linux/drivers/infiniband/core/cq.c
Yamin Friedman c7ff819aef RDMA/core: Introduce shared CQ pool API
Allow a ULP to ask the core to provide a completion queue based on a
least-used search on a per-device CQ pools. The device CQ pools grow in a
lazy fashion when more CQs are requested.

This feature reduces the amount of interrupts when using many QPs.  Using
shared CQs allows for more effcient completion handling. It also reduces
the amount of overhead needed for CQ contexts.

Test setup:
Intel(R) Xeon(R) Platinum 8176M CPU @ 2.10GHz servers.
Running NVMeoF 4KB read IOs over ConnectX-5EX across Spectrum switch.
TX-depth = 32. The patch was applied in the nvme driver on both the target
and initiator. Four controllers are accessed from each core. In the
current test case we have exposed sixteen NVMe namespaces using four
different subsystems (four namespaces per subsystem) from one NVM port.
Each controller allocated X queues (RDMA QPs) and attached to Y CQs.
Before this series we had X == Y, i.e for four controllers we've created
total of 4X QPs and 4X CQs. In the shared case, we've created 4X QPs and
only X CQs which means that we have four controllers that share a
completion queue per core. Until fourteen cores there is no significant
change in performance and the number of interrupts per second is less than
a million in the current case.
==================================================
|Cores|Current KIOPs  |Shared KIOPs  |improvement|
|-----|---------------|--------------|-----------|
|14   |2332           |2723          |16.7%      |
|-----|---------------|--------------|-----------|
|20   |2086           |2712          |30%        |
|-----|---------------|--------------|-----------|
|28   |1971           |2669          |35.4%      |
|=================================================
|Cores|Current avg lat|Shared avg lat|improvement|
|-----|---------------|--------------|-----------|
|14   |767us          |657us         |14.3%      |
|-----|---------------|--------------|-----------|
|20   |1225us         |943us         |23%        |
|-----|---------------|--------------|-----------|
|28   |1816us         |1341us        |26.1%      |
========================================================
|Cores|Current interrupts|Shared interrupts|improvement|
|-----|------------------|-----------------|-----------|
|14   |1.6M/sec          |0.4M/sec         |72%        |
|-----|------------------|-----------------|-----------|
|20   |2.8M/sec          |0.6M/sec         |72.4%      |
|-----|------------------|-----------------|-----------|
|28   |2.9M/sec          |0.8M/sec         |63.4%      |
====================================================================
|Cores|Current 99.99th PCTL lat|Shared 99.99th PCTL lat|improvement|
|-----|------------------------|-----------------------|-----------|
|14   |67ms                    |6ms                    |90.9%      |
|-----|------------------------|-----------------------|-----------|
|20   |5ms                     |6ms                    |-10%       |
|-----|------------------------|-----------------------|-----------|
|28   |8.7ms                   |6ms                    |25.9%      |
|===================================================================

Performance improvement with sixteen disks (sixteen CQs per core) is
comparable.

Link: https://lore.kernel.org/r/1590568495-101621-3-git-send-email-yaminf@mellanox.com
Signed-off-by: Yamin Friedman <yaminf@mellanox.com>
Reviewed-by: Or Gerlitz <ogerlitz@mellanox.com>
Reviewed-by: Max Gurtovoy <maxg@mellanox.com>
Reviewed-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-29 16:09:02 -03:00

510 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015 HGST, a Western Digital Company.
