linux/arch/s390/kernel/perf_cpum_cf.c
Thomas Richter f10933cbd2 s390/cpum_cf: make crypto counters upward compatible across machine types
The CPU Measurement facility crypto counter set functionality
is defined by the Second Counter Version Number. This number
varies between machine types, but is upward compatible.
Lessen the checks to reflect this behavior.

Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
2024-04-09 17:29:56 +02:00

1951 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Performance event support for s390x - CPU-measurement Counter Facility
*
* Copyright IBM Corp. 2012, 2023
* Author(s): Hendrik Brueckner <brueckner@linux.ibm.com>
* Thomas Richter <tmricht@linux.ibm.com>
*/
#define KMSG_COMPONENT "cpum_cf"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/miscdevice.h>
#include <linux/perf_event.h>
#include <asm/cpu_mf.h>
#include <asm/hwctrset.h>
#include <asm/debug.h>
enum cpumf_ctr_set {
CPUMF_CTR_SET_BASIC = 0, /* Basic Counter Set */
CPUMF_CTR_SET_USER = 1, /* Problem-State Counter Set */
CPUMF_CTR_SET_CRYPTO = 2, /* Crypto-Activity Counter Set */
CPUMF_CTR_SET_EXT = 3, /* Extended Counter Set */
CPUMF_CTR_SET_MT_DIAG = 4, /* MT-diagnostic Counter Set */
/* Maximum number of counter sets */
CPUMF_CTR_SET_MAX,
};
#define CPUMF_LCCTL_ENABLE_SHIFT 16
#define CPUMF_LCCTL_ACTCTL_SHIFT 0
static inline void ctr_set_enable(u64 *state, u64 ctrsets)
{
*state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT;
}
static inline void ctr_set_disable(u64 *state, u64 ctrsets)
{
*state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT);
}
static inline void ctr_set_start(u64 *state, u64 ctrsets)
{
*state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT;
}
static inline void ctr_set_stop(u64 *state, u64 ctrsets)
{
*state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT);
}
static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest)
{
switch (set) {
case CPUMF_CTR_SET_BASIC:
return stcctm(BASIC, range, dest);
case CPUMF_CTR_SET_USER:
return stcctm(PROBLEM_STATE, range, dest);
case CPUMF_CTR_SET_CRYPTO:
return stcctm(CRYPTO_ACTIVITY, range, dest);
case CPUMF_CTR_SET_EXT:
return stcctm(EXTENDED, range, dest);
case CPUMF_CTR_SET_MT_DIAG:
return stcctm(MT_DIAG_CLEARING, range, dest);
case CPUMF_CTR_SET_MAX:
return 3;
}
return 3;
}
struct cpu_cf_events {
refcount_t refcnt; /* Reference count */
atomic_t ctr_set[CPUMF_CTR_SET_MAX];
u64 state; /* For perf_event_open SVC */
u64 dev_state; /* For /dev/hwctr */
unsigned int flags;
size_t used; /* Bytes used in data */
size_t usedss; /* Bytes used in start/stop */
unsigned char start[PAGE_SIZE]; /* Counter set at event add */
unsigned char stop[PAGE_SIZE]; /* Counter set at event delete */
unsigned char data[PAGE_SIZE]; /* Counter set at /dev/hwctr */
unsigned int sets; /* # Counter set saved in memory */
};
static unsigned int cfdiag_cpu_speed; /* CPU speed for CF_DIAG trailer */
static debug_info_t *cf_dbg;
/*
* The CPU Measurement query counter information instruction contains
* information which varies per machine generation, but is constant and
* does not change when running on a particular machine, such as counter
* first and second version number. This is needed to determine the size
* of counter sets. Extract this information at device driver initialization.
*/
static struct cpumf_ctr_info cpumf_ctr_info;
struct cpu_cf_ptr {
struct cpu_cf_events *cpucf;
};
static struct cpu_cf_root { /* Anchor to per CPU data */
refcount_t refcnt; /* Overall active events */
struct cpu_cf_ptr __percpu *cfptr;
} cpu_cf_root;
/*
* Serialize event initialization and event removal. Both are called from
* user space in task context with perf_event_open() and close()
* system calls.
*
* This mutex serializes functions cpum_cf_alloc_cpu() called at event
* initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu()
* called at event removal via call back function hw_perf_event_destroy()
* when the event is deleted. They are serialized to enforce correct
* bookkeeping of pointer and reference counts anchored by
* struct cpu_cf_root and the access to cpu_cf_root::refcnt and the
* per CPU pointers stored in cpu_cf_root::cfptr.
*/
static DEFINE_MUTEX(pmc_reserve_mutex);
/*
* Get pointer to per-cpu structure.
*
* Function get_cpu_cfhw() is called from
* - cfset_copy_all(): This function is protected by cpus_read_lock(), so
* CPU hot plug remove can not happen. Event removal requires a close()
* first.
*
* Function this_cpu_cfhw() is called from perf common code functions:
* - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}():
* All functions execute with interrupts disabled on that particular CPU.
* - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all().
*
* Therefore it is safe to access the CPU specific pointer to the event.
*/
static struct cpu_cf_events *get_cpu_cfhw(int cpu)
{
struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr;
if (p) {
struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu);
return q->cpucf;
}
return NULL;
}
static struct cpu_cf_events *this_cpu_cfhw(void)
{
return get_cpu_cfhw(smp_processor_id());
}
/* Disable counter sets on dedicated CPU */
static void cpum_cf_reset_cpu(void *flags)
{
lcctl(0);
}
/* Free per CPU data when the last event is removed. */
static void cpum_cf_free_root(void)
{
if (!refcount_dec_and_test(&cpu_cf_root.refcnt))
return;
free_percpu(cpu_cf_root.cfptr);
cpu_cf_root.cfptr = NULL;
irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
debug_sprintf_event(cf_dbg, 4, "%s root.refcnt %u cfptr %d\n",
__func__, refcount_read(&cpu_cf_root.refcnt),
!cpu_cf_root.cfptr);
}
/*
* On initialization of first event also allocate per CPU data dynamically.
* Start with an array of pointers, the array size is the maximum number of
* CPUs possible, which might be larger than the number of CPUs currently
* online.
*/
static int cpum_cf_alloc_root(void)
{
int rc = 0;
if (refcount_inc_not_zero(&cpu_cf_root.refcnt))
return rc;
/* The memory is already zeroed. */
cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr);
if (cpu_cf_root.cfptr) {
refcount_set(&cpu_cf_root.refcnt, 1);
on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
} else {
rc = -ENOMEM;
}
return rc;
}
/* Free CPU counter data structure for a PMU */
static void cpum_cf_free_cpu(int cpu)
{
struct cpu_cf_events *cpuhw;
struct cpu_cf_ptr *p;
mutex_lock(&pmc_reserve_mutex);
/*
* When invoked via CPU hotplug handler, there might be no events
* installed or that particular CPU might not have an
* event installed. This anchor pointer can be NULL!
*/
if (!cpu_cf_root.cfptr)
goto out;
p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
cpuhw = p->cpucf;
/*
* Might be zero when called from CPU hotplug handler and no event
* installed on that CPU, but on different CPUs.
