linux/arch/s390/kernel/perf_cpum_sf.c
Thomas Richter 6aca56c024 s390/cpum_sf: remove check on CPU being online
During sampling event initialization, a check is done if that
particular CPU the event is to be installed on is actually online.
This check is not necessary, as it is also performed in the
system call entry point. Therefore remove this check.
No functional change.

Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
2023-07-04 07:45:18 +02:00

2281 lines
63 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Performance event support for the System z CPU-measurement Sampling Facility
*
* Copyright IBM Corp. 2013, 2018
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#define KMSG_COMPONENT "cpum_sf"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/pid.h>
#include <linux/notifier.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <asm/cpu_mf.h>
#include <asm/irq.h>
#include <asm/debug.h>
#include <asm/timex.h>
#include <linux/io.h>
/* Minimum number of sample-data-block-tables:
* At least one table is required for the sampling buffer structure.
* A single table contains up to 511 pointers to sample-data-blocks.
*/
#define CPUM_SF_MIN_SDBT 1
/* Number of sample-data-blocks per sample-data-block-table (SDBT):
* A table contains SDB pointers (8 bytes) and one table-link entry
* that points to the origin of the next SDBT.
*/
#define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
/* Maximum page offset for an SDBT table-link entry:
* If this page offset is reached, a table-link entry to the next SDBT
* must be added.
*/
#define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
static inline int require_table_link(const void *sdbt)
{
return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
}
/* Minimum and maximum sampling buffer sizes:
*
* This number represents the maximum size of the sampling buffer taking
* the number of sample-data-block-tables into account. Note that these
* numbers apply to the basic-sampling function only.
* The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
* the diagnostic-sampling function is active.
*
* Sampling buffer size Buffer characteristics
* ---------------------------------------------------
* 64KB == 16 pages (4KB per page)
* 1 page for SDB-tables
* 15 pages for SDBs
*
* 32MB == 8192 pages (4KB per page)
* 16 pages for SDB-tables
* 8176 pages for SDBs
*/
static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
struct sf_buffer {
unsigned long *sdbt; /* Sample-data-block-table origin */
/* buffer characteristics (required for buffer increments) */
unsigned long num_sdb; /* Number of sample-data-blocks */
unsigned long num_sdbt; /* Number of sample-data-block-tables */
unsigned long *tail; /* last sample-data-block-table */
};
struct aux_buffer {
struct sf_buffer sfb;
unsigned long head; /* index of SDB of buffer head */
unsigned long alert_mark; /* index of SDB of alert request position */
unsigned long empty_mark; /* mark of SDB not marked full */
unsigned long *sdb_index; /* SDB address for fast lookup */
unsigned long *sdbt_index; /* SDBT address for fast lookup */
};
struct cpu_hw_sf {
/* CPU-measurement sampling information block */
struct hws_qsi_info_block qsi;
/* CPU-measurement sampling control block */
struct hws_lsctl_request_block lsctl;
struct sf_buffer sfb; /* Sampling buffer */
unsigned int flags; /* Status flags */
struct perf_event *event; /* Scheduled perf event */
struct perf_output_handle handle; /* AUX buffer output handle */
};
static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
/* Debug feature */
static debug_info_t *sfdbg;
/* Sampling control helper functions */
static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
unsigned long freq)
{
return (USEC_PER_SEC / freq) * qsi->cpu_speed;
}
static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
unsigned long rate)
{
return USEC_PER_SEC * qsi->cpu_speed / rate;
}
/* Return TOD timestamp contained in an trailer entry */
static inline unsigned long long trailer_timestamp(struct hws_trailer_entry *te)
{
/* TOD in STCKE format */
if (te->header.t)
return *((unsigned long long *)&te->timestamp[1]);
/* TOD in STCK format */
return *((unsigned long long *)&te->timestamp[0]);
}
/* Return pointer to trailer entry of an sample data block */
static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
{
void *ret;
ret = (void *)v;
ret += PAGE_SIZE;
ret -= sizeof(struct hws_trailer_entry);
return ret;
}
/*
* Return true if the entry in the sample data block table (sdbt)
* is a link to the next sdbt
*/
static inline int is_link_entry(unsigned long *s)
{
return *s & 0x1UL ? 1 : 0;
}
/* Return pointer to the linked sdbt */
static inline unsigned long *get_next_sdbt(unsigned long *s)
{
return phys_to_virt(*s & ~0x1UL);
}
/*
* sf_disable() - Switch off sampling facility
*/
static int sf_disable(void)
{
struct hws_lsctl_request_block sreq;
memset(&sreq, 0, sizeof(sreq));
return lsctl(&sreq);
}
/*
* sf_buffer_available() - Check for an allocated sampling buffer
*/
static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
{
return !!cpuhw->sfb.sdbt;
}
/*
* deallocate sampling facility buffer
*/
static void free_sampling_buffer(struct sf_buffer *sfb)
{
unsigned long *sdbt, *curr;
if (!sfb->sdbt)
return;
sdbt = sfb->sdbt;
curr = sdbt;
/* Free the SDBT after all SDBs are processed... */
while (1) {
if (!*curr || !sdbt)
break;
/* Process table-link entries */
if (is_link_entry(curr)) {
curr = get_next_sdbt(curr);
if (sdbt)
free_page((unsigned long)sdbt);
/* If the origin is reached, sampling buffer is freed */
if (curr == sfb->sdbt)
break;
else
sdbt = curr;
} else {
/* Process SDB pointer */
if (*curr) {
free_page((unsigned long)phys_to_virt(*curr));
curr++;
}
}
}
debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
(unsigned long)sfb->sdbt);
memset(sfb, 0, sizeof(*sfb));
}
static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
{
struct hws_trailer_entry *te;
unsigned long sdb;
/* Allocate and initialize sample-data-block */
sdb = get_zeroed_page(gfp_flags);
if (!sdb)
return -ENOMEM;
te = trailer_entry_ptr(sdb);
te->header.a = 1;
/* Link SDB into the sample-data-block-table */
*sdbt = virt_to_phys((void *)sdb);
return 0;
}
/*
* realloc_sampling_buffer() - extend sampler memory
*
* Allocates new sample-data-blocks and adds them to the specified sampling
* buffer memory.
*
* Important: This modifies the sampling buffer and must be called when the
* sampling facility is disabled.
*
* Returns zero on success, non-zero otherwise.
*/
static int realloc_sampling_buffer(struct sf_buffer *sfb,
unsigned long num_sdb, gfp_t gfp_flags)
{
int i, rc;
unsigned long *new, *tail, *tail_prev = NULL;
if (!sfb->sdbt || !sfb->tail)
return -EINVAL;
if (!is_link_entry(sfb->tail))
return -EINVAL;
/* Append to the existing sampling buffer, overwriting the table-link
* register.
* The tail variables always points to the "tail" (last and table-link)
* entry in an SDB-table.
*/
tail = sfb->tail;
/* Do a sanity check whether the table-link entry points to
* the sampling buffer origin.
*/
if (sfb->sdbt != get_next_sdbt(tail)) {
debug_sprintf_event(sfdbg, 3, "%s: "
"sampling buffer is not linked: origin %#lx"
" tail %#lx\n", __func__,
(unsigned long)sfb->sdbt,
(unsigned long)tail);
return -EINVAL;
}
/* Allocate remaining SDBs */
rc = 0;
for (i = 0; i < num_sdb; i++) {
/* Allocate a new SDB-table if it is full. */
if (require_table_link(tail)) {
new = (unsigned long *)get_zeroed_page(gfp_flags);
if (!new) {
rc = -ENOMEM;
break;
}
sfb->num_sdbt++;
/* Link current page to tail of chain */
*tail = virt_to_phys((void *)new) + 1;
tail_prev = tail;
tail = new;
}
/* Allocate a new sample-data-block.
