linux/kernel/rseq.c
Linus Torvalds 96d4f267e4 Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.

It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access.  But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.

A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model.  And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.

This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.

There were a couple of notable cases:

 - csky still had the old "verify_area()" name as an alias.

 - the iter_iov code had magical hardcoded knowledge of the actual
   values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
   really used it)

 - microblaze used the type argument for a debug printout

but other than those oddities this should be a total no-op patch.

I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something.  Any missed conversion should be trivially fixable, though.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-03 18:57:57 -08:00

367 lines
9.9 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Restartable sequences system call
*
* Copyright (C) 2015, Google, Inc.,
* Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
* Copyright (C) 2015-2018, EfficiOS Inc.,
* Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
*/
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/rseq.h>
#include <linux/types.h>
#include <asm/ptrace.h>
#define CREATE_TRACE_POINTS
#include <trace/events/rseq.h>
#define RSEQ_CS_PREEMPT_MIGRATE_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE | \
RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT)
/*
*
* Restartable sequences are a lightweight interface that allows
* user-level code to be executed atomically relative to scheduler
* preemption and signal delivery. Typically used for implementing
* per-cpu operations.
*
* It allows user-space to perform update operations on per-cpu data
* without requiring heavy-weight atomic operations.
*
* Detailed algorithm of rseq user-space assembly sequences:
*
* init(rseq_cs)
* cpu = TLS->rseq::cpu_id_start
* [1] TLS->rseq::rseq_cs = rseq_cs
* [start_ip] ----------------------------
* [2] if (cpu != TLS->rseq::cpu_id)
* goto abort_ip;
* [3] <last_instruction_in_cs>
* [post_commit_ip] ----------------------------
*
* The address of jump target abort_ip must be outside the critical
* region, i.e.:
*
* [abort_ip] < [start_ip] || [abort_ip] >= [post_commit_ip]
*
* Steps [2]-[3] (inclusive) need to be a sequence of instructions in
* userspace that can handle being interrupted between any of those
* instructions, and then resumed to the abort_ip.
*
* 1. Userspace stores the address of the struct rseq_cs assembly
* block descriptor into the rseq_cs field of the registered
* struct rseq TLS area. This update is performed through a single
* store within the inline assembly instruction sequence.
* [start_ip]
*
* 2. Userspace tests to check whether the current cpu_id field match
* the cpu number loaded before start_ip, branching to abort_ip
* in case of a mismatch.
*
* If the sequence is preempted or interrupted by a signal
* at or after start_ip and before post_commit_ip, then the kernel
* clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
* ip to abort_ip before returning to user-space, so the preempted
* execution resumes at abort_ip.
*
* 3. Userspace critical section final instruction before
* post_commit_ip is the commit. The critical section is
* self-terminating.
* [post_commit_ip]
*
* 4. <success>
*
* On failure at [2], or if interrupted by preempt or signal delivery
* between [1] and [3]:
*
* [abort_ip]
* F1. <failure>
*/
static int rseq_update_cpu_id(struct task_struct *t)
{
u32 cpu_id = raw_smp_processor_id();
if (put_user(cpu_id, &t->rseq->cpu_id_start))
return -EFAULT;
if (put_user(cpu_id, &t->rseq->cpu_id))
return -EFAULT;
trace_rseq_update(t);
return 0;
}
static int rseq_reset_rseq_cpu_id(struct task_struct *t)
{
u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED;
/*
* Reset cpu_id_start to its initial state (0).
*/
if (put_user(cpu_id_start, &t->rseq->cpu_id_start))
return -EFAULT;
/*
* Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
* in after unregistration can figure out that rseq needs to be
* registered again.
*/
if (put_user(cpu_id, &t->rseq->cpu_id))
return -EFAULT;
return 0;
}
static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
{
struct rseq_cs __user *urseq_cs;
u64 ptr;
u32 __user *usig;
u32 sig;
int ret;
if (copy_from_user(&ptr, &t->rseq->rseq_cs.ptr64, sizeof(ptr)))
return -EFAULT;
if (!ptr) {
memset(rseq_cs, 0, sizeof(*rseq_cs));
return 0;
}
if (ptr >= TASK_SIZE)
return -EINVAL;
urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr;
if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
return -EFAULT;
if (rseq_cs->start_ip >= TASK_SIZE ||
rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE ||
rseq_cs->abort_ip >= TASK_SIZE ||
rseq_cs->version > 0)
return -EINVAL;
/* Check for overflow. */
if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip)
return -EINVAL;
/* Ensure that abort_ip is not in the critical section. */
if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
