linux/arch/x86/kvm/cpuid.h
Sean Christopherson fd706c9b16 KVM: x86: Snapshot if a vCPU's vendor model is AMD vs. Intel compatible
Add kvm_vcpu_arch.is_amd_compatible to cache if a vCPU's vendor model is
compatible with AMD, i.e. if the vCPU vendor is AMD or Hygon, along with
helpers to check if a vCPU is compatible AMD vs. Intel.  To handle Intel
vs. AMD behavior related to masking the LVTPC entry, KVM will need to
check for vendor compatibility on every PMI injection, i.e. querying for
AMD will soon be a moderately hot path.

Note!  This subtly (or maybe not-so-subtly) makes "Intel compatible" KVM's
default behavior, both if userspace omits (or never sets) CPUID 0x0 and if
userspace sets a completely unknown vendor.  One could argue that KVM
should treat such vCPUs as not being compatible with Intel *or* AMD, but
that would add useless complexity to KVM.

KVM needs to do *something* in the face of vendor specific behavior, and
so unless KVM conjured up a magic third option, choosing to treat unknown
vendors as neither Intel nor AMD means that checks on AMD compatibility
would yield Intel behavior, and checks for Intel compatibility would yield
AMD behavior.  And that's far worse as it would effectively yield random
behavior depending on whether KVM checked for AMD vs. Intel vs. !AMD vs.
!Intel.  And practically speaking, all x86 CPUs follow either Intel or AMD
architecture, i.e. "supporting" an unknown third architecture adds no
value.

Deliberately don't convert any of the existing guest_cpuid_is_intel()
checks, as the Intel side of things is messier due to some flows explicitly
checking for exactly vendor==Intel, versus some flows assuming anything
that isn't "AMD compatible" gets Intel behavior.  The Intel code will be
cleaned up in the future.

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240405235603.1173076-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 12:58:56 -04:00