* If there is not enough memory, stop the realloc process
* and simply use what was allocated. If this is a temporary
* issue, a new realloc call (if required) might succeed.
*/
rc = alloc_sample_data_block(tail, gfp_flags);
if (rc) {
/* Undo last SDBT. An SDBT with no SDB at its first
* entry but with an SDBT entry instead can not be
* handled by the interrupt handler code.
* Avoid this situation.
*/
if (tail_prev) {
sfb->num_sdbt--;
free_page((unsigned long)new);
tail = tail_prev;
}
break;
}
sfb->num_sdb++;
tail++;
tail_prev = new = NULL; /* Allocated at least one SBD */
}
/* Link sampling buffer to its origin */
*tail = virt_to_phys(sfb->sdbt) + 1;
sfb->tail = tail;
debug_sprintf_event(sfdbg, 4, "%s: new buffer"
" settings: sdbt %lu sdb %lu\n", __func__,
sfb->num_sdbt, sfb->num_sdb);
return rc;
}
/*
* allocate_sampling_buffer() - allocate sampler memory
*
* Allocates and initializes a sampling buffer structure using the
* specified number of sample-data-blocks (SDB). For each allocation,
* a 4K page is used. The number of sample-data-block-tables (SDBT)
* are calculated from SDBs.
* Also set the ALERT_REQ mask in each SDBs trailer.
*
* Returns zero on success, non-zero otherwise.
*/
static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
{
int rc;
if (sfb->sdbt)
return -EINVAL;
/* Allocate the sample-data-block-table origin */
sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
if (!sfb->sdbt)
return -ENOMEM;
sfb->num_sdb = 0;
sfb->num_sdbt = 1;
/* Link the table origin to point to itself to prepare for
* realloc_sampling_buffer() invocation.
*/
sfb->tail = sfb->sdbt;
*sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1;
/* Allocate requested number of sample-data-blocks */
rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
if (rc) {
free_sampling_buffer(sfb);
debug_sprintf_event(sfdbg, 4, "%s: "
"realloc_sampling_buffer failed with rc %i\n",
__func__, rc);
} else
debug_sprintf_event(sfdbg, 4,
"%s: tear %#lx dear %#lx\n", __func__,
(unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
return rc;
}
static void sfb_set_limits(unsigned long min, unsigned long max)
{
struct hws_qsi_info_block si;
CPUM_SF_MIN_SDB = min;
CPUM_SF_MAX_SDB = max;
memset(&si, 0, sizeof(si));
if (!qsi(&si))
CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
}
static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
{
return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
: CPUM_SF_MAX_SDB;
}
static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
struct hw_perf_event *hwc)
{
if (!sfb->sdbt)
return SFB_ALLOC_REG(hwc);
if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
return 0;
}
static int sfb_has_pending_allocs(struct sf_buffer *sfb,
struct hw_perf_event *hwc)
{
return sfb_pending_allocs(sfb, hwc) > 0;
}
static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
{
/* Limit the number of SDBs to not exceed the maximum */
num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
if (num)
SFB_ALLOC_REG(hwc) += num;
}
static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
{
SFB_ALLOC_REG(hwc) = 0;
sfb_account_allocs(num, hwc);
}
static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
{
if (cpuhw->sfb.sdbt)
free_sampling_buffer(&cpuhw->sfb);
}
static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
{
unsigned long n_sdb, freq;
size_t sample_size;
/* Calculate sampling buffers using 4K pages
*
* 1. The sampling size is 32 bytes for basic sampling. This size
* is the same for all machine types. Diagnostic
* sampling uses auxlilary data buffer setup which provides the
* memory for SDBs using linux common code auxiliary trace
* setup.
*
* 2. Function alloc_sampling_buffer() sets the Alert Request
* Control indicator to trigger a measurement-alert to harvest
* sample-data-blocks (SDB). This is done per SDB. This
* measurement alert interrupt fires quick enough to handle
* one SDB, on very high frequency and work loads there might
* be 2 to 3 SBDs available for sample processing.
* Currently there is no need for setup alert request on every
* n-th page. This is counterproductive as one IRQ triggers
* a very high number of samples to be processed at one IRQ.
*
* 3. Use the sampling frequency as input.
* Compute the number of SDBs and ensure a minimum
* of CPUM_SF_MIN_SDB. Depending on frequency add some more
* SDBs to handle a higher sampling rate.
* Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
* (one SDB) for every 10000 HZ frequency increment.
*
* 4. Compute the number of sample-data-block-tables (SDBT) and
* ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
* to 511 SDBs).
*/
sample_size = sizeof(struct hws_basic_entry);
freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
/* If there is already a sampling buffer allocated, it is very likely
* that the sampling facility is enabled too. If the event to be
* initialized requires a greater sampling buffer, the allocation must
* be postponed. Changing the sampling buffer requires the sampling
* facility to be in the disabled state. So, account the number of
* required SDBs and let cpumsf_pmu_enable() resize the buffer just
* before the event is started.
*/
sfb_init_allocs(n_sdb, hwc);
if (sf_buffer_available(cpuhw))
return 0;
debug_sprintf_event(sfdbg, 3,
"%s: rate %lu f %lu sdb %lu/%lu"
" sample_size %lu cpuhw %p\n", __func__,
SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
sample_size, cpuhw);
return alloc_sampling_buffer(&cpuhw->sfb,
sfb_pending_allocs(&cpuhw->sfb, hwc));
}
static unsigned long min_percent(unsigned int percent, unsigned long base,
unsigned long min)
{
return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
}
static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
{
/* Use a percentage-based approach to extend the sampling facility
* buffer. Accept up to 5% sample data loss.
* Vary the extents between 1% to 5% of the current number of
* sample-data-blocks.
*/
if (ratio <= 5)
return 0;
if (ratio <= 25)
return min_percent(1, base, 1);
if (ratio <= 50)
return min_percent(1, base, 1);
if (ratio <= 75)
return min_percent(2, base, 2);
if (ratio <= 100)
return min_percent(3, base, 3);
if (ratio <= 250)
return min_percent(4, base, 4);
return min_percent(5, base, 8);
}
static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
struct hw_perf_event *hwc)
{
unsigned long ratio, num;
if (!OVERFLOW_REG(hwc))
return;
/* The sample_overflow contains the average number of sample data
* that has been lost because sample-data-blocks were full.
*
* Calculate the total number of sample data entries that has been
* discarded. Then calculate the ratio of lost samples to total samples
* per second in percent.
*/
ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
/* Compute number of sample-data-blocks */
num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
if (num)
sfb_account_allocs(num, hwc);
debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
__func__, OVERFLOW_REG(hwc), ratio, num);
OVERFLOW_REG(hwc) = 0;
}
/* extend_sampling_buffer() - Extend sampling buffer
* @sfb: Sampling buffer structure (for local CPU)
* @hwc: Perf event hardware structure
*
* Use this function to extend the sampling buffer based on the overflow counter
* and postponed allocation extents stored in the specified Perf event hardware.
*
* Important: This function disables the sampling facility in order to safely
* change the sampling buffer structure. Do not call this function
* when the PMU is active.