*/
if (!cpuhw)
goto out;
if (refcount_dec_and_test(&cpuhw->refcnt)) {
kfree(cpuhw);
p->cpucf = NULL;
}
cpum_cf_free_root();
out:
mutex_unlock(&pmc_reserve_mutex);
}
/* Allocate CPU counter data structure for a PMU. Called under mutex lock. */
static int cpum_cf_alloc_cpu(int cpu)
{
struct cpu_cf_events *cpuhw;
struct cpu_cf_ptr *p;
int rc;
mutex_lock(&pmc_reserve_mutex);
rc = cpum_cf_alloc_root();
if (rc)
goto unlock;
p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
cpuhw = p->cpucf;
if (!cpuhw) {
cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL);
if (cpuhw) {
p->cpucf = cpuhw;
refcount_set(&cpuhw->refcnt, 1);
} else {
rc = -ENOMEM;
}
} else {
refcount_inc(&cpuhw->refcnt);
}
if (rc) {
/*
* Error in allocation of event, decrement anchor. Since
* cpu_cf_event in not created, its destroy() function is not
* invoked. Adjust the reference counter for the anchor.
*/
cpum_cf_free_root();
}
unlock:
mutex_unlock(&pmc_reserve_mutex);
return rc;
}
/*
* Create/delete per CPU data structures for /dev/hwctr interface and events
* created by perf_event_open().
* If cpu is -1, track task on all available CPUs. This requires
* allocation of hardware data structures for all CPUs. This setup handles
* perf_event_open() with task context and /dev/hwctr interface.
* If cpu is non-zero install event on this CPU only. This setup handles
* perf_event_open() with CPU context.
*/
static int cpum_cf_alloc(int cpu)
{
cpumask_var_t mask;
int rc;
if (cpu == -1) {
if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
for_each_online_cpu(cpu) {
rc = cpum_cf_alloc_cpu(cpu);
if (rc) {
for_each_cpu(cpu, mask)
cpum_cf_free_cpu(cpu);
break;
}
cpumask_set_cpu(cpu, mask);
}
free_cpumask_var(mask);
} else {
rc = cpum_cf_alloc_cpu(cpu);
}
return rc;
}
static void cpum_cf_free(int cpu)
{
if (cpu == -1) {
for_each_online_cpu(cpu)
cpum_cf_free_cpu(cpu);
} else {
cpum_cf_free_cpu(cpu);
}
}
#define CF_DIAG_CTRSET_DEF 0xfeef /* Counter set header mark */
/* interval in seconds */
/* Counter sets are stored as data stream in a page sized memory buffer and
* exported to user space via raw data attached to the event sample data.
* Each counter set starts with an eight byte header consisting of:
* - a two byte eye catcher (0xfeef)
* - a one byte counter set number
* - a two byte counter set size (indicates the number of counters in this set)
* - a three byte reserved value (must be zero) to make the header the same
* size as a counter value.
* All counter values are eight byte in size.
*
* All counter sets are followed by a 64 byte trailer.
* The trailer consists of a:
* - flag field indicating valid fields when corresponding bit set
* - the counter facility first and second version number
* - the CPU speed if nonzero
* - the time stamp the counter sets have been collected
* - the time of day (TOD) base value
* - the machine type.
*
* The counter sets are saved when the process is prepared to be executed on a
* CPU and saved again when the process is going to be removed from a CPU.
* The difference of both counter sets are calculated and stored in the event
* sample data area.
*/
struct cf_ctrset_entry { /* CPU-M CF counter set entry (8 byte) */
unsigned int def:16; /* 0-15 Data Entry Format */
unsigned int set:16; /* 16-31 Counter set identifier */
unsigned int ctr:16; /* 32-47 Number of stored counters */
unsigned int res1:16; /* 48-63 Reserved */
};
struct cf_trailer_entry { /* CPU-M CF_DIAG trailer (64 byte) */
/* 0 - 7 */
union {
struct {
unsigned int clock_base:1; /* TOD clock base set */
unsigned int speed:1; /* CPU speed set */
/* Measurement alerts */
unsigned int mtda:1; /* Loss of MT ctr. data alert */
unsigned int caca:1; /* Counter auth. change alert */
unsigned int lcda:1; /* Loss of counter data alert */
};
unsigned long flags; /* 0-63 All indicators */
};
/* 8 - 15 */
unsigned int cfvn:16; /* 64-79 Ctr First Version */
unsigned int csvn:16; /* 80-95 Ctr Second Version */
unsigned int cpu_speed:32; /* 96-127 CPU speed */
/* 16 - 23 */
unsigned long timestamp; /* 128-191 Timestamp (TOD) */
/* 24 - 55 */
union {
struct {
unsigned long progusage1;
unsigned long progusage2;
unsigned long progusage3;
unsigned long tod_base;
};
unsigned long progusage[4];
};
/* 56 - 63 */
unsigned int mach_type:16; /* Machine type */
unsigned int res1:16; /* Reserved */
unsigned int res2:32; /* Reserved */
};
/* Create the trailer data at the end of a page. */
static void cfdiag_trailer(struct cf_trailer_entry *te)
{
struct cpuid cpuid;
te->cfvn = cpumf_ctr_info.cfvn; /* Counter version numbers */
te->csvn = cpumf_ctr_info.csvn;
get_cpu_id(&cpuid); /* Machine type */
te->mach_type = cpuid.machine;
te->cpu_speed = cfdiag_cpu_speed;
if (te->cpu_speed)
te->speed = 1;
te->clock_base = 1; /* Save clock base */
te->tod_base = tod_clock_base.tod;
te->timestamp = get_tod_clock_fast();
}
/*
* The number of counters per counter set varies between machine generations,
* but is constant when running on a particular machine generation.
* Determine each counter set size at device driver initialization and
* retrieve it later.
*/
static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX];
static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)
{
size_t ctrset_size = 0;
switch (ctrset) {
case CPUMF_CTR_SET_BASIC:
if (cpumf_ctr_info.cfvn >= 1)
ctrset_size = 6;
break;
case CPUMF_CTR_SET_USER:
if (cpumf_ctr_info.cfvn == 1)
ctrset_size = 6;
else if (cpumf_ctr_info.cfvn >= 3)
ctrset_size = 2;
break;
case CPUMF_CTR_SET_CRYPTO:
if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5)
ctrset_size = 16;
else if (cpumf_ctr_info.csvn >= 6)
ctrset_size = 20;
break;
case CPUMF_CTR_SET_EXT:
if (cpumf_ctr_info.csvn == 1)
ctrset_size = 32;
else if (cpumf_ctr_info.csvn == 2)
ctrset_size = 48;
else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5)
ctrset_size = 128;
else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7)
ctrset_size = 160;
break;
case CPUMF_CTR_SET_MT_DIAG:
if (cpumf_ctr_info.csvn > 3)
ctrset_size = 48;
break;
case CPUMF_CTR_SET_MAX:
break;
}
cpumf_ctr_setsizes[ctrset] = ctrset_size;
}
/*
* Return the maximum possible counter set size (in number of 8 byte counters)
* depending on type and model number.