*/
#include <linux/module.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <rdma/ib_verbs.h>
#include "core_priv.h"
#include <trace/events/rdma_core.h>
/* Max size for shared CQ, may require tuning */
#define IB_MAX_SHARED_CQ_SZ 4096U
/* # of WCs to poll for with a single call to ib_poll_cq */
#define IB_POLL_BATCH 16
#define IB_POLL_BATCH_DIRECT 8
/* # of WCs to iterate over before yielding */
#define IB_POLL_BUDGET_IRQ 256
#define IB_POLL_BUDGET_WORKQUEUE 65536
#define IB_POLL_FLAGS \
(IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS)
static const struct dim_cq_moder
rdma_dim_prof[RDMA_DIM_PARAMS_NUM_PROFILES] = {
{1, 0, 1, 0},
{1, 0, 4, 0},
{2, 0, 4, 0},
{2, 0, 8, 0},
{4, 0, 8, 0},
{16, 0, 8, 0},
{16, 0, 16, 0},
{32, 0, 16, 0},
{32, 0, 32, 0},
};
static void ib_cq_rdma_dim_work(struct work_struct *w)
{
struct dim *dim = container_of(w, struct dim, work);
struct ib_cq *cq = dim->priv;
u16 usec = rdma_dim_prof[dim->profile_ix].usec;
u16 comps = rdma_dim_prof[dim->profile_ix].comps;
dim->state = DIM_START_MEASURE;
trace_cq_modify(cq, comps, usec);
cq->device->ops.modify_cq(cq, comps, usec);
}
static void rdma_dim_init(struct ib_cq *cq)
{
struct dim *dim;
if (!cq->device->ops.modify_cq || !cq->device->use_cq_dim ||
cq->poll_ctx == IB_POLL_DIRECT)
return;
dim = kzalloc(sizeof(struct dim), GFP_KERNEL);
if (!dim)
return;
dim->state = DIM_START_MEASURE;
dim->tune_state = DIM_GOING_RIGHT;
dim->profile_ix = RDMA_DIM_START_PROFILE;
dim->priv = cq;
cq->dim = dim;
INIT_WORK(&dim->work, ib_cq_rdma_dim_work);
}
static int __poll_cq(struct ib_cq *cq, int num_entries, struct ib_wc *wc)
{
int rc;
rc = ib_poll_cq(cq, num_entries, wc);
trace_cq_poll(cq, num_entries, rc);
return rc;
}
static int __ib_process_cq(struct ib_cq *cq, int budget, struct ib_wc *wcs,
int batch)
{
int i, n, completed = 0;
trace_cq_process(cq);
/*
* budget might be (-1) if the caller does not
* want to bound this call, thus we need unsigned
* minimum here.
*/
while ((n = __poll_cq(cq, min_t(u32, batch,
budget - completed), wcs)) > 0) {
for (i = 0; i < n; i++) {
struct ib_wc *wc = &wcs[i];
if (wc->wr_cqe)
wc->wr_cqe->done(cq, wc);
else
WARN_ON_ONCE(wc->status == IB_WC_SUCCESS);
}
completed += n;
if (n != batch || (budget != -1 && completed >= budget))
break;
}
return completed;
}
/**
* ib_process_direct_cq - process a CQ in caller context
* @cq: CQ to process
* @budget: number of CQEs to poll for
*
* This function is used to process all outstanding CQ entries.
* It does not offload CQ processing to a different context and does
* not ask for completion interrupts from the HCA.
* Using direct processing on CQ with non IB_POLL_DIRECT type may trigger
* concurrent processing.
*
* Note: do not pass -1 as %budget unless it is guaranteed that the number
* of completions that will be processed is small.
*/
int ib_process_cq_direct(struct ib_cq *cq, int budget)
{
struct ib_wc wcs[IB_POLL_BATCH_DIRECT];
return __ib_process_cq(cq, budget, wcs, IB_POLL_BATCH_DIRECT);
}
EXPORT_SYMBOL(ib_process_cq_direct);
static void ib_cq_completion_direct(struct ib_cq *cq, void *private)
{
WARN_ONCE(1, "got unsolicited completion for CQ 0x%p\n", cq);
}
static int ib_poll_handler(struct irq_poll *iop, int budget)
{
struct ib_cq *cq = container_of(iop, struct ib_cq, iop);
struct dim *dim = cq->dim;
int completed;
completed = __ib_process_cq(cq, budget, cq->wc, IB_POLL_BATCH);
if (completed < budget) {
irq_poll_complete(&cq->iop);
if (ib_req_notify_cq(cq, IB_POLL_FLAGS) > 0) {
trace_cq_reschedule(cq);
irq_poll_sched(&cq->iop);
}
}
if (dim)
rdma_dim(dim, completed);
return completed;
}
static void ib_cq_completion_softirq(struct ib_cq *cq, void *private)
{
trace_cq_schedule(cq);
irq_poll_sched(&cq->iop);
}
static void ib_cq_poll_work(struct work_struct *work)
{
struct ib_cq *cq = container_of(work, struct ib_cq, work);
int completed;
completed = __ib_process_cq(cq, IB_POLL_BUDGET_WORKQUEUE, cq->wc,
IB_POLL_BATCH);
if (completed >= IB_POLL_BUDGET_WORKQUEUE ||
ib_req_notify_cq(cq, IB_POLL_FLAGS) > 0)
queue_work(cq->comp_wq, &cq->work);
else if (cq->dim)
rdma_dim(cq->dim, completed);
}
static void ib_cq_completion_workqueue(struct ib_cq *cq, void *private)
{
trace_cq_schedule(cq);
queue_work(cq->comp_wq, &cq->work);
}
/**
* __ib_alloc_cq_user - allocate a completion queue
* @dev: device to allocate the CQ for
* @private: driver private data, accessible from cq->cq_context
* @nr_cqe: number of CQEs to allocate
* @comp_vector: HCA completion vectors for this CQ
* @poll_ctx: context to poll the CQ from.