*/
static void extend_sampling_buffer(struct sf_buffer *sfb,
struct hw_perf_event *hwc)
{
unsigned long num, num_old;
int rc;
num = sfb_pending_allocs(sfb, hwc);
if (!num)
return;
num_old = sfb->num_sdb;
/* Disable the sampling facility to reset any states and also
* clear pending measurement alerts.
*/
sf_disable();
/* Extend the sampling buffer.
* This memory allocation typically happens in an atomic context when
* called by perf. Because this is a reallocation, it is fine if the
* new SDB-request cannot be satisfied immediately.
*/
rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
if (rc)
debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
__func__, rc);
if (sfb_has_pending_allocs(sfb, hwc))
debug_sprintf_event(sfdbg, 5, "%s: "
"req %lu alloc %lu remaining %lu\n",
__func__, num, sfb->num_sdb - num_old,
sfb_pending_allocs(sfb, hwc));
}
/* Number of perf events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_cpumf_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);
#define PMC_INIT 0
#define PMC_RELEASE 1
#define PMC_FAILURE 2
static void setup_pmc_cpu(void *flags)
{
struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
int err = 0;
switch (*((int *)flags)) {
case PMC_INIT:
memset(cpusf, 0, sizeof(*cpusf));
err = qsi(&cpusf->qsi);
if (err)
break;
cpusf->flags |= PMU_F_RESERVED;
err = sf_disable();
break;
case PMC_RELEASE:
cpusf->flags &= ~PMU_F_RESERVED;
err = sf_disable();
if (!err)
deallocate_buffers(cpusf);
break;
}
if (err) {
*((int *)flags) |= PMC_FAILURE;
pr_err("Switching off the sampling facility failed with rc %i\n", err);
}
}
static void release_pmc_hardware(void)
{
int flags = PMC_RELEASE;
irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
on_each_cpu(setup_pmc_cpu, &flags, 1);
}
static int reserve_pmc_hardware(void)
{
int flags = PMC_INIT;
on_each_cpu(setup_pmc_cpu, &flags, 1);
if (flags & PMC_FAILURE) {
release_pmc_hardware();
return -ENODEV;
}
irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
return 0;
}
static void hw_perf_event_destroy(struct perf_event *event)
{
/* Release PMC if this is the last perf event */
if (!atomic_add_unless(&num_events, -1, 1)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_dec_return(&num_events) == 0)
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
static void hw_init_period(struct hw_perf_event *hwc, u64 period)
{
hwc->sample_period = period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
unsigned long rate)
{
return clamp_t(unsigned long, rate,
si->min_sampl_rate, si->max_sampl_rate);
}
static u32 cpumsf_pid_type(struct perf_event *event,
u32 pid, enum pid_type type)
{
struct task_struct *tsk;
/* Idle process */
if (!pid)
goto out;
tsk = find_task_by_pid_ns(pid, &init_pid_ns);
pid = -1;
if (tsk) {
/*
* Only top level events contain the pid namespace in which
* they are created.
*/
if (event->parent)
event = event->parent;
pid = __task_pid_nr_ns(tsk, type, event->ns);
/*
* See also 1d953111b648
* "perf/core: Don't report zero PIDs for exiting tasks".
*/
if (!pid && !pid_alive(tsk))
pid = -1;
}
out:
return pid;
}
static void cpumsf_output_event_pid(struct perf_event *event,
struct perf_sample_data *data,
struct pt_regs *regs)
{
u32 pid;
struct perf_event_header header;
struct perf_output_handle handle;
/*
* Obtain the PID from the basic-sampling data entry and
* correct the data->tid_entry.pid value.
*/
pid = data->tid_entry.pid;
/* Protect callchain buffers, tasks */
rcu_read_lock();
perf_prepare_sample(data, event, regs);
perf_prepare_header(&header, data, event, regs);
if (perf_output_begin(&handle, data, event, header.size))
goto out;
/* Update the process ID (see also kernel/events/core.c) */
data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
perf_output_sample(&handle, &header, data, event);
perf_output_end(&handle);
out:
rcu_read_unlock();
}
static unsigned long getrate(bool freq, unsigned long sample,
struct hws_qsi_info_block *si)
{
unsigned long rate;
if (freq) {
rate = freq_to_sample_rate(si, sample);
rate = hw_limit_rate(si, rate);
} else {
/* The min/max sampling rates specifies the valid range
* of sample periods. If the specified sample period is
* out of range, limit the period to the range boundary.
*/
rate = hw_limit_rate(si, sample);
/* The perf core maintains a maximum sample rate that is
* configurable through the sysctl interface. Ensure the
* sampling rate does not exceed this value. This also helps
* to avoid throttling when pushing samples with
* perf_event_overflow().
*/
if (sample_rate_to_freq(si, rate) >
sysctl_perf_event_sample_rate) {
debug_sprintf_event(sfdbg, 1, "%s: "
"Sampling rate exceeds maximum "
"perf sample rate\n", __func__);
rate = 0;
}
}
return rate;
}
/* The sampling information (si) contains information about the
* min/max sampling intervals and the CPU speed. So calculate the
* correct sampling interval and avoid the whole period adjust
* feedback loop.
*
* Since the CPU Measurement sampling facility can not handle frequency
* calculate the sampling interval when frequency is specified using
* this formula:
* interval := cpu_speed * 1000000 / sample_freq
*
* Returns errno on bad input and zero on success with parameter interval
* set to the correct sampling rate.
*
* Note: This function turns off freq bit to avoid calling function
* perf_adjust_period(). This causes frequency adjustment in the common
* code part which causes tremendous variations in the counter values.
*/
static int __hw_perf_event_init_rate(struct perf_event *event,
struct hws_qsi_info_block *si)
{
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
unsigned long rate;
if (attr->freq) {
if (!attr->sample_freq)
return -EINVAL;
rate = getrate(attr->freq, attr->sample_freq, si);
attr->freq = 0; /* Don't call perf_adjust_period() */
SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
} else {
rate = getrate(attr->freq, attr->sample_period, si);
if (!rate)
return -EINVAL;
}
attr->sample_period = rate;
SAMPL_RATE(hwc) = rate;
hw_init_period(hwc, SAMPL_RATE(hwc));
debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
__func__, event->cpu, event->attr.sample_period,
event->attr.freq, SAMPLE_FREQ_MODE(hwc));
return 0;
}
static int __hw_perf_event_init(struct perf_event *event)
{
struct cpu_hw_sf *cpuhw;
struct hws_qsi_info_block si;
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
int cpu, err;
/* Reserve CPU-measurement sampling facility */
err = 0;
if (!atomic_inc_not_zero(&num_events)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
err = -EBUSY;
else
atomic_inc(&num_events);
mutex_unlock(&pmc_reserve_mutex);
}
event->destroy = hw_perf_event_destroy;
if (err)
goto out;
/* Access per-CPU sampling information (query sampling info) */
/*
* The event->cpu value can be -1 to count on every CPU, for example,
* when attaching to a task. If this is specified, use the query
* sampling info from the current CPU, otherwise use event->cpu to
* retrieve the per-CPU information.
* Later, cpuhw indicates whether to allocate sampling buffers for a
* particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
*/
memset(&si, 0, sizeof(si));
cpuhw = NULL;
if (event->cpu == -1)
qsi(&si);
else {
/* Event is pinned to a particular CPU, retrieve the per-CPU
* sampling structure for accessing the CPU-specific QSI.
*/
cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
si = cpuhw->qsi;
}
/* Check sampling facility authorization and, if not authorized,
* fall back to other PMUs. It is safe to check any CPU because
* the authorization is identical for all configured CPUs.
