linux/kernel/events/hw_breakpoint.c
Benjamin Gray 53834a0c09 perf/hw_breakpoint: Remove arch breakpoint hooks
PowerPC was the only user of these hooks, and has been refactored to no
longer require them. There is no need to keep them around, so remove
them to reduce complexity.

Signed-off-by: Benjamin Gray <bgray@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230801011744.153973-8-bgray@linux.ibm.com
2023-08-16 23:54:50 +10:00

1024 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2007 Alan Stern
* Copyright (C) IBM Corporation, 2009
* Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
*
* Thanks to Ingo Molnar for his many suggestions.
*
* Authors: Alan Stern <stern@rowland.harvard.edu>
* K.Prasad <prasad@linux.vnet.ibm.com>
* Frederic Weisbecker <fweisbec@gmail.com>
*/
/*
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
* using the CPU's debug registers.
* This file contains the arch-independent routines.
*/
#include <linux/hw_breakpoint.h>
#include <linux/atomic.h>
#include <linux/bug.h>
#include <linux/cpu.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/irqflags.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/notifier.h>
#include <linux/percpu-rwsem.h>
#include <linux/percpu.h>
#include <linux/rhashtable.h>
#include <linux/sched.h>
#include <linux/slab.h>
/*
* Datastructure to track the total uses of N slots across tasks or CPUs;
* bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
*/
struct bp_slots_histogram {
#ifdef hw_breakpoint_slots
atomic_t count[hw_breakpoint_slots(0)];
#else
atomic_t *count;
#endif
};
/*
* Per-CPU constraints data.
*/
struct bp_cpuinfo {
/* Number of pinned CPU breakpoints in a CPU. */
unsigned int cpu_pinned;
/* Histogram of pinned task breakpoints in a CPU. */
struct bp_slots_histogram tsk_pinned;
};
static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
{
return per_cpu_ptr(bp_cpuinfo + type, cpu);
}
/* Number of pinned CPU breakpoints globally. */
static struct bp_slots_histogram cpu_pinned[TYPE_MAX];
/* Number of pinned CPU-independent task breakpoints. */
static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX];
/* Keep track of the breakpoints attached to tasks */
static struct rhltable task_bps_ht;
static const struct rhashtable_params task_bps_ht_params = {
.head_offset = offsetof(struct hw_perf_event, bp_list),
.key_offset = offsetof(struct hw_perf_event, target),
.key_len = sizeof_field(struct hw_perf_event, target),
.automatic_shrinking = true,
};
static bool constraints_initialized __ro_after_init;
/*
* Synchronizes accesses to the per-CPU constraints; the locking rules are:
*
* 1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
* (due to bp_slots_histogram::count being atomic, no update are lost).
*
* 2. Holding a write-lock is required for computations that require a
* stable snapshot of all bp_cpuinfo::tsk_pinned.
*
* 3. In all other cases, non-atomic accesses require the appropriately held
* lock (read-lock for read-only accesses; write-lock for reads/writes).
*/
DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem);
/*
* Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
* rhltable synchronizes concurrent insertions/deletions, independent tasks may
* insert/delete concurrently; therefore, a mutex per task is sufficient.
*
* Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
* hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
* that hw_breakpoint may contend with per-task perf event list management. The
* assumption is that perf usecases involving hw_breakpoints are very unlikely
* to result in unnecessary contention.
*/
static inline struct mutex *get_task_bps_mutex(struct perf_event *bp)
{
struct task_struct *tsk = bp->hw.target;
return tsk ? &tsk->perf_event_mutex : NULL;
}
static struct mutex *bp_constraints_lock(struct perf_event *bp)
{
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
if (tsk_mtx) {
/*
* Fully analogous to the perf_try_init_event() nesting
* argument in the comment near perf_event_ctx_lock_nested();
* this child->perf_event_mutex cannot ever deadlock against
* the parent->perf_event_mutex usage from
* perf_event_task_{en,dis}able().
*
* Specifically, inherited events will never occur on
* ->perf_event_list.