*/
static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)
{
return cpumf_ctr_setsizes[ctrset];
}
/* Read a counter set. The counter set number determines the counter set and
* the CPUM-CF first and second version number determine the number of
* available counters in each counter set.
* Each counter set starts with header containing the counter set number and
* the number of eight byte counters.
*
* The functions returns the number of bytes occupied by this counter set
* including the header.
* If there is no counter in the counter set, this counter set is useless and
* zero is returned on this case.
*
* Note that the counter sets may not be enabled or active and the stcctm
* instruction might return error 3. Depending on error_ok value this is ok,
* for example when called from cpumf_pmu_start() call back function.
*/
static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset,
size_t room, bool error_ok)
{
size_t ctrset_size, need = 0;
int rc = 3; /* Assume write failure */
ctrdata->def = CF_DIAG_CTRSET_DEF;
ctrdata->set = ctrset;
ctrdata->res1 = 0;
ctrset_size = cpum_cf_read_setsize(ctrset);
if (ctrset_size) { /* Save data */
need = ctrset_size * sizeof(u64) + sizeof(*ctrdata);
if (need <= room) {
rc = ctr_stcctm(ctrset, ctrset_size,
(u64 *)(ctrdata + 1));
}
if (rc != 3 || error_ok)
ctrdata->ctr = ctrset_size;
else
need = 0;
}
return need;
}
static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = {
[CPUMF_CTR_SET_BASIC] = 0x02,
[CPUMF_CTR_SET_USER] = 0x04,
[CPUMF_CTR_SET_CRYPTO] = 0x08,
[CPUMF_CTR_SET_EXT] = 0x01,
[CPUMF_CTR_SET_MT_DIAG] = 0x20,
};
/* Read out all counter sets and save them in the provided data buffer.
* The last 64 byte host an artificial trailer entry.
*/
static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth,
bool error_ok)
{
struct cf_trailer_entry *trailer;
size_t offset = 0, done;
int i;
memset(data, 0, sz);
sz -= sizeof(*trailer); /* Always room for trailer */
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
struct cf_ctrset_entry *ctrdata = data + offset;
if (!(auth & cpumf_ctr_ctl[i]))
continue; /* Counter set not authorized */
done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok);
offset += done;
}
trailer = data + offset;
cfdiag_trailer(trailer);
return offset + sizeof(*trailer);
}
/* Calculate the difference for each counter in a counter set. */
static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters)
{
for (; --counters >= 0; ++pstart, ++pstop)
if (*pstop >= *pstart)
*pstop -= *pstart;
else
*pstop = *pstart - *pstop + 1;
}
/* Scan the counter sets and calculate the difference of each counter
* in each set. The result is the increment of each counter during the
* period the counter set has been activated.
*
* Return true on success.
*/
static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth)
{
struct cf_trailer_entry *trailer_start, *trailer_stop;
struct cf_ctrset_entry *ctrstart, *ctrstop;
size_t offset = 0;
auth &= (1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1;
do {
ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset);
ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset);
if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) {
pr_err_once("cpum_cf_diag counter set compare error "
"in set %i\n", ctrstart->set);
return 0;
}
auth &= ~cpumf_ctr_ctl[ctrstart->set];
if (ctrstart->def == CF_DIAG_CTRSET_DEF) {
cfdiag_diffctrset((u64 *)(ctrstart + 1),
(u64 *)(ctrstop + 1), ctrstart->ctr);
offset += ctrstart->ctr * sizeof(u64) +
sizeof(*ctrstart);
}
} while (ctrstart->def && auth);
/* Save time_stamp from start of event in stop's trailer */
trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset);
trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset);
trailer_stop->progusage[0] = trailer_start->timestamp;
return 1;
}
static enum cpumf_ctr_set get_counter_set(u64 event)
{
int set = CPUMF_CTR_SET_MAX;
if (event < 32)
set = CPUMF_CTR_SET_BASIC;
else if (event < 64)
set = CPUMF_CTR_SET_USER;
else if (event < 128)
set = CPUMF_CTR_SET_CRYPTO;
else if (event < 288)
set = CPUMF_CTR_SET_EXT;
else if (event >= 448 && event < 496)
set = CPUMF_CTR_SET_MT_DIAG;
return set;
}
static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set)
{
u16 mtdiag_ctl;
int err = 0;
/* check required version for counter sets */
switch (set) {
case CPUMF_CTR_SET_BASIC:
case CPUMF_CTR_SET_USER:
if (cpumf_ctr_info.cfvn < 1)
err = -EOPNOTSUPP;
break;
case CPUMF_CTR_SET_CRYPTO:
if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 &&
config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83))
err = -EOPNOTSUPP;
break;
case CPUMF_CTR_SET_EXT:
if (cpumf_ctr_info.csvn < 1)
err = -EOPNOTSUPP;
if ((cpumf_ctr_info.csvn == 1 && config > 159) ||
(cpumf_ctr_info.csvn == 2 && config > 175) ||
(cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 &&
config > 255) ||
(cpumf_ctr_info.csvn >= 6 && config > 287))
err = -EOPNOTSUPP;
break;
case CPUMF_CTR_SET_MT_DIAG:
if (cpumf_ctr_info.csvn <= 3)
err = -EOPNOTSUPP;
/*
* MT-diagnostic counters are read-only. The counter set
* is automatically enabled and activated on all CPUs with
* multithreading (SMT). Deactivation of multithreading
* also disables the counter set. State changes are ignored
* by lcctl(). Because Linux controls SMT enablement through
* a kernel parameter only, the counter set is either disabled
* or enabled and active.
*
* Thus, the counters can only be used if SMT is on and the
* counter set is enabled and active.
*/
mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG];
if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) &&
(cpumf_ctr_info.enable_ctl & mtdiag_ctl) &&
(cpumf_ctr_info.act_ctl & mtdiag_ctl)))
err = -EOPNOTSUPP;
break;
case CPUMF_CTR_SET_MAX:
err = -EOPNOTSUPP;
}
return err;
}
/*
* Change the CPUMF state to active.
* Enable and activate the CPU-counter sets according
* to the per-cpu control state.
*/
static void cpumf_pmu_enable(struct pmu *pmu)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
int err;
if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED))
return;
err = lcctl(cpuhw->state | cpuhw->dev_state);
if (err)
pr_err("Enabling the performance measuring unit failed with rc=%x\n", err);
else
cpuhw->flags |= PMU_F_ENABLED;
}
/*
* Change the CPUMF state to inactive.
* Disable and enable (inactive) the CPU-counter sets according
* to the per-cpu control state.