*/
if (!si.as) {
err = -ENOENT;
goto out;
}
if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
err = -EBUSY;
goto out;
}
/* Always enable basic sampling */
SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
/* Check if diagnostic sampling is requested. Deny if the required
* sampling authorization is missing.
*/
if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
if (!si.ad) {
err = -EPERM;
goto out;
}
SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
}
err = __hw_perf_event_init_rate(event, &si);
if (err)
goto out;
/* Initialize sample data overflow accounting */
hwc->extra_reg.reg = REG_OVERFLOW;
OVERFLOW_REG(hwc) = 0;
/* Use AUX buffer. No need to allocate it by ourself */
if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
return 0;
/* Allocate the per-CPU sampling buffer using the CPU information
* from the event. If the event is not pinned to a particular
* CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
* buffers for each online CPU.
*/
if (cpuhw)
/* Event is pinned to a particular CPU */
err = allocate_buffers(cpuhw, hwc);
else {
/* Event is not pinned, allocate sampling buffer on
* each online CPU
*/
for_each_online_cpu(cpu) {
cpuhw = &per_cpu(cpu_hw_sf, cpu);
err = allocate_buffers(cpuhw, hwc);
if (err)
break;
}
}
/* If PID/TID sampling is active, replace the default overflow
* handler to extract and resolve the PIDs from the basic-sampling
* data entries.
*/
if (event->attr.sample_type & PERF_SAMPLE_TID)
if (is_default_overflow_handler(event))
event->overflow_handler = cpumsf_output_event_pid;
out:
return err;
}
static bool is_callchain_event(struct perf_event *event)
{
u64 sample_type = event->attr.sample_type;
return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
PERF_SAMPLE_STACK_USER);
}
static int cpumsf_pmu_event_init(struct perf_event *event)
{
int err;
/* No support for taken branch sampling */
/* No support for callchain, stacks and registers */
if (has_branch_stack(event) || is_callchain_event(event))
return -EOPNOTSUPP;
switch (event->attr.type) {
case PERF_TYPE_RAW:
if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
(event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
return -ENOENT;
break;
case PERF_TYPE_HARDWARE:
/* Support sampling of CPU cycles in addition to the
* counter facility. However, the counter facility
* is more precise and, hence, restrict this PMU to
* sampling events only.
*/
if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
return -ENOENT;
if (!is_sampling_event(event))
return -ENOENT;
break;
default:
return -ENOENT;
}
/* Force reset of idle/hv excludes regardless of what the
* user requested.
*/
if (event->attr.exclude_hv)
event->attr.exclude_hv = 0;
if (event->attr.exclude_idle)
event->attr.exclude_idle = 0;
err = __hw_perf_event_init(event);
if (unlikely(err))
if (event->destroy)
event->destroy(event);
return err;
}
static void cpumsf_pmu_enable(struct pmu *pmu)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
struct hw_perf_event *hwc;
int err;
if (cpuhw->flags & PMU_F_ENABLED)
return;
if (cpuhw->flags & PMU_F_ERR_MASK)
return;
/* Check whether to extent the sampling buffer.
*
* Two conditions trigger an increase of the sampling buffer for a
* perf event:
* 1. Postponed buffer allocations from the event initialization.
* 2. Sampling overflows that contribute to pending allocations.
*
* Note that the extend_sampling_buffer() function disables the sampling
* facility, but it can be fully re-enabled using sampling controls that
* have been saved in cpumsf_pmu_disable().
*/
if (cpuhw->event) {
hwc = &cpuhw->event->hw;
if (!(SAMPL_DIAG_MODE(hwc))) {
/*
* Account number of overflow-designated
* buffer extents
*/
sfb_account_overflows(cpuhw, hwc);
extend_sampling_buffer(&cpuhw->sfb, hwc);
}
/* Rate may be adjusted with ioctl() */
cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
}
/* (Re)enable the PMU and sampling facility */
cpuhw->flags |= PMU_F_ENABLED;
barrier();
err = lsctl(&cpuhw->lsctl);
if (err) {
cpuhw->flags &= ~PMU_F_ENABLED;
pr_err("Loading sampling controls failed: op 1 err %i\n", err);
return;
}
/* Load current program parameter */
lpp(&S390_lowcore.lpp);
debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
"interval %#lx tear %#lx dear %#lx\n", __func__,
cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
cpuhw->lsctl.cd, cpuhw->lsctl.interval,
cpuhw->lsctl.tear, cpuhw->lsctl.dear);
}
static void cpumsf_pmu_disable(struct pmu *pmu)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
struct hws_lsctl_request_block inactive;
struct hws_qsi_info_block si;
int err;
if (!(cpuhw->flags & PMU_F_ENABLED))
return;
if (cpuhw->flags & PMU_F_ERR_MASK)
return;
/* Switch off sampling activation control */
inactive = cpuhw->lsctl;
inactive.cs = 0;
inactive.cd = 0;
err = lsctl(&inactive);
if (err) {
pr_err("Loading sampling controls failed: op 2 err %i\n", err);
return;
}
/* Save state of TEAR and DEAR register contents */
err = qsi(&si);
if (!err) {
/* TEAR/DEAR values are valid only if the sampling facility is
* enabled. Note that cpumsf_pmu_disable() might be called even
* for a disabled sampling facility because cpumsf_pmu_enable()
* controls the enable/disable state.
*/
if (si.es) {
cpuhw->lsctl.tear = si.tear;
cpuhw->lsctl.dear = si.dear;
}
} else
debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
__func__, err);
cpuhw->flags &= ~PMU_F_ENABLED;
}
/* perf_exclude_event() - Filter event
* @event: The perf event
* @regs: pt_regs structure
* @sde_regs: Sample-data-entry (sde) regs structure
*
* Filter perf events according to their exclude specification.
*
* Return non-zero if the event shall be excluded.
*/
static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
struct perf_sf_sde_regs *sde_regs)
{
if (event->attr.exclude_user && user_mode(regs))
return 1;
if (event->attr.exclude_kernel && !user_mode(regs))
return 1;
if (event->attr.exclude_guest && sde_regs->in_guest)
return 1;
if (event->attr.exclude_host && !sde_regs->in_guest)
return 1;
return 0;
}
/* perf_push_sample() - Push samples to perf
* @event: The perf event
* @sample: Hardware sample data
*
* Use the hardware sample data to create perf event sample. The sample
* is the pushed to the event subsystem and the function checks for
* possible event overflows. If an event overflow occurs, the PMU is
* stopped.
*
* Return non-zero if an event overflow occurred.
*/
static int perf_push_sample(struct perf_event *event,
struct hws_basic_entry *basic)
{
int overflow;
struct pt_regs regs;
struct perf_sf_sde_regs *sde_regs;
struct perf_sample_data data;
/* Setup perf sample */
perf_sample_data_init(&data, 0, event->hw.last_period);
/* Setup pt_regs to look like an CPU-measurement external interrupt
* using the Program Request Alert code. The regs.int_parm_long
* field which is unused contains additional sample-data-entry related
* indicators.
*/
memset(&regs, 0, sizeof(regs));
regs.int_code = 0x1407;
regs.int_parm = CPU_MF_INT_SF_PRA;
sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
psw_bits(regs.psw).ia = basic->ia;
psw_bits(regs.psw).dat = basic->T;
psw_bits(regs.psw).wait = basic->W;
psw_bits(regs.psw).pstate = basic->P;
psw_bits(regs.psw).as = basic->AS;
/*
* Use the hardware provided configuration level to decide if the
* sample belongs to a guest or host. If that is not available,
* fall back to the following heuristics:
* A non-zero guest program parameter always indicates a guest
* sample. Some early samples or samples from guests without
* lpp usage would be misaccounted to the host. We use the asn
* value as an addon heuristic to detect most of these guest samples.