296 lines
7.8 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef ARCH_X86_KVM_CPUID_H
#define ARCH_X86_KVM_CPUID_H
#include "x86.h"
#include "reverse_cpuid.h"
#include <asm/cpu.h>
#include <asm/processor.h>
#include <uapi/asm/kvm_para.h>
extern u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
void kvm_set_cpu_caps(void);
void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
void kvm_update_pv_runtime(struct kvm_vcpu *vcpu);
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
u32 function, u32 index);
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
u32 function);
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries,
unsigned int type);
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid *cpuid,
struct kvm_cpuid_entry __user *entries);
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries);
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries);
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
u32 *ecx, u32 *edx, bool exact_only);
u32 xstate_required_size(u64 xstate_bv, bool compacted);
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu);
static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
{
return vcpu->arch.maxphyaddr;
}
static inline bool kvm_vcpu_is_legal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
{
return !(gpa & vcpu->arch.reserved_gpa_bits);
}
static inline bool kvm_vcpu_is_legal_aligned_gpa(struct kvm_vcpu *vcpu,
gpa_t gpa, gpa_t alignment)
{
return IS_ALIGNED(gpa, alignment) && kvm_vcpu_is_legal_gpa(vcpu, gpa);
}
static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
{
return kvm_vcpu_is_legal_aligned_gpa(vcpu, gpa, PAGE_SIZE);
}
static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
unsigned int leaf)
{
u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
*reg = kvm_cpu_caps[leaf];
}
static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
unsigned int x86_feature)
{
const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
struct kvm_cpuid_entry2 *entry;
entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
if (!entry)
return NULL;
return __cpuid_entry_get_reg(entry, cpuid.reg);
}
static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
unsigned int x86_feature)
{
u32 *reg;
reg = guest_cpuid_get_register(vcpu, x86_feature);
if (!reg)
return false;
return *reg & __feature_bit(x86_feature);
}
static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
unsigned int x86_feature)
{
u32 *reg;
reg = guest_cpuid_get_register(vcpu, x86_feature);
if (reg)
*reg &= ~__feature_bit(x86_feature);
}
static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0);
return best &&
(is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
}
static inline bool guest_cpuid_is_intel(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0);
return best && is_guest_vendor_intel(best->ebx, best->ecx, best->edx);
}
static inline bool guest_cpuid_is_amd_compatible(struct kvm_vcpu *vcpu)
{
return vcpu->arch.is_amd_compatible;
}
static inline bool guest_cpuid_is_intel_compatible(struct kvm_vcpu *vcpu)
{
return !guest_cpuid_is_amd_compatible(vcpu);
}
static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x1);
if (!best)
return -1;
return x86_family(best->eax);
}
static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x1);
if (!best)
return -1;
return x86_model(best->eax);
}
static inline bool cpuid_model_is_consistent(struct kvm_vcpu *vcpu)
{
return boot_cpu_data.x86_model == guest_cpuid_model(vcpu);
}
static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x1);
if (!best)
return -1;
return x86_stepping(best->eax);
}
static inline bool guest_has_spec_ctrl_msr(struct kvm_vcpu *vcpu)
{
return (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) ||
guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) ||
guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD));
}
static inline bool guest_has_pred_cmd_msr(struct kvm_vcpu *vcpu)
{
return (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB) ||
guest_cpuid_has(vcpu, X86_FEATURE_SBPB));
}
static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
{
return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
}
static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
{
return vcpu->arch.msr_misc_features_enables &
MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
}
static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
{
unsigned int x86_leaf = __feature_leaf(x86_feature);
reverse_cpuid_check(x86_leaf);
kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
}
static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
{
unsigned int x86_leaf = __feature_leaf(x86_feature);
reverse_cpuid_check(x86_leaf);
kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
}
static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
{
unsigned int x86_leaf = __feature_leaf(x86_feature);
reverse_cpuid_check(x86_leaf);
return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
}
static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
{
return !!kvm_cpu_cap_get(x86_feature);
}
static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
{
if (boot_cpu_has(x86_feature))
kvm_cpu_cap_set(x86_feature);
}
static __always_inline bool guest_pv_has(struct kvm_vcpu *vcpu,
unsigned int kvm_feature)
{
if (!vcpu->arch.pv_cpuid.enforce)
return true;
return vcpu->arch.pv_cpuid.features & (1u << kvm_feature);
}
enum kvm_governed_features {
#define KVM_GOVERNED_FEATURE(x) KVM_GOVERNED_##x,
#include "governed_features.h"
KVM_NR_GOVERNED_FEATURES
};
static __always_inline int kvm_governed_feature_index(unsigned int x86_feature)
{
switch (x86_feature) {
#define KVM_GOVERNED_FEATURE(x) case x: return KVM_GOVERNED_##x;
#include "governed_features.h"
default:
return -1;
}
}
static __always_inline bool kvm_is_governed_feature(unsigned int x86_feature)
{
return kvm_governed_feature_index(x86_feature) >= 0;
}
static __always_inline void kvm_governed_feature_set(struct kvm_vcpu *vcpu,
unsigned int x86_feature)
{
BUILD_BUG_ON(!kvm_is_governed_feature(x86_feature));
__set_bit(kvm_governed_feature_index(x86_feature),
vcpu->arch.governed_features.enabled);
}
static __always_inline void kvm_governed_feature_check_and_set(struct kvm_vcpu *vcpu,
unsigned int x86_feature)
{
if (kvm_cpu_cap_has(x86_feature) && guest_cpuid_has(vcpu, x86_feature))
kvm_governed_feature_set(vcpu, x86_feature);
}
static __always_inline bool guest_can_use(struct kvm_vcpu *vcpu,
unsigned int x86_feature)
{
BUILD_BUG_ON(!kvm_is_governed_feature(x86_feature));
return test_bit(kvm_governed_feature_index(x86_feature),
vcpu->arch.governed_features.enabled);
}
static inline bool kvm_vcpu_is_legal_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
if (guest_can_use(vcpu, X86_FEATURE_LAM))
cr3 &= ~(X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
return kvm_vcpu_is_legal_gpa(vcpu, cr3);
}
#endif