*/
mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING);
percpu_down_read(&bp_cpuinfo_sem);
} else {
percpu_down_write(&bp_cpuinfo_sem);
}
return tsk_mtx;
}
static void bp_constraints_unlock(struct mutex *tsk_mtx)
{
if (tsk_mtx) {
percpu_up_read(&bp_cpuinfo_sem);
mutex_unlock(tsk_mtx);
} else {
percpu_up_write(&bp_cpuinfo_sem);
}
}
static bool bp_constraints_is_locked(struct perf_event *bp)
{
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
return percpu_is_write_locked(&bp_cpuinfo_sem) ||
(tsk_mtx ? mutex_is_locked(tsk_mtx) :
percpu_is_read_locked(&bp_cpuinfo_sem));
}
static inline void assert_bp_constraints_lock_held(struct perf_event *bp)
{
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
if (tsk_mtx)
lockdep_assert_held(tsk_mtx);
lockdep_assert_held(&bp_cpuinfo_sem);
}
#ifdef hw_breakpoint_slots
/*
* Number of breakpoint slots is constant, and the same for all types.
*/
static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA));
static inline int hw_breakpoint_slots_cached(int type) { return hw_breakpoint_slots(type); }
static inline int init_breakpoint_slots(void) { return 0; }
#else
/*
* Dynamic number of breakpoint slots.
*/
static int __nr_bp_slots[TYPE_MAX] __ro_after_init;
static inline int hw_breakpoint_slots_cached(int type)
{
return __nr_bp_slots[type];
}
static __init bool
bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type)
{
hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL);
return hist->count;
}
static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist)
{
kfree(hist->count);
}
static __init int init_breakpoint_slots(void)
{
int i, cpu, err_cpu;
for (i = 0; i < TYPE_MAX; i++)
__nr_bp_slots[i] = hw_breakpoint_slots(i);
for_each_possible_cpu(cpu) {
for (i = 0; i < TYPE_MAX; i++) {
struct bp_cpuinfo *info = get_bp_info(cpu, i);
if (!bp_slots_histogram_alloc(&info->tsk_pinned, i))
goto err;
}
}
for (i = 0; i < TYPE_MAX; i++) {
if (!bp_slots_histogram_alloc(&cpu_pinned[i], i))
goto err;
if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i))
goto err;
}
return 0;
err:
for_each_possible_cpu(err_cpu) {
for (i = 0; i < TYPE_MAX; i++)
bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned);
if (err_cpu == cpu)
break;
}
for (i = 0; i < TYPE_MAX; i++) {
bp_slots_histogram_free(&cpu_pinned[i]);
bp_slots_histogram_free(&tsk_pinned_all[i]);
}
return -ENOMEM;
}
#endif
static inline void
bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val)
{
const int old_idx = old - 1;
const int new_idx = old_idx + val;
if (old_idx >= 0)
WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0);
if (new_idx >= 0)
WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0);
}
static int
bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type)
{
for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
const int count = atomic_read(&hist->count[i]);
/* Catch unexpected writers; we want a stable snapshot. */
ASSERT_EXCLUSIVE_WRITER(hist->count[i]);
if (count > 0)
return i + 1;
WARN(count < 0, "inconsistent breakpoint slots histogram");
}
return 0;
}
static int
bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2,
enum bp_type_idx type)
{
for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
const int count1 = atomic_read(&hist1->count[i]);
const int count2 = atomic_read(&hist2->count[i]);
/* Catch unexpected writers; we want a stable snapshot. */
ASSERT_EXCLUSIVE_WRITER(hist1->count[i]);
ASSERT_EXCLUSIVE_WRITER(hist2->count[i]);
if (count1 + count2 > 0)
return i + 1;
WARN(count1 < 0, "inconsistent breakpoint slots histogram");
WARN(count2 < 0, "inconsistent breakpoint slots histogram");
}
return 0;
}
#ifndef hw_breakpoint_weight
static inline int hw_breakpoint_weight(struct perf_event *bp)
{
return 1;
}
#endif
static inline enum bp_type_idx find_slot_idx(u64 bp_type)
{
if (bp_type & HW_BREAKPOINT_RW)
return TYPE_DATA;
return TYPE_INST;
}
/*
* Return the maximum number of pinned breakpoints a task has in this CPU.