* If the value differs from 0xffff (the host value), we assume to
* be a KVM guest.
*/
switch (basic->CL) {
case 1: /* logical partition */
sde_regs->in_guest = 0;
break;
case 2: /* virtual machine */
sde_regs->in_guest = 1;
break;
default: /* old machine, use heuristics */
if (basic->gpp || basic->prim_asn != 0xffff)
sde_regs->in_guest = 1;
break;
}
/*
* Store the PID value from the sample-data-entry to be
* processed and resolved by cpumsf_output_event_pid().
*/
data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
overflow = 0;
if (perf_exclude_event(event, &regs, sde_regs))
goto out;
if (perf_event_overflow(event, &data, &regs)) {
overflow = 1;
event->pmu->stop(event, 0);
}
perf_event_update_userpage(event);
out:
return overflow;
}
static void perf_event_count_update(struct perf_event *event, u64 count)
{
local64_add(count, &event->count);
}
/* hw_collect_samples() - Walk through a sample-data-block and collect samples
* @event: The perf event
* @sdbt: Sample-data-block table
* @overflow: Event overflow counter
*
* Walks through a sample-data-block and collects sampling data entries that are
* then pushed to the perf event subsystem. Depending on the sampling function,
* there can be either basic-sampling or combined-sampling data entries. A
* combined-sampling data entry consists of a basic- and a diagnostic-sampling
* data entry. The sampling function is determined by the flags in the perf
* event hardware structure. The function always works with a combined-sampling
* data entry but ignores the the diagnostic portion if it is not available.
*
* Note that the implementation focuses on basic-sampling data entries and, if
* such an entry is not valid, the entire combined-sampling data entry is
* ignored.
*
* The overflow variables counts the number of samples that has been discarded
* due to a perf event overflow.
*/
static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
unsigned long long *overflow)
{
struct hws_trailer_entry *te;
struct hws_basic_entry *sample;
te = trailer_entry_ptr((unsigned long)sdbt);
sample = (struct hws_basic_entry *)sdbt;
while ((unsigned long *)sample < (unsigned long *)te) {
/* Check for an empty sample */
if (!sample->def || sample->LS)
break;
/* Update perf event period */
perf_event_count_update(event, SAMPL_RATE(&event->hw));
/* Check whether sample is valid */
if (sample->def == 0x0001) {
/* If an event overflow occurred, the PMU is stopped to
* throttle event delivery. Remaining sample data is
* discarded.
*/
if (!*overflow) {
/* Check whether sample is consistent */
if (sample->I == 0 && sample->W == 0) {
/* Deliver sample data to perf */
*overflow = perf_push_sample(event,
sample);
}
} else
/* Count discarded samples */
*overflow += 1;
} else {
debug_sprintf_event(sfdbg, 4,
"%s: Found unknown"
" sampling data entry: te->f %i"
" basic.def %#4x (%p)\n", __func__,
te->header.f, sample->def, sample);
/* Sample slot is not yet written or other record.
*
* This condition can occur if the buffer was reused
* from a combined basic- and diagnostic-sampling.
* If only basic-sampling is then active, entries are
* written into the larger diagnostic entries.
* This is typically the case for sample-data-blocks
* that are not full. Stop processing if the first
* invalid format was detected.
*/
if (!te->header.f)
break;
}
/* Reset sample slot and advance to next sample */
sample->def = 0;
sample++;
}
}
/* hw_perf_event_update() - Process sampling buffer
* @event: The perf event
* @flush_all: Flag to also flush partially filled sample-data-blocks
*
* Processes the sampling buffer and create perf event samples.
* The sampling buffer position are retrieved and saved in the TEAR_REG
* register of the specified perf event.
*
* Only full sample-data-blocks are processed. Specify the flush_all flag
* to also walk through partially filled sample-data-blocks.
*/
static void hw_perf_event_update(struct perf_event *event, int flush_all)
{
unsigned long long event_overflow, sampl_overflow, num_sdb;
union hws_trailer_header old, prev, new;
struct hw_perf_event *hwc = &event->hw;
struct hws_trailer_entry *te;
unsigned long *sdbt, sdb;
int done;
/*
* AUX buffer is used when in diagnostic sampling mode.
* No perf events/samples are created.
*/
if (SAMPL_DIAG_MODE(&event->hw))
return;
sdbt = (unsigned long *)TEAR_REG(hwc);
done = event_overflow = sampl_overflow = num_sdb = 0;
while (!done) {
/* Get the trailer entry of the sample-data-block */
sdb = (unsigned long)phys_to_virt(*sdbt);
te = trailer_entry_ptr(sdb);
/* Leave loop if no more work to do (block full indicator) */
if (!te->header.f) {
done = 1;
if (!flush_all)
break;
}
/* Check the sample overflow count */
if (te->header.overflow)
/* Account sample overflows and, if a particular limit
* is reached, extend the sampling buffer.
* For details, see sfb_account_overflows().
*/
sampl_overflow += te->header.overflow;
/* Timestamps are valid for full sample-data-blocks only */
debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx/%#lx "
"overflow %llu timestamp %#llx\n",
__func__, sdb, (unsigned long)sdbt,
te->header.overflow,
(te->header.f) ? trailer_timestamp(te) : 0ULL);
/* Collect all samples from a single sample-data-block and
* flag if an (perf) event overflow happened. If so, the PMU
* is stopped and remaining samples will be discarded.
*/
hw_collect_samples(event, (unsigned long *)sdb, &event_overflow);
num_sdb++;
/* Reset trailer (using compare-double-and-swap) */
prev.val = READ_ONCE_ALIGNED_128(te->header.val);
do {
old.val = prev.val;
new.val = prev.val;
new.f = 0;
new.a = 1;
new.overflow = 0;
prev.val = cmpxchg128(&te->header.val, old.val, new.val);
} while (prev.val != old.val);
/* Advance to next sample-data-block */
sdbt++;
if (is_link_entry(sdbt))
sdbt = get_next_sdbt(sdbt);
/* Update event hardware registers */
TEAR_REG(hwc) = (unsigned long) sdbt;
/* Stop processing sample-data if all samples of the current
* sample-data-block were flushed even if it was not full.
*/
if (flush_all && done)
break;
}
/* Account sample overflows in the event hardware structure */
if (sampl_overflow)
OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
sampl_overflow, 1 + num_sdb);
/* Perf_event_overflow() and perf_event_account_interrupt() limit
* the interrupt rate to an upper limit. Roughly 1000 samples per
* task tick.
* Hitting this limit results in a large number
* of throttled REF_REPORT_THROTTLE entries and the samples
* are dropped.
* Slightly increase the interval to avoid hitting this limit.
*/
if (event_overflow) {
SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
__func__,
DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
}
if (sampl_overflow || event_overflow)
debug_sprintf_event(sfdbg, 4, "%s: "
"overflows: sample %llu event %llu"
" total %llu num_sdb %llu\n",
__func__, sampl_overflow, event_overflow,
OVERFLOW_REG(hwc), num_sdb);
}
static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
unsigned long i)
{
return i % aux->sfb.num_sdb;
}
static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
{
return end >= start ? end - start + 1 : 0;
}
static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
{
return aux_sdb_num(aux->head, aux->alert_mark);
}
static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
{
return aux_sdb_num(aux->head, aux->empty_mark);
}
/*
* Get trailer entry by index of SDB.