*/
static void cpumf_pmu_disable(struct pmu *pmu)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
u64 inactive;
int err;
if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED))
return;
inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1);
inactive |= cpuhw->dev_state;
err = lcctl(inactive);
if (err)
pr_err("Disabling the performance measuring unit failed with rc=%x\n", err);
else
cpuhw->flags &= ~PMU_F_ENABLED;
}
/* Release the PMU if event is the last perf event */
static void hw_perf_event_destroy(struct perf_event *event)
{
cpum_cf_free(event->cpu);
}
/* CPUMF <-> perf event mappings for kernel+userspace (basic set) */
static const int cpumf_generic_events_basic[] = {
[PERF_COUNT_HW_CPU_CYCLES] = 0,
[PERF_COUNT_HW_INSTRUCTIONS] = 1,
[PERF_COUNT_HW_CACHE_REFERENCES] = -1,
[PERF_COUNT_HW_CACHE_MISSES] = -1,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
[PERF_COUNT_HW_BRANCH_MISSES] = -1,
[PERF_COUNT_HW_BUS_CYCLES] = -1,
};
/* CPUMF <-> perf event mappings for userspace (problem-state set) */
static const int cpumf_generic_events_user[] = {
[PERF_COUNT_HW_CPU_CYCLES] = 32,
[PERF_COUNT_HW_INSTRUCTIONS] = 33,
[PERF_COUNT_HW_CACHE_REFERENCES] = -1,
[PERF_COUNT_HW_CACHE_MISSES] = -1,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
[PERF_COUNT_HW_BRANCH_MISSES] = -1,
[PERF_COUNT_HW_BUS_CYCLES] = -1,
};
static int is_userspace_event(u64 ev)
{
return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev;
}
static int __hw_perf_event_init(struct perf_event *event, unsigned int type)
{
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
enum cpumf_ctr_set set;
u64 ev;
switch (type) {
case PERF_TYPE_RAW:
/* Raw events are used to access counters directly,
* hence do not permit excludes */
if (attr->exclude_kernel || attr->exclude_user ||
attr->exclude_hv)
return -EOPNOTSUPP;
ev = attr->config;
break;
case PERF_TYPE_HARDWARE:
if (is_sampling_event(event)) /* No sampling support */
return -ENOENT;
ev = attr->config;
if (!attr->exclude_user && attr->exclude_kernel) {
/*
* Count user space (problem-state) only
* Handle events 32 and 33 as 0:u and 1:u
*/
if (!is_userspace_event(ev)) {
if (ev >= ARRAY_SIZE(cpumf_generic_events_user))
return -EOPNOTSUPP;
ev = cpumf_generic_events_user[ev];
}
} else if (!attr->exclude_kernel && attr->exclude_user) {
/* No support for kernel space counters only */
return -EOPNOTSUPP;
} else {
/* Count user and kernel space, incl. events 32 + 33 */
if (!is_userspace_event(ev)) {
if (ev >= ARRAY_SIZE(cpumf_generic_events_basic))
return -EOPNOTSUPP;
ev = cpumf_generic_events_basic[ev];
}
}
break;
default:
return -ENOENT;
}
if (ev == -1)
return -ENOENT;
if (ev > PERF_CPUM_CF_MAX_CTR)
return -ENOENT;
/* Obtain the counter set to which the specified counter belongs */
set = get_counter_set(ev);
switch (set) {
case CPUMF_CTR_SET_BASIC:
case CPUMF_CTR_SET_USER:
case CPUMF_CTR_SET_CRYPTO:
case CPUMF_CTR_SET_EXT:
case CPUMF_CTR_SET_MT_DIAG:
/*
* Use the hardware perf event structure to store the
* counter number in the 'config' member and the counter
* set number in the 'config_base' as bit mask.
* It is later used to enable/disable the counter(s).
*/
hwc->config = ev;
hwc->config_base = cpumf_ctr_ctl[set];
break;
case CPUMF_CTR_SET_MAX:
/* The counter could not be associated to a counter set */
return -EINVAL;
}
/* Initialize for using the CPU-measurement counter facility */
if (cpum_cf_alloc(event->cpu))
return -ENOMEM;
event->destroy = hw_perf_event_destroy;
/*
* Finally, validate version and authorization of the counter set.
* If the particular CPU counter set is not authorized,
* return with -ENOENT in order to fall back to other
* PMUs that might suffice the event request.
*/
if (!(hwc->config_base & cpumf_ctr_info.auth_ctl))
return -ENOENT;
return validate_ctr_version(hwc->config, set);
}
/* Events CPU_CYLCES and INSTRUCTIONS can be submitted with two different
* attribute::type values:
* - PERF_TYPE_HARDWARE:
* - pmu->type:
* Handle both type of invocations identical. They address the same hardware.
* The result is different when event modifiers exclude_kernel and/or
* exclude_user are also set.
*/
static int cpumf_pmu_event_type(struct perf_event *event)
{
u64 ev = event->attr.config;
if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev ||
cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev ||
cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev)
return PERF_TYPE_HARDWARE;
return PERF_TYPE_RAW;
}
static int cpumf_pmu_event_init(struct perf_event *event)
{
unsigned int type = event->attr.type;
int err;
if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW)
err = __hw_perf_event_init(event, type);
else if (event->pmu->type == type)
/* Registered as unknown PMU */
err = __hw_perf_event_init(event, cpumf_pmu_event_type(event));
else
return -ENOENT;
if (unlikely(err) && event->destroy)
event->destroy(event);
return err;
}
static int hw_perf_event_reset(struct perf_event *event)
{
u64 prev, new;
int err;
do {
prev = local64_read(&event->hw.prev_count);
err = ecctr(event->hw.config, &new);
if (err) {
if (err != 3)
break;
/* The counter is not (yet) available. This
* might happen if the counter set to which
* this counter belongs is in the disabled
* state.
*/
new = 0;
}
} while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
return err;
}
static void hw_perf_event_update(struct perf_event *event)
{
u64 prev, new, delta;
int err;
do {
prev = local64_read(&event->hw.prev_count);
err = ecctr(event->hw.config, &new);
if (err)
return;
} while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
delta = (prev <= new) ? new - prev
: (-1ULL - prev) + new + 1; /* overflow */
local64_add(delta, &event->count);
}
static void cpumf_pmu_read(struct perf_event *event)
{
if (event->hw.state & PERF_HES_STOPPED)
return;
hw_perf_event_update(event);
}
static void cpumf_pmu_start(struct perf_event *event, int flags)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
struct hw_perf_event *hwc = &event->hw;
int i;
if (!(hwc->state & PERF_HES_STOPPED))
return;
hwc->state = 0;
/* (Re-)enable and activate the counter set */
ctr_set_enable(&cpuhw->state, hwc->config_base);
ctr_set_start(&cpuhw->state, hwc->config_base);
/* The counter set to which this counter belongs can be already active.
* Because all counters in a set are active, the event->hw.prev_count
* needs to be synchronized. At this point, the counter set can be in
* the inactive or disabled state.
*/
if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
cpuhw->usedss = cfdiag_getctr(cpuhw->start,
sizeof(cpuhw->start),
hwc->config_base, true);
} else {
hw_perf_event_reset(event);
}
/* Increment refcount for counter sets */
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
if ((hwc->config_base & cpumf_ctr_ctl[i]))
atomic_inc(&cpuhw->ctr_set[i]);
}
/* Create perf event sample with the counter sets as raw data. The sample
* is then pushed to the event subsystem and the function checks for
* possible event overflows. If an event overflow occurs, the PMU is
* stopped.
*
* Return non-zero if an event overflow occurred.