*/
static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
{
struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned;
/*
* At this point we want to have acquired the bp_cpuinfo_sem as a
* writer to ensure that there are no concurrent writers in
* toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
*/
lockdep_assert_held_write(&bp_cpuinfo_sem);
return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type);
}
/*
* Count the number of breakpoints of the same type and same task.
* The given event must be not on the list.
*
* If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
* returns a negative value.
*/
static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
{
struct rhlist_head *head, *pos;
struct perf_event *iter;
int count = 0;
/*
* We need a stable snapshot of the per-task breakpoint list.
*/
assert_bp_constraints_lock_held(bp);
rcu_read_lock();
head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params);
if (!head)
goto out;
rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) {
if (find_slot_idx(iter->attr.bp_type) != type)
continue;
if (iter->cpu >= 0) {
if (cpu == -1) {
count = -1;
goto out;
} else if (cpu != iter->cpu)
continue;
}
count += hw_breakpoint_weight(iter);
}
out:
rcu_read_unlock();
return count;
}
static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
{
if (bp->cpu >= 0)
return cpumask_of(bp->cpu);
return cpu_possible_mask;
}
/*
* Returns the max pinned breakpoint slots in a given
* CPU (cpu > -1) or across all of them (cpu = -1).
*/
static int
max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type)
{
const struct cpumask *cpumask = cpumask_of_bp(bp);
int pinned_slots = 0;
int cpu;
if (bp->hw.target && bp->cpu < 0) {
int max_pinned = task_bp_pinned(-1, bp, type);
if (max_pinned >= 0) {
/*
* Fast path: task_bp_pinned() is CPU-independent and
* returns the same value for any CPU.
*/
max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type);
return max_pinned;
}
}
for_each_cpu(cpu, cpumask) {
struct bp_cpuinfo *info = get_bp_info(cpu, type);
int nr;
nr = info->cpu_pinned;
if (!bp->hw.target)
nr += max_task_bp_pinned(cpu, type);
else
nr += task_bp_pinned(cpu, bp, type);
pinned_slots = max(nr, pinned_slots);
}
return pinned_slots;
}
/*
* Add/remove the given breakpoint in our constraint table
*/
static int
toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight)
{
int cpu, next_tsk_pinned;
if (!enable)
weight = -weight;
if (!bp->hw.target) {
/*
* Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
* global histogram.
*/
struct bp_cpuinfo *info = get_bp_info(bp->cpu, type);
lockdep_assert_held_write(&bp_cpuinfo_sem);
bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight);
info->cpu_pinned += weight;
return 0;
}
/*
* If bp->hw.target, tsk_pinned is only modified, but not used
* otherwise. We can permit concurrent updates as long as there are no
* other uses: having acquired bp_cpuinfo_sem as a reader allows
* concurrent updates here. Uses of tsk_pinned will require acquiring
* bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
*/
lockdep_assert_held_read(&bp_cpuinfo_sem);
/*
* Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
* histogram. We need to take care of 4 cases:
*
* 1. This breakpoint targets all CPUs (cpu < 0), and there may only
* exist other task breakpoints targeting all CPUs. In this case we
* can simply update the global slots histogram.
*
* 2. This breakpoint targets a specific CPU (cpu >= 0), but there may
* only exist other task breakpoints targeting all CPUs.
*
* a. On enable: remove the existing breakpoints from the global
* slots histogram and use the per-CPU histogram.
*
* b. On disable: re-insert the existing breakpoints into the global
* slots histogram and remove from per-CPU histogram.
*
* 3. Some other existing task breakpoints target specific CPUs. Only
* update the per-CPU slots histogram.
*/
if (!enable) {
/*
* Remove before updating histograms so we can determine if this
* was the last task breakpoint for a specific CPU.