*/
static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
unsigned long index)
{
unsigned long sdb;
index = aux_sdb_index(aux, index);
sdb = aux->sdb_index[index];
return trailer_entry_ptr(sdb);
}
/*
* Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
* disabled. Collect the full SDBs in AUX buffer which have not reached
* the point of alert indicator. And ignore the SDBs which are not
* full.
*
* 1. Scan SDBs to see how much data is there and consume them.
* 2. Remove alert indicator in the buffer.
*/
static void aux_output_end(struct perf_output_handle *handle)
{
unsigned long i, range_scan, idx;
struct aux_buffer *aux;
struct hws_trailer_entry *te;
aux = perf_get_aux(handle);
if (!aux)
return;
range_scan = aux_sdb_num_alert(aux);
for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
te = aux_sdb_trailer(aux, idx);
if (!te->header.f)
break;
}
/* i is num of SDBs which are full */
perf_aux_output_end(handle, i << PAGE_SHIFT);
/* Remove alert indicators in the buffer */
te = aux_sdb_trailer(aux, aux->alert_mark);
te->header.a = 0;
debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
__func__, i, range_scan, aux->head);
}
/*
* Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
* is first added to the CPU or rescheduled again to the CPU. It is called
* with pmu disabled.
*
* 1. Reset the trailer of SDBs to get ready for new data.
* 2. Tell the hardware where to put the data by reset the SDBs buffer
* head(tear/dear).
*/
static int aux_output_begin(struct perf_output_handle *handle,
struct aux_buffer *aux,
struct cpu_hw_sf *cpuhw)
{
unsigned long range, i, range_scan, idx, head, base, offset;
struct hws_trailer_entry *te;
if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
return -EINVAL;
aux->head = handle->head >> PAGE_SHIFT;
range = (handle->size + 1) >> PAGE_SHIFT;
if (range <= 1)
return -ENOMEM;
/*
* SDBs between aux->head and aux->empty_mark are already ready
* for new data. range_scan is num of SDBs not within them.
*/
debug_sprintf_event(sfdbg, 6,
"%s: range %ld head %ld alert %ld empty %ld\n",
__func__, range, aux->head, aux->alert_mark,
aux->empty_mark);
if (range > aux_sdb_num_empty(aux)) {
range_scan = range - aux_sdb_num_empty(aux);
idx = aux->empty_mark + 1;
for (i = 0; i < range_scan; i++, idx++) {
te = aux_sdb_trailer(aux, idx);
te->header.f = 0;
te->header.a = 0;
te->header.overflow = 0;
}
/* Save the position of empty SDBs */
aux->empty_mark = aux->head + range - 1;
}
/* Set alert indicator */
aux->alert_mark = aux->head + range/2 - 1;
te = aux_sdb_trailer(aux, aux->alert_mark);
te->header.a = 1;
/* Reset hardware buffer head */
head = aux_sdb_index(aux, aux->head);
base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
offset = head % CPUM_SF_SDB_PER_TABLE;
cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long);
cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]);
debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
"index %ld tear %#lx dear %#lx\n", __func__,
aux->head, aux->alert_mark, aux->empty_mark,
head / CPUM_SF_SDB_PER_TABLE,
cpuhw->lsctl.tear, cpuhw->lsctl.dear);
return 0;
}
/*
* Set alert indicator on SDB at index @alert_index while sampler is running.
*
* Return true if successfully.
* Return false if full indicator is already set by hardware sampler.
*/
static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
unsigned long long *overflow)
{
union hws_trailer_header old, prev, new;
struct hws_trailer_entry *te;
te = aux_sdb_trailer(aux, alert_index);
prev.val = READ_ONCE_ALIGNED_128(te->header.val);
do {
old.val = prev.val;
new.val = prev.val;
*overflow = old.overflow;
if (old.f) {
/*
* SDB is already set by hardware.
* Abort and try to set somewhere
* behind.
*/
return false;
}
new.a = 1;
new.overflow = 0;
prev.val = cmpxchg128(&te->header.val, old.val, new.val);
} while (prev.val != old.val);
return true;
}
/*
* aux_reset_buffer() - Scan and setup SDBs for new samples
* @aux: The AUX buffer to set
* @range: The range of SDBs to scan started from aux->head
* @overflow: Set to overflow count
*
* Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
* marked as empty, check if it is already set full by the hardware sampler.
* If yes, that means new data is already there before we can set an alert
* indicator. Caller should try to set alert indicator to some position behind.
*
* Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
* previously and have already been consumed by user space. Reset these SDBs
* (clear full indicator and alert indicator) for new data.
* If aux->alert_mark fall in this area, just set it. Overflow count is
* recorded while scanning.
*
* SDBs between aux->head and aux->empty_mark are already reset at last time.
* and ready for new samples. So scanning on this area could be skipped.
*
* Return true if alert indicator is set successfully and false if not.
*/
static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
unsigned long long *overflow)
{
unsigned long i, range_scan, idx, idx_old;
union hws_trailer_header old, prev, new;
unsigned long long orig_overflow;
struct hws_trailer_entry *te;
debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
"empty %ld\n", __func__, range, aux->head,
aux->alert_mark, aux->empty_mark);
if (range <= aux_sdb_num_empty(aux))
/*
* No need to scan. All SDBs in range are marked as empty.
* Just set alert indicator. Should check race with hardware
* sampler.
*/
return aux_set_alert(aux, aux->alert_mark, overflow);
if (aux->alert_mark <= aux->empty_mark)
/*
* Set alert indicator on empty SDB. Should check race
* with hardware sampler.
*/
if (!aux_set_alert(aux, aux->alert_mark, overflow))
return false;
/*
* Scan the SDBs to clear full and alert indicator used previously.
* Start scanning from one SDB behind empty_mark. If the new alert
* indicator fall into this range, set it.
*/
range_scan = range - aux_sdb_num_empty(aux);
idx_old = idx = aux->empty_mark + 1;
for (i = 0; i < range_scan; i++, idx++) {
te = aux_sdb_trailer(aux, idx);
prev.val = READ_ONCE_ALIGNED_128(te->header.val);
do {
old.val = prev.val;
new.val = prev.val;
orig_overflow = old.overflow;
new.f = 0;
new.overflow = 0;
if (idx == aux->alert_mark)
new.a = 1;
else
new.a = 0;
prev.val = cmpxchg128(&te->header.val, old.val, new.val);
} while (prev.val != old.val);
*overflow += orig_overflow;
}
/* Update empty_mark to new position */
aux->empty_mark = aux->head + range - 1;
debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
"empty %ld\n", __func__, range_scan, idx_old,
idx - 1, aux->empty_mark);
return true;
}
/*
* Measurement alert handler for diagnostic mode sampling.