return -EINVAL;
usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32));
ret = get_user(sig, usig);
if (ret)
return ret;
if (current->rseq_sig != sig) {
printk_ratelimited(KERN_WARNING
"Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
sig, current->rseq_sig, current->pid, usig);
return -EINVAL;
}
return 0;
}
static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
{
u32 flags, event_mask;
int ret;
/* Get thread flags. */
ret = get_user(flags, &t->rseq->flags);
if (ret)
return ret;
/* Take critical section flags into account. */
flags |= cs_flags;
/*
* Restart on signal can only be inhibited when restart on
* preempt and restart on migrate are inhibited too. Otherwise,
* a preempted signal handler could fail to restart the prior
* execution context on sigreturn.
*/
if (unlikely((flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) &&
(flags & RSEQ_CS_PREEMPT_MIGRATE_FLAGS) !=
RSEQ_CS_PREEMPT_MIGRATE_FLAGS))
return -EINVAL;
/*
* Load and clear event mask atomically with respect to
* scheduler preemption.
*/
preempt_disable();
event_mask = t->rseq_event_mask;
t->rseq_event_mask = 0;
preempt_enable();
return !!(event_mask & ~flags);
}
static int clear_rseq_cs(struct task_struct *t)
{
/*
* The rseq_cs field is set to NULL on preemption or signal
* delivery on top of rseq assembly block, as well as on top
* of code outside of the rseq assembly block. This performs
* a lazy clear of the rseq_cs field.
*
* Set rseq_cs to NULL.
*/
if (clear_user(&t->rseq->rseq_cs.ptr64, sizeof(t->rseq->rseq_cs.ptr64)))
return -EFAULT;
return 0;
}
/*
* Unsigned comparison will be true when ip >= start_ip, and when
* ip < start_ip + post_commit_offset.
*/
static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
{
return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
}
static int rseq_ip_fixup(struct pt_regs *regs)
{
unsigned long ip = instruction_pointer(regs);
struct task_struct *t = current;
struct rseq_cs rseq_cs;
int ret;
ret = rseq_get_rseq_cs(t, &rseq_cs);
if (ret)
return ret;
/*
* Handle potentially not being within a critical section.
* If not nested over a rseq critical section, restart is useless.
* Clear the rseq_cs pointer and return.
*/
if (!in_rseq_cs(ip, &rseq_cs))
return clear_rseq_cs(t);
ret = rseq_need_restart(t, rseq_cs.flags);
if (ret <= 0)
return ret;
ret = clear_rseq_cs(t);
if (ret)
return ret;
trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
rseq_cs.abort_ip);
instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
return 0;
}
/*
* This resume handler must always be executed between any of:
* - preemption,
* - signal delivery,
* and return to user-space.
*
* This is how we can ensure that the entire rseq critical section,
* consisting of both the C part and the assembly instruction sequence,
* will issue the commit instruction only if executed atomically with
* respect to other threads scheduled on the same CPU, and with respect
* to signal handlers.
*/
void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
{
struct task_struct *t = current;
int ret, sig;
if (unlikely(t->flags & PF_EXITING))
return;
if (unlikely(!access_ok(t->rseq, sizeof(*t->rseq))))
goto error;
ret = rseq_ip_fixup(regs);
if (unlikely(ret < 0))
goto error;
if (unlikely(rseq_update_cpu_id(t)))
goto error;
return;
error:
sig = ksig ? ksig->sig : 0;
force_sigsegv(sig, t);
}
#ifdef CONFIG_DEBUG_RSEQ
/*
* Terminate the process if a syscall is issued within a restartable
* sequence.
*/
void rseq_syscall(struct pt_regs *regs)
{
unsigned long ip = instruction_pointer(regs);
struct task_struct *t = current;
struct rseq_cs rseq_cs;
if (!t->rseq)
return;
if (!access_ok(t->rseq, sizeof(*t->rseq)) ||
rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
force_sig(SIGSEGV, t);
}
#endif
/*
* sys_rseq - setup restartable sequences for caller thread.
*/
SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
int, flags, u32, sig)
{
int ret;
if (flags & RSEQ_FLAG_UNREGISTER) {
/* Unregister rseq for current thread. */
if (current->rseq != rseq || !current->rseq)
return -EINVAL;
if (current->rseq_len != rseq_len)
return -EINVAL;
if (current->rseq_sig != sig)
return -EPERM;
ret = rseq_reset_rseq_cpu_id(current);
if (ret)
return ret;
current->rseq = NULL;
current->rseq_len = 0;
current->rseq_sig = 0;
return 0;
}
if (unlikely(flags))
return -EINVAL;
if (current->rseq) {
/*
* If rseq is already registered, check whether
* the provided address differs from the prior
* one.
*/
if (current->rseq != rseq || current->rseq_len != rseq_len)
return -EINVAL;
if (current->rseq_sig != sig)
return -EPERM;
/* Already registered. */
return -EBUSY;
}
/*
* If there was no rseq previously registered,
* ensure the provided rseq is properly aligned and valid.
*/
if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
rseq_len != sizeof(*rseq))
return -EINVAL;
if (!access_ok(rseq, rseq_len))
return -EFAULT;
current->rseq = rseq;
current->rseq_len = rseq_len;
current->rseq_sig = sig;
/*
* If rseq was previously inactive, and has just been
* registered, ensure the cpu_id_start and cpu_id fields
* are updated before returning to user-space.
*/
rseq_set_notify_resume(current);
return 0;
}