*/
int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
if (ret)
return ret;
}
/*
* Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
*/
next_tsk_pinned = task_bp_pinned(-1, bp, type);
if (next_tsk_pinned >= 0) {
if (bp->cpu < 0) { /* Case 1: fast path */
if (!enable)
next_tsk_pinned += hw_breakpoint_weight(bp);
bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight);
} else if (enable) { /* Case 2.a: slow path */
/* Add existing to per-CPU histograms. */
for_each_possible_cpu(cpu) {
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
0, next_tsk_pinned);
}
/* Add this first CPU-pinned task breakpoint. */
bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
next_tsk_pinned, weight);
/* Rebalance global task pinned histogram. */
bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned,
-next_tsk_pinned);
} else { /* Case 2.b: slow path */
/* Remove this last CPU-pinned task breakpoint. */
bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
next_tsk_pinned + hw_breakpoint_weight(bp), weight);
/* Remove all from per-CPU histograms. */
for_each_possible_cpu(cpu) {
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
next_tsk_pinned, -next_tsk_pinned);
}
/* Rebalance global task pinned histogram. */
bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned);
}
} else { /* Case 3: slow path */
const struct cpumask *cpumask = cpumask_of_bp(bp);
for_each_cpu(cpu, cpumask) {
next_tsk_pinned = task_bp_pinned(cpu, bp, type);
if (!enable)
next_tsk_pinned += hw_breakpoint_weight(bp);
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
next_tsk_pinned, weight);
}
}
/*
* Readers want a stable snapshot of the per-task breakpoint list.
*/
assert_bp_constraints_lock_held(bp);
if (enable)
return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
return 0;
}
/*
* Constraints to check before allowing this new breakpoint counter.
*
* Note: Flexible breakpoints are currently unimplemented, but outlined in the
* below algorithm for completeness. The implementation treats flexible as
* pinned due to no guarantee that we currently always schedule flexible events
* before a pinned event in a same CPU.
*
* == Non-pinned counter == (Considered as pinned for now)
*
* - If attached to a single cpu, check:
*
* (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
* + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
*
* -> If there are already non-pinned counters in this cpu, it means
* there is already a free slot for them.
* Otherwise, we check that the maximum number of per task
* breakpoints (for this cpu) plus the number of per cpu breakpoint
* (for this cpu) doesn't cover every registers.
*
* - If attached to every cpus, check:
*
* (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
* + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
*
* -> This is roughly the same, except we check the number of per cpu
* bp for every cpu and we keep the max one. Same for the per tasks
* breakpoints.
*
*
* == Pinned counter ==
*
* - If attached to a single cpu, check:
*
* ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
* + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
*
* -> Same checks as before. But now the info->flexible, if any, must keep
* one register at least (or they will never be fed).
*
* - If attached to every cpus, check:
*
* ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
* + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
*/
static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
{
enum bp_type_idx type;
int max_pinned_slots;
int weight;
/* We couldn't initialize breakpoint constraints on boot */
if (!constraints_initialized)
return -ENOMEM;
/* Basic checks */
if (bp_type == HW_BREAKPOINT_EMPTY ||
bp_type == HW_BREAKPOINT_INVALID)
return -EINVAL;
type = find_slot_idx(bp_type);
weight = hw_breakpoint_weight(bp);
/* Check if this new breakpoint can be satisfied across all CPUs. */
max_pinned_slots = max_bp_pinned_slots(bp, type) + weight;
if (max_pinned_slots > hw_breakpoint_slots_cached(type))
return -ENOSPC;
return toggle_bp_slot(bp, true, type, weight);
}
int reserve_bp_slot(struct perf_event *bp)
{
struct mutex *mtx = bp_constraints_lock(bp);
int ret = __reserve_bp_slot(bp, bp->attr.bp_type);
bp_constraints_unlock(mtx);
return ret;
}
static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
{
enum bp_type_idx type;
int weight;
type = find_slot_idx(bp_type);
weight = hw_breakpoint_weight(bp);
WARN_ON(toggle_bp_slot(bp, false, type, weight));
}
void release_bp_slot(struct perf_event *bp)
{
struct mutex *mtx = bp_constraints_lock(bp);
__release_bp_slot(bp, bp->attr.bp_type);
bp_constraints_unlock(mtx);
}
static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
{
int err;
__release_bp_slot(bp, old_type);
err = __reserve_bp_slot(bp, new_type);
if (err) {
/*
* Reserve the old_type slot back in case
* there's no space for the new type.
*
* This must succeed, because we just released
* the old_type slot in the __release_bp_slot
* call above. If not, something is broken.