*/
static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
{
struct aux_buffer *aux;
int done = 0;
unsigned long range = 0, size;
unsigned long long overflow = 0;
struct perf_output_handle *handle = &cpuhw->handle;
unsigned long num_sdb;
aux = perf_get_aux(handle);
if (WARN_ON_ONCE(!aux))
return;
/* Inform user space new data arrived */
size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
size >> PAGE_SHIFT);
perf_aux_output_end(handle, size);
num_sdb = aux->sfb.num_sdb;
while (!done) {
/* Get an output handle */
aux = perf_aux_output_begin(handle, cpuhw->event);
if (handle->size == 0) {
pr_err("The AUX buffer with %lu pages for the "
"diagnostic-sampling mode is full\n",
num_sdb);
break;
}
if (WARN_ON_ONCE(!aux))
return;
/* Update head and alert_mark to new position */
aux->head = handle->head >> PAGE_SHIFT;
range = (handle->size + 1) >> PAGE_SHIFT;
if (range == 1)
aux->alert_mark = aux->head;
else
aux->alert_mark = aux->head + range/2 - 1;
if (aux_reset_buffer(aux, range, &overflow)) {
if (!overflow) {
done = 1;
break;
}
size = range << PAGE_SHIFT;
perf_aux_output_end(&cpuhw->handle, size);
pr_err("Sample data caused the AUX buffer with %lu "
"pages to overflow\n", aux->sfb.num_sdb);
debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
"overflow %lld\n", __func__,
aux->head, range, overflow);
} else {
size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
perf_aux_output_end(&cpuhw->handle, size);
debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
"already full, try another\n",
__func__,
aux->head, aux->alert_mark);
}
}
if (done)
debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
"empty %ld\n", __func__, aux->head,
aux->alert_mark, aux->empty_mark);
}
/*
* Callback when freeing AUX buffers.
*/
static void aux_buffer_free(void *data)
{
struct aux_buffer *aux = data;
unsigned long i, num_sdbt;
if (!aux)
return;
/* Free SDBT. SDB is freed by the caller */
num_sdbt = aux->sfb.num_sdbt;
for (i = 0; i < num_sdbt; i++)
free_page(aux->sdbt_index[i]);
kfree(aux->sdbt_index);
kfree(aux->sdb_index);
kfree(aux);
debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
}
static void aux_sdb_init(unsigned long sdb)
{
struct hws_trailer_entry *te;
te = trailer_entry_ptr(sdb);
/* Save clock base */
te->clock_base = 1;
te->progusage2 = tod_clock_base.tod;
}
/*
* aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
* @event: Event the buffer is setup for, event->cpu == -1 means current
* @pages: Array of pointers to buffer pages passed from perf core
* @nr_pages: Total pages
* @snapshot: Flag for snapshot mode
*
* This is the callback when setup an event using AUX buffer. Perf tool can
* trigger this by an additional mmap() call on the event. Unlike the buffer
* for basic samples, AUX buffer belongs to the event. It is scheduled with
* the task among online cpus when it is a per-thread event.
*
* Return the private AUX buffer structure if success or NULL if fails.
*/
static void *aux_buffer_setup(struct perf_event *event, void **pages,
int nr_pages, bool snapshot)
{
struct sf_buffer *sfb;
struct aux_buffer *aux;
unsigned long *new, *tail;
int i, n_sdbt;
if (!nr_pages || !pages)
return NULL;
if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
pr_err("AUX buffer size (%i pages) is larger than the "
"maximum sampling buffer limit\n",
nr_pages);
return NULL;
} else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
pr_err("AUX buffer size (%i pages) is less than the "
"minimum sampling buffer limit\n",
nr_pages);
return NULL;
}
/* Allocate aux_buffer struct for the event */
aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
if (!aux)
goto no_aux;
sfb = &aux->sfb;
/* Allocate sdbt_index for fast reference */
n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
if (!aux->sdbt_index)
goto no_sdbt_index;
/* Allocate sdb_index for fast reference */
aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
if (!aux->sdb_index)
goto no_sdb_index;
/* Allocate the first SDBT */
sfb->num_sdbt = 0;
sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
if (!sfb->sdbt)
goto no_sdbt;
aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
tail = sfb->tail = sfb->sdbt;
/*
* Link the provided pages of AUX buffer to SDBT.
* Allocate SDBT if needed.
*/
for (i = 0; i < nr_pages; i++, tail++) {
if (require_table_link(tail)) {
new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
if (!new)
goto no_sdbt;
aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
/* Link current page to tail of chain */
*tail = virt_to_phys(new) + 1;
tail = new;
}
/* Tail is the entry in a SDBT */
*tail = virt_to_phys(pages[i]);
aux->sdb_index[i] = (unsigned long)pages[i];
aux_sdb_init((unsigned long)pages[i]);
}
sfb->num_sdb = nr_pages;
/* Link the last entry in the SDBT to the first SDBT */
*tail = virt_to_phys(sfb->sdbt) + 1;
sfb->tail = tail;
/*
* Initial all SDBs are zeroed. Mark it as empty.
* So there is no need to clear the full indicator
* when this event is first added.
*/
aux->empty_mark = sfb->num_sdb - 1;
debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
sfb->num_sdbt, sfb->num_sdb);
return aux;
no_sdbt:
/* SDBs (AUX buffer pages) are freed by caller */
for (i = 0; i < sfb->num_sdbt; i++)
free_page(aux->sdbt_index[i]);
kfree(aux->sdb_index);
no_sdb_index:
kfree(aux->sdbt_index);
no_sdbt_index:
kfree(aux);
no_aux:
return NULL;
}
static void cpumsf_pmu_read(struct perf_event *event)
{
/* Nothing to do ... updates are interrupt-driven */
}
/* Check if the new sampling period/frequency is appropriate.
*
* Return non-zero on error and zero on passed checks.
*/
static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
{
struct hws_qsi_info_block si;
unsigned long rate;
bool do_freq;
memset(&si, 0, sizeof(si));
if (event->cpu == -1) {
if (qsi(&si))
return -ENODEV;
} else {
/* Event is pinned to a particular CPU, retrieve the per-CPU
* sampling structure for accessing the CPU-specific QSI.
*/
struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
si = cpuhw->qsi;
}
do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
rate = getrate(do_freq, value, &si);
if (!rate)
return -EINVAL;
event->attr.sample_period = rate;
SAMPL_RATE(&event->hw) = rate;
hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
debug_sprintf_event(sfdbg, 4, "%s:"
" cpu %d value %#llx period %#llx freq %d\n",
__func__, event->cpu, value,
event->attr.sample_period, do_freq);
return 0;
}
/* Activate sampling control.
* Next call of pmu_enable() starts sampling.
*/
static void cpumsf_pmu_start(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
return;
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
perf_pmu_disable(event->pmu);
event->hw.state = 0;
cpuhw->lsctl.cs = 1;
if (SAMPL_DIAG_MODE(&event->hw))
cpuhw->lsctl.cd = 1;
perf_pmu_enable(event->pmu);
}
/* Deactivate sampling control.
* Next call of pmu_enable() stops sampling.
*/
static void cpumsf_pmu_stop(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
if (event->hw.state & PERF_HES_STOPPED)
return;
perf_pmu_disable(event->pmu);
cpuhw->lsctl.cs = 0;
cpuhw->lsctl.cd = 0;
event->hw.state |= PERF_HES_STOPPED;
if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
hw_perf_event_update(event, 1);
event->hw.state |= PERF_HES_UPTODATE;
}
perf_pmu_enable(event->pmu);
}
static int cpumsf_pmu_add(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
struct aux_buffer *aux;
int err;
if (cpuhw->flags & PMU_F_IN_USE)
return -EAGAIN;
if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
return -EINVAL;
err = 0;
perf_pmu_disable(event->pmu);
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
/* Set up sampling controls. Always program the sampling register
* using the SDB-table start. Reset TEAR_REG event hardware register
* that is used by hw_perf_event_update() to store the sampling buffer
* position after samples have been flushed.