*/
static int cfdiag_push_sample(struct perf_event *event,
struct cpu_cf_events *cpuhw)
{
struct perf_sample_data data;
struct perf_raw_record raw;
struct pt_regs regs;
int overflow;
/* Setup perf sample */
perf_sample_data_init(&data, 0, event->hw.last_period);
memset(&regs, 0, sizeof(regs));
memset(&raw, 0, sizeof(raw));
if (event->attr.sample_type & PERF_SAMPLE_CPU)
data.cpu_entry.cpu = event->cpu;
if (event->attr.sample_type & PERF_SAMPLE_RAW) {
raw.frag.size = cpuhw->usedss;
raw.frag.data = cpuhw->stop;
perf_sample_save_raw_data(&data, &raw);
}
overflow = perf_event_overflow(event, &data, &regs);
if (overflow)
event->pmu->stop(event, 0);
perf_event_update_userpage(event);
return overflow;
}
static void cpumf_pmu_stop(struct perf_event *event, int flags)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
struct hw_perf_event *hwc = &event->hw;
int i;
if (!(hwc->state & PERF_HES_STOPPED)) {
/* Decrement reference count for this counter set and if this
* is the last used counter in the set, clear activation
* control and set the counter set state to inactive.
*/
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
if (!(hwc->config_base & cpumf_ctr_ctl[i]))
continue;
if (!atomic_dec_return(&cpuhw->ctr_set[i]))
ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]);
}
hwc->state |= PERF_HES_STOPPED;
}
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
local64_inc(&event->count);
cpuhw->usedss = cfdiag_getctr(cpuhw->stop,
sizeof(cpuhw->stop),
event->hw.config_base,
false);
if (cfdiag_diffctr(cpuhw, event->hw.config_base))
cfdiag_push_sample(event, cpuhw);
} else {
hw_perf_event_update(event);
}
hwc->state |= PERF_HES_UPTODATE;
}
}
static int cpumf_pmu_add(struct perf_event *event, int flags)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
ctr_set_enable(&cpuhw->state, event->hw.config_base);
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
if (flags & PERF_EF_START)
cpumf_pmu_start(event, PERF_EF_RELOAD);
return 0;
}
static void cpumf_pmu_del(struct perf_event *event, int flags)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
int i;
cpumf_pmu_stop(event, PERF_EF_UPDATE);
/* Check if any counter in the counter set is still used. If not used,
* change the counter set to the disabled state. This also clears the
* content of all counters in the set.
*
* When a new perf event has been added but not yet started, this can
* clear enable control and resets all counters in a set. Therefore,
* cpumf_pmu_start() always has to reenable a counter set.
*/
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
if (!atomic_read(&cpuhw->ctr_set[i]))
ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]);
}
/* Performance monitoring unit for s390x */
static struct pmu cpumf_pmu = {
.task_ctx_nr = perf_sw_context,
.capabilities = PERF_PMU_CAP_NO_INTERRUPT,
.pmu_enable = cpumf_pmu_enable,
.pmu_disable = cpumf_pmu_disable,
.event_init = cpumf_pmu_event_init,
.add = cpumf_pmu_add,
.del = cpumf_pmu_del,
.start = cpumf_pmu_start,
.stop = cpumf_pmu_stop,
.read = cpumf_pmu_read,
};
static struct cfset_session { /* CPUs and counter set bit mask */
struct list_head head; /* Head of list of active processes */
} cfset_session = {
.head = LIST_HEAD_INIT(cfset_session.head)
};
static refcount_t cfset_opencnt = REFCOUNT_INIT(0); /* Access count */
/*
* Synchronize access to device /dev/hwc. This mutex protects against
* concurrent access to functions cfset_open() and cfset_release().
* Same for CPU hotplug add and remove events triggering
* cpum_cf_online_cpu() and cpum_cf_offline_cpu().
* It also serializes concurrent device ioctl access from multiple
* processes accessing /dev/hwc.
*
* The mutex protects concurrent access to the /dev/hwctr session management
* struct cfset_session and reference counting variable cfset_opencnt.
*/
static DEFINE_MUTEX(cfset_ctrset_mutex);
/*
* CPU hotplug handles only /dev/hwctr device.
* For perf_event_open() the CPU hotplug handling is done on kernel common
* code:
* - CPU add: Nothing is done since a file descriptor can not be created
* and returned to the user.
* - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and
* pmu_delete(). The event itself is removed when the file descriptor is
* closed.
*/
static int cfset_online_cpu(unsigned int cpu);
static int cpum_cf_online_cpu(unsigned int cpu)
{
int rc = 0;
/*
* Ignore notification for perf_event_open().
* Handle only /dev/hwctr device sessions.
*/
mutex_lock(&cfset_ctrset_mutex);
if (refcount_read(&cfset_opencnt)) {
rc = cpum_cf_alloc_cpu(cpu);
if (!rc)
cfset_online_cpu(cpu);
}
mutex_unlock(&cfset_ctrset_mutex);
return rc;
}
static int cfset_offline_cpu(unsigned int cpu);
static int cpum_cf_offline_cpu(unsigned int cpu)
{
/*
* During task exit processing of grouped perf events triggered by CPU
* hotplug processing, pmu_disable() is called as part of perf context
* removal process. Therefore do not trigger event removal now for
* perf_event_open() created events. Perf common code triggers event
* destruction when the event file descriptor is closed.
*
* Handle only /dev/hwctr device sessions.
*/
mutex_lock(&cfset_ctrset_mutex);
if (refcount_read(&cfset_opencnt)) {
cfset_offline_cpu(cpu);
cpum_cf_free_cpu(cpu);
}
mutex_unlock(&cfset_ctrset_mutex);
return 0;
}
/* Return true if store counter set multiple instruction is available */
static inline int stccm_avail(void)
{
return test_facility(142);
}
/* CPU-measurement alerts for the counter facility */
static void cpumf_measurement_alert(struct ext_code ext_code,
unsigned int alert, unsigned long unused)
{
struct cpu_cf_events *cpuhw;
if (!(alert & CPU_MF_INT_CF_MASK))
return;
inc_irq_stat(IRQEXT_CMC);
/*
* Measurement alerts are shared and might happen when the PMU
* is not reserved. Ignore these alerts in this case.