*/
WARN_ON(__reserve_bp_slot(bp, old_type));
}
return err;
}
static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
{
struct mutex *mtx = bp_constraints_lock(bp);
int ret = __modify_bp_slot(bp, old_type, new_type);
bp_constraints_unlock(mtx);
return ret;
}
/*
* Allow the kernel debugger to reserve breakpoint slots without
* taking a lock using the dbg_* variant of for the reserve and
* release breakpoint slots.
*/
int dbg_reserve_bp_slot(struct perf_event *bp)
{
int ret;
if (bp_constraints_is_locked(bp))
return -1;
/* Locks aren't held; disable lockdep assert checking. */
lockdep_off();
ret = __reserve_bp_slot(bp, bp->attr.bp_type);
lockdep_on();
return ret;
}
int dbg_release_bp_slot(struct perf_event *bp)
{
if (bp_constraints_is_locked(bp))
return -1;
/* Locks aren't held; disable lockdep assert checking. */
lockdep_off();
__release_bp_slot(bp, bp->attr.bp_type);
lockdep_on();
return 0;
}
static int hw_breakpoint_parse(struct perf_event *bp,
const struct perf_event_attr *attr,
struct arch_hw_breakpoint *hw)
{
int err;
err = hw_breakpoint_arch_parse(bp, attr, hw);
if (err)
return err;
if (arch_check_bp_in_kernelspace(hw)) {
if (attr->exclude_kernel)
return -EINVAL;
/*
* Don't let unprivileged users set a breakpoint in the trap
* path to avoid trap recursion attacks.
*/
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
}
return 0;
}
int register_perf_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint hw = { };
int err;
err = reserve_bp_slot(bp);
if (err)
return err;
err = hw_breakpoint_parse(bp, &bp->attr, &hw);
if (err) {
release_bp_slot(bp);
return err;
}
bp->hw.info = hw;
return 0;
}
/**
* register_user_hw_breakpoint - register a hardware breakpoint for user space
* @attr: breakpoint attributes
* @triggered: callback to trigger when we hit the breakpoint
* @context: context data could be used in the triggered callback
* @tsk: pointer to 'task_struct' of the process to which the address belongs
*/
struct perf_event *
register_user_hw_breakpoint(struct perf_event_attr *attr,
perf_overflow_handler_t triggered,
void *context,
struct task_struct *tsk)
{
return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
context);
}
EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
struct perf_event_attr *from)
{
to->bp_addr = from->bp_addr;
to->bp_type = from->bp_type;
to->bp_len = from->bp_len;
to->disabled = from->disabled;
}
int
modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
bool check)
{
struct arch_hw_breakpoint hw = { };
int err;
err = hw_breakpoint_parse(bp, attr, &hw);
if (err)
return err;
if (check) {
struct perf_event_attr old_attr;
old_attr = bp->attr;
hw_breakpoint_copy_attr(&old_attr, attr);
if (memcmp(&old_attr, attr, sizeof(*attr)))
return -EINVAL;
}
if (bp->attr.bp_type != attr->bp_type) {
err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
if (err)
return err;
}
hw_breakpoint_copy_attr(&bp->attr, attr);
bp->hw.info = hw;
return 0;
}
/**
* modify_user_hw_breakpoint - modify a user-space hardware breakpoint
* @bp: the breakpoint structure to modify
* @attr: new breakpoint attributes
*/
int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
{
int err;
/*
* modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
* will not be possible to raise IPIs that invoke __perf_event_disable.
* So call the function directly after making sure we are targeting the
* current task.