*/
cpuhw->lsctl.s = 0;
cpuhw->lsctl.h = 1;
cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
if (!SAMPL_DIAG_MODE(&event->hw)) {
cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt);
cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
}
/* Ensure sampling functions are in the disabled state. If disabled,
* switch on sampling enable control. */
if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
err = -EAGAIN;
goto out;
}
if (SAMPL_DIAG_MODE(&event->hw)) {
aux = perf_aux_output_begin(&cpuhw->handle, event);
if (!aux) {
err = -EINVAL;
goto out;
}
err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
if (err)
goto out;
cpuhw->lsctl.ed = 1;
}
cpuhw->lsctl.es = 1;
/* Set in_use flag and store event */
cpuhw->event = event;
cpuhw->flags |= PMU_F_IN_USE;
if (flags & PERF_EF_START)
cpumsf_pmu_start(event, PERF_EF_RELOAD);
out:
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
return err;
}
static void cpumsf_pmu_del(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
perf_pmu_disable(event->pmu);
cpumsf_pmu_stop(event, PERF_EF_UPDATE);
cpuhw->lsctl.es = 0;
cpuhw->lsctl.ed = 0;
cpuhw->flags &= ~PMU_F_IN_USE;
cpuhw->event = NULL;
if (SAMPL_DIAG_MODE(&event->hw))
aux_output_end(&cpuhw->handle);
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
}
CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
/* Attribute list for CPU_SF.
*
* The availablitiy depends on the CPU_MF sampling facility authorization
* for basic + diagnositic samples. This is determined at initialization
* time by the sampling facility device driver.
* If the authorization for basic samples is turned off, it should be
* also turned off for diagnostic sampling.
*
* During initialization of the device driver, check the authorization
* level for diagnostic sampling and installs the attribute
* file for diagnostic sampling if necessary.
*
* For now install a placeholder to reference all possible attributes:
* SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
* Add another entry for the final NULL pointer.
*/
enum {
SF_CYCLES_BASIC_ATTR_IDX = 0,
SF_CYCLES_BASIC_DIAG_ATTR_IDX,
SF_CYCLES_ATTR_MAX
};
static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
[SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
};
PMU_FORMAT_ATTR(event, "config:0-63");
static struct attribute *cpumsf_pmu_format_attr[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group cpumsf_pmu_events_group = {
.name = "events",
.attrs = cpumsf_pmu_events_attr,
};
static struct attribute_group cpumsf_pmu_format_group = {
.name = "format",
.attrs = cpumsf_pmu_format_attr,
};
static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
&cpumsf_pmu_events_group,
&cpumsf_pmu_format_group,
NULL,
};
static struct pmu cpumf_sampling = {
.pmu_enable = cpumsf_pmu_enable,
.pmu_disable = cpumsf_pmu_disable,
.event_init = cpumsf_pmu_event_init,
.add = cpumsf_pmu_add,
.del = cpumsf_pmu_del,
.start = cpumsf_pmu_start,
.stop = cpumsf_pmu_stop,
.read = cpumsf_pmu_read,
.attr_groups = cpumsf_pmu_attr_groups,
.setup_aux = aux_buffer_setup,
.free_aux = aux_buffer_free,
.check_period = cpumsf_pmu_check_period,
};
static void cpumf_measurement_alert(struct ext_code ext_code,
unsigned int alert, unsigned long unused)
{
struct cpu_hw_sf *cpuhw;
if (!(alert & CPU_MF_INT_SF_MASK))
return;
inc_irq_stat(IRQEXT_CMS);
cpuhw = this_cpu_ptr(&cpu_hw_sf);
/* Measurement alerts are shared and might happen when the PMU
* is not reserved. Ignore these alerts in this case. */
if (!(cpuhw->flags & PMU_F_RESERVED))
return;
/* The processing below must take care of multiple alert events that
* might be indicated concurrently. */
/* Program alert request */
if (alert & CPU_MF_INT_SF_PRA) {
if (cpuhw->flags & PMU_F_IN_USE)
if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
hw_collect_aux(cpuhw);
else
hw_perf_event_update(cpuhw->event, 0);
else
WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
}
/* Report measurement alerts only for non-PRA codes */
if (alert != CPU_MF_INT_SF_PRA)
debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
alert);
/* Sampling authorization change request */
if (alert & CPU_MF_INT_SF_SACA)
qsi(&cpuhw->qsi);
/* Loss of sample data due to high-priority machine activities */
if (alert & CPU_MF_INT_SF_LSDA) {
pr_err("Sample data was lost\n");
cpuhw->flags |= PMU_F_ERR_LSDA;
sf_disable();
}
/* Invalid sampling buffer entry */
if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
alert);
cpuhw->flags |= PMU_F_ERR_IBE;
sf_disable();
}
}
static int cpusf_pmu_setup(unsigned int cpu, int flags)
{
/* Ignore the notification if no events are scheduled on the PMU.
* This might be racy...
*/
if (!atomic_read(&num_events))
return 0;
local_irq_disable();
setup_pmc_cpu(&flags);
local_irq_enable();
return 0;
}
static int s390_pmu_sf_online_cpu(unsigned int cpu)
{
return cpusf_pmu_setup(cpu, PMC_INIT);
}
static int s390_pmu_sf_offline_cpu(unsigned int cpu)
{
return cpusf_pmu_setup(cpu, PMC_RELEASE);
}
static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
{
if (!cpum_sf_avail())
return -ENODEV;
return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
}
static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
{
int rc;
unsigned long min, max;
if (!cpum_sf_avail())
return -ENODEV;
if (!val || !strlen(val))
return -EINVAL;
/* Valid parameter values: "min,max" or "max" */
min = CPUM_SF_MIN_SDB;
max = CPUM_SF_MAX_SDB;
if (strchr(val, ','))
rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
else
rc = kstrtoul(val, 10, &max);
if (min < 2 || min >= max || max > get_num_physpages())
rc = -EINVAL;
if (rc)
return rc;
sfb_set_limits(min, max);
pr_info("The sampling buffer limits have changed to: "
"min %lu max %lu (diag %lu)\n",
CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
return 0;
}
#define param_check_sfb_size(name, p) __param_check(name, p, void)
static const struct kernel_param_ops param_ops_sfb_size = {
.set = param_set_sfb_size,
.get = param_get_sfb_size,
};
#define RS_INIT_FAILURE_QSI 0x0001
#define RS_INIT_FAILURE_BSDES 0x0002
#define RS_INIT_FAILURE_ALRT 0x0003
#define RS_INIT_FAILURE_PERF 0x0004
static void __init pr_cpumsf_err(unsigned int reason)
{
pr_err("Sampling facility support for perf is not available: "
"reason %#x\n", reason);
}
static int __init init_cpum_sampling_pmu(void)
{
struct hws_qsi_info_block si;
int err;
if (!cpum_sf_avail())
return -ENODEV;
memset(&si, 0, sizeof(si));
if (qsi(&si)) {
pr_cpumsf_err(RS_INIT_FAILURE_QSI);
return -ENODEV;
}
if (!si.as && !si.ad)
return -ENODEV;
if (si.bsdes != sizeof(struct hws_basic_entry)) {
pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
return -EINVAL;
}
if (si.ad) {
sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
/* Sampling of diagnostic data authorized,
* install event into attribute list of PMU device.
*/
cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
}
sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
if (!sfdbg) {
pr_err("Registering for s390dbf failed\n");
return -ENOMEM;
}
debug_register_view(sfdbg, &debug_sprintf_view);
err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
cpumf_measurement_alert);
if (err) {
pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
debug_unregister(sfdbg);
goto out;
}
err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
if (err) {
pr_cpumsf_err(RS_INIT_FAILURE_PERF);
unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
cpumf_measurement_alert);
debug_unregister(sfdbg);
goto out;
}
cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
out:
return err;
}
arch_initcall(init_cpum_sampling_pmu);
core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);