*/
cpuhw = this_cpu_cfhw();
if (!cpuhw)
return;
/* counter authorization change alert */
if (alert & CPU_MF_INT_CF_CACA)
qctri(&cpumf_ctr_info);
/* loss of counter data alert */
if (alert & CPU_MF_INT_CF_LCDA)
pr_err("CPU[%i] Counter data was lost\n", smp_processor_id());
/* loss of MT counter data alert */
if (alert & CPU_MF_INT_CF_MTDA)
pr_warn("CPU[%i] MT counter data was lost\n",
smp_processor_id());
}
static int cfset_init(void);
static int __init cpumf_pmu_init(void)
{
int rc;
/* Extract counter measurement facility information */
if (!cpum_cf_avail() || qctri(&cpumf_ctr_info))
return -ENODEV;
/* Determine and store counter set sizes for later reference */
for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
cpum_cf_make_setsize(rc);
/*
* Clear bit 15 of cr0 to unauthorize problem-state to
* extract measurement counters
*/
system_ctl_clear_bit(0, CR0_CPUMF_EXTRACTION_AUTH_BIT);
/* register handler for measurement-alert interruptions */
rc = register_external_irq(EXT_IRQ_MEASURE_ALERT,
cpumf_measurement_alert);
if (rc) {
pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc);
return rc;
}
/* Setup s390dbf facility */
cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128);
if (!cf_dbg) {
pr_err("Registration of s390dbf(cpum_cf) failed\n");
rc = -ENOMEM;
goto out1;
}
debug_register_view(cf_dbg, &debug_sprintf_view);
cpumf_pmu.attr_groups = cpumf_cf_event_group();
rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1);
if (rc) {
pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc);
goto out2;
} else if (stccm_avail()) { /* Setup counter set device */
cfset_init();
}
rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE,
"perf/s390/cf:online",
cpum_cf_online_cpu, cpum_cf_offline_cpu);
return rc;
out2:
debug_unregister_view(cf_dbg, &debug_sprintf_view);
debug_unregister(cf_dbg);
out1:
unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert);
return rc;
}
/* Support for the CPU Measurement Facility counter set extraction using
* device /dev/hwctr. This allows user space programs to extract complete
* counter set via normal file operations.
*/
struct cfset_call_on_cpu_parm { /* Parm struct for smp_call_on_cpu */
unsigned int sets; /* Counter set bit mask */
atomic_t cpus_ack; /* # CPUs successfully executed func */
};
struct cfset_request { /* CPUs and counter set bit mask */
unsigned long ctrset; /* Bit mask of counter set to read */
cpumask_t mask; /* CPU mask to read from */
struct list_head node; /* Chain to cfset_session.head */
};
static void cfset_session_init(void)
{
INIT_LIST_HEAD(&cfset_session.head);
}
/* Remove current request from global bookkeeping. Maintain a counter set bit
* mask on a per CPU basis.
* Done in process context under mutex protection.
*/
static void cfset_session_del(struct cfset_request *p)
{
list_del(&p->node);
}
/* Add current request to global bookkeeping. Maintain a counter set bit mask
* on a per CPU basis.
* Done in process context under mutex protection.
*/
static void cfset_session_add(struct cfset_request *p)
{
list_add(&p->node, &cfset_session.head);
}
/* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access
* path is currently used.
* The cpu_cf_events::dev_state is used to denote counter sets in use by this
* interface. It is always or'ed in. If this interface is not active, its
* value is zero and no additional counter sets will be included.
*
* The cpu_cf_events::state is used by the perf_event_open SVC and remains
* unchanged.
*
* perf_pmu_enable() and perf_pmu_enable() and its call backs
* cpumf_pmu_enable() and cpumf_pmu_disable() are called by the
* performance measurement subsystem to enable per process
* CPU Measurement counter facility.
* The XXX_enable() and XXX_disable functions are used to turn off
* x86 performance monitoring interrupt (PMI) during scheduling.
* s390 uses these calls to temporarily stop and resume the active CPU
* counters sets during scheduling.
*
* We do allow concurrent access of perf_event_open() SVC and /dev/hwctr
* device access. The perf_event_open() SVC interface makes a lot of effort
* to only run the counters while the calling process is actively scheduled
* to run.
* When /dev/hwctr interface is also used at the same time, the counter sets
* will keep running, even when the process is scheduled off a CPU.
* However this is not a problem and does not lead to wrong counter values
* for the perf_event_open() SVC. The current counter value will be recorded
* during schedule-in. At schedule-out time the current counter value is
* extracted again and the delta is calculated and added to the event.
*/
/* Stop all counter sets via ioctl interface */
static void cfset_ioctl_off(void *parm)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
struct cfset_call_on_cpu_parm *p = parm;
int rc;
/* Check if any counter set used by /dev/hwctr */
for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
if ((p->sets & cpumf_ctr_ctl[rc])) {
if (!atomic_dec_return(&cpuhw->ctr_set[rc])) {
ctr_set_disable(&cpuhw->dev_state,
cpumf_ctr_ctl[rc]);
ctr_set_stop(&cpuhw->dev_state,
cpumf_ctr_ctl[rc]);
}
}
/* Keep perf_event_open counter sets */
rc = lcctl(cpuhw->dev_state | cpuhw->state);
if (rc)
pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n",
cpuhw->state, S390_HWCTR_DEVICE, rc);
if (!cpuhw->dev_state)
cpuhw->flags &= ~PMU_F_IN_USE;
}
/* Start counter sets on particular CPU */
static void cfset_ioctl_on(void *parm)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
struct cfset_call_on_cpu_parm *p = parm;
int rc;
cpuhw->flags |= PMU_F_IN_USE;
ctr_set_enable(&cpuhw->dev_state, p->sets);
ctr_set_start(&cpuhw->dev_state, p->sets);
for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
if ((p->sets & cpumf_ctr_ctl[rc]))
atomic_inc(&cpuhw->ctr_set[rc]);
rc = lcctl(cpuhw->dev_state | cpuhw->state); /* Start counter sets */
if (!rc)
atomic_inc(&p->cpus_ack);
else
pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n",
cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc);
}
static void cfset_release_cpu(void *p)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
int rc;
cpuhw->dev_state = 0;
rc = lcctl(cpuhw->state); /* Keep perf_event_open counter sets */
if (rc)
pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n",
cpuhw->state, S390_HWCTR_DEVICE, rc);
}
/* This modifies the process CPU mask to adopt it to the currently online
* CPUs. Offline CPUs can not be addresses. This call terminates the access
* and is usually followed by close() or a new iotcl(..., START, ...) which
* creates a new request structure.
*/
static void cfset_all_stop(struct cfset_request *req)
{
struct cfset_call_on_cpu_parm p = {
.sets = req->ctrset,
};
cpumask_and(&req->mask, &req->mask, cpu_online_mask);
on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1);
}
/* Release function is also called when application gets terminated without
* doing a proper ioctl(..., S390_HWCTR_STOP, ...) command.
*/
static int cfset_release(struct inode *inode, struct file *file)
{
mutex_lock(&cfset_ctrset_mutex);
/* Open followed by close/exit has no private_data */
if (file->private_data) {
cfset_all_stop(file->private_data);
cfset_session_del(file->private_data);
kfree(file->private_data);
file->private_data = NULL;
}
if (refcount_dec_and_test(&cfset_opencnt)) { /* Last close */
on_each_cpu(cfset_release_cpu, NULL, 1);
cpum_cf_free(-1);
}
mutex_unlock(&cfset_ctrset_mutex);
return 0;
}
/*
* Open via /dev/hwctr device. Allocate all per CPU resources on the first
* open of the device. The last close releases all per CPU resources.
* Parallel perf_event_open system calls also use per CPU resources.
* These invocations are handled via reference counting on the per CPU data
* structures.