* @caller: module owner name.
* @udata: Valid user data or NULL for kernel object
*
* This is the proper interface to allocate a CQ for in-kernel users. A
* CQ allocated with this interface will automatically be polled from the
* specified context. The ULP must use wr->wr_cqe instead of wr->wr_id
* to use this CQ abstraction.
*/
struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
int nr_cqe, int comp_vector,
enum ib_poll_context poll_ctx,
const char *caller, struct ib_udata *udata)
{
struct ib_cq_init_attr cq_attr = {
.cqe = nr_cqe,
.comp_vector = comp_vector,
};
struct ib_cq *cq;
int ret = -ENOMEM;
cq = rdma_zalloc_drv_obj(dev, ib_cq);
if (!cq)
return ERR_PTR(ret);
cq->device = dev;
cq->cq_context = private;
cq->poll_ctx = poll_ctx;
atomic_set(&cq->usecnt, 0);
cq->comp_vector = comp_vector;
cq->wc = kmalloc_array(IB_POLL_BATCH, sizeof(*cq->wc), GFP_KERNEL);
if (!cq->wc)
goto out_free_cq;
cq->res.type = RDMA_RESTRACK_CQ;
rdma_restrack_set_task(&cq->res, caller);
ret = dev->ops.create_cq(cq, &cq_attr, NULL);
if (ret)
goto out_free_wc;
rdma_restrack_kadd(&cq->res);
rdma_dim_init(cq);
switch (cq->poll_ctx) {
case IB_POLL_DIRECT:
cq->comp_handler = ib_cq_completion_direct;
break;
case IB_POLL_SOFTIRQ:
cq->comp_handler = ib_cq_completion_softirq;
irq_poll_init(&cq->iop, IB_POLL_BUDGET_IRQ, ib_poll_handler);
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
break;
case IB_POLL_WORKQUEUE:
case IB_POLL_UNBOUND_WORKQUEUE:
cq->comp_handler = ib_cq_completion_workqueue;
INIT_WORK(&cq->work, ib_cq_poll_work);
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
cq->comp_wq = (cq->poll_ctx == IB_POLL_WORKQUEUE) ?
ib_comp_wq : ib_comp_unbound_wq;
break;
default:
ret = -EINVAL;
goto out_destroy_cq;
}
trace_cq_alloc(cq, nr_cqe, comp_vector, poll_ctx);
return cq;
out_destroy_cq:
rdma_restrack_del(&cq->res);
cq->device->ops.destroy_cq(cq, udata);
out_free_wc:
kfree(cq->wc);
out_free_cq:
kfree(cq);
trace_cq_alloc_error(nr_cqe, comp_vector, poll_ctx, ret);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(__ib_alloc_cq_user);
/**
* __ib_alloc_cq_any - allocate a completion queue
* @dev: device to allocate the CQ for
* @private: driver private data, accessible from cq->cq_context
* @nr_cqe: number of CQEs to allocate
* @poll_ctx: context to poll the CQ from
* @caller: module owner name
*
* Attempt to spread ULP Completion Queues over each device's interrupt
* vectors. A simple best-effort mechanism is used.