*/
if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
perf_event_disable_local(bp);
else
perf_event_disable(bp);
err = modify_user_hw_breakpoint_check(bp, attr, false);
if (!bp->attr.disabled)
perf_event_enable(bp);
return err;
}
EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
/**
* unregister_hw_breakpoint - unregister a user-space hardware breakpoint
* @bp: the breakpoint structure to unregister
*/
void unregister_hw_breakpoint(struct perf_event *bp)
{
if (!bp)
return;
perf_event_release_kernel(bp);
}
EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
/**
* register_wide_hw_breakpoint - register a wide breakpoint in the kernel
* @attr: breakpoint attributes
* @triggered: callback to trigger when we hit the breakpoint
* @context: context data could be used in the triggered callback
*
* @return a set of per_cpu pointers to perf events
*/
struct perf_event * __percpu *
register_wide_hw_breakpoint(struct perf_event_attr *attr,
perf_overflow_handler_t triggered,
void *context)
{
struct perf_event * __percpu *cpu_events, *bp;
long err = 0;
int cpu;
cpu_events = alloc_percpu(typeof(*cpu_events));
if (!cpu_events)
return (void __percpu __force *)ERR_PTR(-ENOMEM);
cpus_read_lock();
for_each_online_cpu(cpu) {
bp = perf_event_create_kernel_counter(attr, cpu, NULL,
triggered, context);
if (IS_ERR(bp)) {
err = PTR_ERR(bp);
break;
}
per_cpu(*cpu_events, cpu) = bp;
}
cpus_read_unlock();
if (likely(!err))
return cpu_events;
unregister_wide_hw_breakpoint(cpu_events);
return (void __percpu __force *)ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
/**
* unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
* @cpu_events: the per cpu set of events to unregister
*/
void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
{
int cpu;
for_each_possible_cpu(cpu)
unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
free_percpu(cpu_events);
}
EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
/**
* hw_breakpoint_is_used - check if breakpoints are currently used
*
* Returns: true if breakpoints are used, false otherwise.
*/
bool hw_breakpoint_is_used(void)
{
int cpu;
if (!constraints_initialized)
return false;
for_each_possible_cpu(cpu) {
for (int type = 0; type < TYPE_MAX; ++type) {
struct bp_cpuinfo *info = get_bp_info(cpu, type);
if (info->cpu_pinned)
return true;
for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
if (atomic_read(&info->tsk_pinned.count[slot]))
return true;
}
}
}
for (int type = 0; type < TYPE_MAX; ++type) {
for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
/*
* Warn, because if there are CPU pinned counters,
* should never get here; bp_cpuinfo::cpu_pinned should
* be consistent with the global cpu_pinned histogram.
*/
if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot])))
return true;
if (atomic_read(&tsk_pinned_all[type].count[slot]))
return true;
}
}
return false;
}
static struct notifier_block hw_breakpoint_exceptions_nb = {
.notifier_call = hw_breakpoint_exceptions_notify,
/* we need to be notified first */
.priority = 0x7fffffff
};
static void bp_perf_event_destroy(struct perf_event *event)
{
release_bp_slot(event);
}
static int hw_breakpoint_event_init(struct perf_event *bp)
{
int err;
if (bp->attr.type != PERF_TYPE_BREAKPOINT)
return -ENOENT;
/*
* no branch sampling for breakpoint events
*/
if (has_branch_stack(bp))
return -EOPNOTSUPP;
err = register_perf_hw_breakpoint(bp);
if (err)
return err;
bp->destroy = bp_perf_event_destroy;
return 0;
}
static int hw_breakpoint_add(struct perf_event *bp, int flags)
{
if (!(flags & PERF_EF_START))
bp->hw.state = PERF_HES_STOPPED;
if (is_sampling_event(bp)) {
bp->hw.last_period = bp->hw.sample_period;
perf_swevent_set_period(bp);
}
return arch_install_hw_breakpoint(bp);
}
static void hw_breakpoint_del(struct perf_event *bp, int flags)
{
arch_uninstall_hw_breakpoint(bp);
}
static void hw_breakpoint_start(struct perf_event *bp, int flags)
{
bp->hw.state = 0;
}
static void hw_breakpoint_stop(struct perf_event *bp, int flags)
{
bp->hw.state = PERF_HES_STOPPED;
}
static struct pmu perf_breakpoint = {
.task_ctx_nr = perf_sw_context, /* could eventually get its own */
.event_init = hw_breakpoint_event_init,
.add = hw_breakpoint_add,
.del = hw_breakpoint_del,
.start = hw_breakpoint_start,
.stop = hw_breakpoint_stop,
.read = hw_breakpoint_pmu_read,
};
int __init init_hw_breakpoint(void)
{
int ret;
ret = rhltable_init(&task_bps_ht, &task_bps_ht_params);
if (ret)
return ret;
ret = init_breakpoint_slots();
if (ret)
return ret;
constraints_initialized = true;
perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
return register_die_notifier(&hw_breakpoint_exceptions_nb);
}