*/
static int cfset_open(struct inode *inode, struct file *file)
{
int rc = 0;
if (!perfmon_capable())
return -EPERM;
file->private_data = NULL;
mutex_lock(&cfset_ctrset_mutex);
if (!refcount_inc_not_zero(&cfset_opencnt)) { /* First open */
rc = cpum_cf_alloc(-1);
if (!rc) {
cfset_session_init();
refcount_set(&cfset_opencnt, 1);
}
}
mutex_unlock(&cfset_ctrset_mutex);
/* nonseekable_open() never fails */
return rc ?: nonseekable_open(inode, file);
}
static int cfset_all_start(struct cfset_request *req)
{
struct cfset_call_on_cpu_parm p = {
.sets = req->ctrset,
.cpus_ack = ATOMIC_INIT(0),
};
cpumask_var_t mask;
int rc = 0;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
cpumask_and(mask, &req->mask, cpu_online_mask);
on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1);
if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) {
on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1);
rc = -EIO;
}
free_cpumask_var(mask);
return rc;
}
/* Return the maximum required space for all possible CPUs in case one
* CPU will be onlined during the START, READ, STOP cycles.
* To find out the size of the counter sets, any one CPU will do. They
* all have the same counter sets.
*/
static size_t cfset_needspace(unsigned int sets)
{
size_t bytes = 0;
int i;
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
if (!(sets & cpumf_ctr_ctl[i]))
continue;
bytes += cpum_cf_read_setsize(i) * sizeof(u64) +
sizeof(((struct s390_ctrset_setdata *)0)->set) +
sizeof(((struct s390_ctrset_setdata *)0)->no_cnts);
}
bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids *
(bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) +
sizeof(((struct s390_ctrset_cpudata *)0)->no_sets));
return bytes;
}
static int cfset_all_copy(unsigned long arg, cpumask_t *mask)
{
struct s390_ctrset_read __user *ctrset_read;
unsigned int cpu, cpus, rc = 0;
void __user *uptr;
ctrset_read = (struct s390_ctrset_read __user *)arg;
uptr = ctrset_read->data;
for_each_cpu(cpu, mask) {
struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu);
struct s390_ctrset_cpudata __user *ctrset_cpudata;
ctrset_cpudata = uptr;
rc = put_user(cpu, &ctrset_cpudata->cpu_nr);
rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets);
rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data,
cpuhw->used);
if (rc) {
rc = -EFAULT;
goto out;
}
uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used;
cond_resched();
}
cpus = cpumask_weight(mask);
if (put_user(cpus, &ctrset_read->no_cpus))
rc = -EFAULT;
out:
return rc;
}
static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset,
int ctrset_size, size_t room)
{
size_t need = 0;
int rc = -1;
need = sizeof(*p) + sizeof(u64) * ctrset_size;
if (need <= room) {
p->set = cpumf_ctr_ctl[ctrset];
p->no_cnts = ctrset_size;
rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv);
if (rc == 3) /* Nothing stored */
need = 0;
}
return need;
}
/* Read all counter sets. */
static void cfset_cpu_read(void *parm)
{
struct cpu_cf_events *cpuhw = this_cpu_cfhw();
struct cfset_call_on_cpu_parm *p = parm;
int set, set_size;
size_t space;
/* No data saved yet */
cpuhw->used = 0;
cpuhw->sets = 0;
memset(cpuhw->data, 0, sizeof(cpuhw->data));
/* Scan the counter sets */
for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) {
struct s390_ctrset_setdata *sp = (void *)cpuhw->data +
cpuhw->used;
if (!(p->sets & cpumf_ctr_ctl[set]))
continue; /* Counter set not in list */
set_size = cpum_cf_read_setsize(set);
space = sizeof(cpuhw->data) - cpuhw->used;
space = cfset_cpuset_read(sp, set, set_size, space);
if (space) {
cpuhw->used += space;
cpuhw->sets += 1;
}
}
}
static int cfset_all_read(unsigned long arg, struct cfset_request *req)
{
struct cfset_call_on_cpu_parm p;
cpumask_var_t mask;
int rc;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
p.sets = req->ctrset;
cpumask_and(mask, &req->mask, cpu_online_mask);
on_each_cpu_mask(mask, cfset_cpu_read, &p, 1);
rc = cfset_all_copy(arg, mask);
free_cpumask_var(mask);
return rc;
}
static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req)
{
int ret = -ENODATA;
if (req && req->ctrset)
ret = cfset_all_read(arg, req);
return ret;
}
static long cfset_ioctl_stop(struct file *file)
{
struct cfset_request *req = file->private_data;
int ret = -ENXIO;
if (req) {
cfset_all_stop(req);
cfset_session_del(req);
kfree(req);
file->private_data = NULL;
ret = 0;
}
return ret;
}
static long cfset_ioctl_start(unsigned long arg, struct file *file)
{
struct s390_ctrset_start __user *ustart;
struct s390_ctrset_start start;
struct cfset_request *preq;
void __user *umask;
unsigned int len;
int ret = 0;
size_t need;
if (file->private_data)
return -EBUSY;
ustart = (struct s390_ctrset_start __user *)arg;
if (copy_from_user(&start, ustart, sizeof(start)))
return -EFAULT;
if (start.version != S390_HWCTR_START_VERSION)
return -EINVAL;
if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] |
cpumf_ctr_ctl[CPUMF_CTR_SET_USER] |
cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] |
cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] |
cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]))
return -EINVAL; /* Invalid counter set */
if (!start.counter_sets)
return -EINVAL; /* No counter set at all? */
preq = kzalloc(sizeof(*preq), GFP_KERNEL);
if (!preq)
return -ENOMEM;
cpumask_clear(&preq->mask);
len = min_t(u64, start.cpumask_len, cpumask_size());
umask = (void __user *)start.cpumask;
if (copy_from_user(&preq->mask, umask, len)) {
kfree(preq);
return -EFAULT;
}
if (cpumask_empty(&preq->mask)) {
kfree(preq);
return -EINVAL;
}
need = cfset_needspace(start.counter_sets);
if (put_user(need, &ustart->data_bytes)) {
kfree(preq);
return -EFAULT;
}
preq->ctrset = start.counter_sets;
ret = cfset_all_start(preq);
if (!ret) {
cfset_session_add(preq);
file->private_data = preq;
} else {
kfree(preq);
}
return ret;
}
/* Entry point to the /dev/hwctr device interface.
* The ioctl system call supports three subcommands:
* S390_HWCTR_START: Start the specified counter sets on a CPU list. The
* counter set keeps running until explicitly stopped. Returns the number
* of bytes needed to store the counter values. If another S390_HWCTR_START
* ioctl subcommand is called without a previous S390_HWCTR_STOP stop
* command on the same file descriptor, -EBUSY is returned.
* S390_HWCTR_READ: Read the counter set values from specified CPU list given
* with the S390_HWCTR_START command.
* S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the
* previous S390_HWCTR_START subcommand.
