin_unlock_irqrestore(&report_lock, *flags);
|
|
|
|
/*
|
|
* The other thread will print the summary; other_info may now
|
|
* be consumed.
|
|
*/
|
|
return false;
|
|
|
|
case KCSAN_REPORT_RACE_SIGNAL:
|
|
if (other_info.ptr == NULL)
|
|
break; /* no data available yet, retry */
|
|
|
|
/*
|
|
* First check if this is the other_info we are expecting, i.e.
|
|
* matches based on how watchpoint was encoded.
|
|
*/
|
|
if (!matching_access((unsigned long)other_info.ptr &
|
|
WATCHPOINT_ADDR_MASK,
|
|
other_info.size,
|
|
(unsigned long)ptr & WATCHPOINT_ADDR_MASK,
|
|
size))
|
|
break; /* mismatching watchpoint, retry */
|
|
|
|
if (!matching_access((unsigned long)other_info.ptr,
|
|
other_info.size, (unsigned long)ptr,
|
|
size)) {
|
|
/*
|
|
* If the actual accesses to not match, this was a false
|
|
* positive due to watchpoint encoding.
|
|
*/
|
|
kcsan_counter_inc(
|
|
KCSAN_COUNTER_ENCODING_FALSE_POSITIVES);
|
|
|
|
/* discard this other_info */
|
|
release_report(flags, KCSAN_REPORT_RACE_SIGNAL);
|
|
return false;
|
|
}
|
|
|
|
access_type |= other_info.access_type;
|
|
if ((access_type & KCSAN_ACCESS_WRITE) == 0) {
|
|
/*
|
|
* While the address matches, this is not the other_info
|
|
* from the thread that consumed our watchpoint, since
|
|
* neither this nor the access in other_info is a write.
|
|
* It is invalid to continue with the report, since we
|
|
* only have information about reads.
|
|
*
|
|
* This can happen due to concurrent races on the same
|
|
* address, with at least 4 threads. To avoid locking up
|
|
* other_info and all other threads, we have to consume
|
|
* it regardless.
|
|
*
|
|
* A concrete case to illustrate why we might lock up if
|
|
* we do not consume other_info:
|
|
*
|
|
* We have 4 threads, all accessing the same address
|
|
* (or matching address ranges). Assume the following
|
|
* watcher and watchpoint consumer pairs:
|
|
* write1-read1, read2-write2. The first to populate
|
|
* other_info is write2, however, write1 consumes it,
|
|
* resulting in a report of write1-write2. This report
|
|
* is valid, however, now read1 populates other_info;
|
|
* read2-read1 is an invalid conflict, yet, no other
|
|
* conflicting access is left. Therefore, we must
|
|
* consume read1's other_info.
|
|
*
|
|
* Since this case is assumed to be rare, it is
|
|
* reasonable to omit this report: one of the other
|
|
* reports includes information about the same shared
|
|
* data, and at this point the likelihood that we
|
|
* re-report the same race again is high.
|
|
*/
|
|
release_report(flags, KCSAN_REPORT_RACE_SIGNAL);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Matching & usable access in other_info: keep other_info_lock
|
|
* locked, as this thread consumes it to print the full report;
|
|
* unlocked in release_report.
|
|
*/
|
|
return true;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
spin_unlock_irqrestore(&report_lock, *flags);
|
|
|
|
goto retry;
|
|
}
|
|
|
|
void kcsan_report(const volatile void *ptr, size_t size, int access_type,
|
|
enum kcsan_value_change value_change, int cpu_id,
|
|
enum kcsan_report_type type)
|
|
{
|
|
unsigned long flags = 0;
|
|
|
|
/*
|
|
* With TRACE_IRQFLAGS, lockdep's IRQ trace state becomes corrupted if
|
|
* we do not turn off lockdep here; this could happen due to recursion
|
|
* into lockdep via KCSAN if we detect a race in utilities used by
|
|
* lockdep.
|
|
*/
|
|
lockdep_off();
|
|
|
|
kcsan_disable_current();
|
|
if (prepare_report(&flags, ptr, size, access_type, cpu_id, type)) {
|
|
/*
|
|
* Never report if value_change is FALSE, only if we it is
|
|
* either TRUE or MAYBE. In case of MAYBE, further filtering may
|
|
* be done once we know the full stack trace in print_report().
|
|
*/
|
|
bool reported = value_change != KCSAN_VALUE_CHANGE_FALSE &&
|
|
print_report(ptr, size, access_type, value_change, cpu_id, type);
|
|
|
|
if (reported && panic_on_warn)
|
|
panic("panic_on_warn set ...\n");
|
|
|
|
release_report(&flags, type);
|
|
}
|
|
kcsan_enable_current();
|
|
|
|
lockdep_on();
|
|
}
|