*/
static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int ret;
cpus_read_lock();
mutex_lock(&cfset_ctrset_mutex);
switch (cmd) {
case S390_HWCTR_START:
ret = cfset_ioctl_start(arg, file);
break;
case S390_HWCTR_STOP:
ret = cfset_ioctl_stop(file);
break;
case S390_HWCTR_READ:
ret = cfset_ioctl_read(arg, file->private_data);
break;
default:
ret = -ENOTTY;
break;
}
mutex_unlock(&cfset_ctrset_mutex);
cpus_read_unlock();
return ret;
}
static const struct file_operations cfset_fops = {
.owner = THIS_MODULE,
.open = cfset_open,
.release = cfset_release,
.unlocked_ioctl = cfset_ioctl,
.compat_ioctl = cfset_ioctl,
.llseek = no_llseek
};
static struct miscdevice cfset_dev = {
.name = S390_HWCTR_DEVICE,
.minor = MISC_DYNAMIC_MINOR,
.fops = &cfset_fops,
.mode = 0666,
};
/* Hotplug add of a CPU. Scan through all active processes and add
* that CPU to the list of CPUs supplied with ioctl(..., START, ...).
*/
static int cfset_online_cpu(unsigned int cpu)
{
struct cfset_call_on_cpu_parm p;
struct cfset_request *rp;
if (!list_empty(&cfset_session.head)) {
list_for_each_entry(rp, &cfset_session.head, node) {
p.sets = rp->ctrset;
cfset_ioctl_on(&p);
cpumask_set_cpu(cpu, &rp->mask);
}
}
return 0;
}
/* Hotplug remove of a CPU. Scan through all active processes and clear
* that CPU from the list of CPUs supplied with ioctl(..., START, ...).
* Adjust reference counts.
*/
static int cfset_offline_cpu(unsigned int cpu)
{
struct cfset_call_on_cpu_parm p;
struct cfset_request *rp;
if (!list_empty(&cfset_session.head)) {
list_for_each_entry(rp, &cfset_session.head, node) {
p.sets = rp->ctrset;
cfset_ioctl_off(&p);
cpumask_clear_cpu(cpu, &rp->mask);
}
}
return 0;
}
static void cfdiag_read(struct perf_event *event)
{
}
static int get_authctrsets(void)
{
unsigned long auth = 0;
enum cpumf_ctr_set i;
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i])
auth |= cpumf_ctr_ctl[i];
}
return auth;
}
/* Setup the event. Test for authorized counter sets and only include counter
* sets which are authorized at the time of the setup. Including unauthorized
* counter sets result in specification exception (and panic).
*/
static int cfdiag_event_init2(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
int err = 0;
/* Set sample_period to indicate sampling */
event->hw.config = attr->config;
event->hw.sample_period = attr->sample_period;
local64_set(&event->hw.period_left, event->hw.sample_period);
local64_set(&event->count, 0);
event->hw.last_period = event->hw.sample_period;
/* Add all authorized counter sets to config_base. The
* the hardware init function is either called per-cpu or just once
* for all CPUS (event->cpu == -1). This depends on the whether
* counting is started for all CPUs or on a per workload base where
* the perf event moves from one CPU to another CPU.
* Checking the authorization on any CPU is fine as the hardware
* applies the same authorization settings to all CPUs.
*/
event->hw.config_base = get_authctrsets();
/* No authorized counter sets, nothing to count/sample */
if (!event->hw.config_base)
err = -EINVAL;
return err;
}
static int cfdiag_event_init(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
int err = -ENOENT;
if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG ||
event->attr.type != event->pmu->type)
goto out;
/* Raw events are used to access counters directly,
* hence do not permit excludes.
* This event is useless without PERF_SAMPLE_RAW to return counter set
* values as raw data.
*/
if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv ||
!(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) {
err = -EOPNOTSUPP;
goto out;
}
/* Initialize for using the CPU-measurement counter facility */
if (cpum_cf_alloc(event->cpu))
return -ENOMEM;
event->destroy = hw_perf_event_destroy;
err = cfdiag_event_init2(event);
if (unlikely(err))
event->destroy(event);
out:
return err;
}
/* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used
* to collect the complete counter sets for a scheduled process. Target
* are complete counter sets attached as raw data to the artificial event.
* This results in complete counter sets available when a process is
* scheduled. Contains the delta of every counter while the process was
* running.
*/
CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG);
static struct attribute *cfdiag_events_attr[] = {
CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG),
NULL,
};
PMU_FORMAT_ATTR(event, "config:0-63");
static struct attribute *cfdiag_format_attr[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group cfdiag_events_group = {
.name = "events",
.attrs = cfdiag_events_attr,
};
static struct attribute_group cfdiag_format_group = {
.name = "format",
.attrs = cfdiag_format_attr,
};
static const struct attribute_group *cfdiag_attr_groups[] = {
&cfdiag_events_group,
&cfdiag_format_group,
NULL,
};
/* Performance monitoring unit for event CF_DIAG. Since this event
* is also started and stopped via the perf_event_open() system call, use
* the same event enable/disable call back functions. They do not
* have a pointer to the perf_event strcture as first parameter.
*
* The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common.
* Reuse them and distinguish the event (always first parameter) via
* 'config' member.
*/
static struct pmu cf_diag = {
.task_ctx_nr = perf_sw_context,
.event_init = cfdiag_event_init,
.pmu_enable = cpumf_pmu_enable,
.pmu_disable = cpumf_pmu_disable,
.add = cpumf_pmu_add,
.del = cpumf_pmu_del,
.start = cpumf_pmu_start,
.stop = cpumf_pmu_stop,
.read = cfdiag_read,
.attr_groups = cfdiag_attr_groups
};
/* Calculate memory needed to store all counter sets together with header and
* trailer data. This is independent of the counter set authorization which
* can vary depending on the configuration.
*/
static size_t cfdiag_maxsize(struct cpumf_ctr_info *info)
{
size_t max_size = sizeof(struct cf_trailer_entry);
enum cpumf_ctr_set i;
for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
size_t size = cpum_cf_read_setsize(i);
if (size)
max_size += size * sizeof(u64) +
sizeof(struct cf_ctrset_entry);
}
return max_size;
}
/* Get the CPU speed, try sampling facility first and CPU attributes second. */
static void cfdiag_get_cpu_speed(void)
{
unsigned long mhz;
if (cpum_sf_avail()) { /* Sampling facility first */
struct hws_qsi_info_block si;
memset(&si, 0, sizeof(si));
if (!qsi(&si)) {
cfdiag_cpu_speed = si.cpu_speed;
return;
}
}
/* Fallback: CPU speed extract static part. Used in case
* CPU Measurement Sampling Facility is turned off.
*/
mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0);
if (mhz != -1UL)
cfdiag_cpu_speed = mhz & 0xffffffff;
}
static int cfset_init(void)
{
size_t need;
int rc;
cfdiag_get_cpu_speed();
/* Make sure the counter set data fits into predefined buffer. */
need = cfdiag_maxsize(&cpumf_ctr_info);
if (need > sizeof(((struct cpu_cf_events *)0)->start)) {
pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n",
need);
return -ENOMEM;
}
rc = misc_register(&cfset_dev);
if (rc) {
pr_err("Registration of /dev/%s failed rc=%i\n",
cfset_dev.name, rc);
goto out;
}
rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1);
if (rc) {
misc_deregister(&cfset_dev);
pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n",
rc);
}
out:
return rc;
}
device_initcall(cpumf_pmu_init);