*/
struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
int nr_cqe, enum ib_poll_context poll_ctx,
const char *caller)
{
static atomic_t counter;
int comp_vector = 0;
if (dev->num_comp_vectors > 1)
comp_vector =
atomic_inc_return(&counter) %
min_t(int, dev->num_comp_vectors, num_online_cpus());
return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
caller, NULL);
}
EXPORT_SYMBOL(__ib_alloc_cq_any);
/**
* ib_free_cq_user - free a completion queue
* @cq: completion queue to free.
* @udata: User data or NULL for kernel object
*/
void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata)
{
if (WARN_ON_ONCE(atomic_read(&cq->usecnt)))
return;
if (WARN_ON_ONCE(cq->cqe_used))
return;
switch (cq->poll_ctx) {
case IB_POLL_DIRECT:
break;
case IB_POLL_SOFTIRQ:
irq_poll_disable(&cq->iop);
break;
case IB_POLL_WORKQUEUE:
case IB_POLL_UNBOUND_WORKQUEUE:
cancel_work_sync(&cq->work);
break;
default:
WARN_ON_ONCE(1);
}
trace_cq_free(cq);
rdma_restrack_del(&cq->res);
cq->device->ops.destroy_cq(cq, udata);
if (cq->dim)
cancel_work_sync(&cq->dim->work);
kfree(cq->dim);
kfree(cq->wc);
kfree(cq);
}
EXPORT_SYMBOL(ib_free_cq_user);
void ib_cq_pool_init(struct ib_device *dev)
{
unsigned int i;
spin_lock_init(&dev->cq_pools_lock);
for (i = 0; i < ARRAY_SIZE(dev->cq_pools); i++)
INIT_LIST_HEAD(&dev->cq_pools[i]);
}
void ib_cq_pool_destroy(struct ib_device *dev)
{
struct ib_cq *cq, *n;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dev->cq_pools); i++) {
list_for_each_entry_safe(cq, n, &dev->cq_pools[i],
pool_entry) {
WARN_ON(cq->cqe_used);
cq->shared = false;
ib_free_cq(cq);
}
}
}
static int ib_alloc_cqs(struct ib_device *dev, unsigned int nr_cqes,
enum ib_poll_context poll_ctx)
{
LIST_HEAD(tmp_list);
unsigned int nr_cqs, i;
struct ib_cq *cq;
int ret;
if (poll_ctx > IB_POLL_LAST_POOL_TYPE) {
WARN_ON_ONCE(poll_ctx > IB_POLL_LAST_POOL_TYPE);
return -EINVAL;
}
/*
* Allocate at least as many CQEs as requested, and otherwise
* a reasonable batch size so that we can share CQs between
* multiple users instead of allocating a larger number of CQs.
*/
nr_cqes = min_t(unsigned int, dev->attrs.max_cqe,
max(nr_cqes, IB_MAX_SHARED_CQ_SZ));
nr_cqs = min_t(unsigned int, dev->num_comp_vectors, num_online_cpus());
for (i = 0; i < nr_cqs; i++) {
cq = ib_alloc_cq(dev, NULL, nr_cqes, i, poll_ctx);
if (IS_ERR(cq)) {
ret = PTR_ERR(cq);
goto out_free_cqs;
}
cq->shared = true;
list_add_tail(&cq->pool_entry, &tmp_list);
}
spin_lock_irq(&dev->cq_pools_lock);
list_splice(&tmp_list, &dev->cq_pools[poll_ctx]);
spin_unlock_irq(&dev->cq_pools_lock);
return 0;
out_free_cqs:
list_for_each_entry(cq, &tmp_list, pool_entry) {
cq->shared = false;
ib_free_cq(cq);
}
return ret;
}
/**
* ib_cq_pool_get() - Find the least used completion queue that matches
* a given cpu hint (or least used for wild card affinity) and fits
* nr_cqe.
* @dev: rdma device
* @nr_cqe: number of needed cqe entries
* @comp_vector_hint: completion vector hint (-1) for the driver to assign
* a comp vector based on internal counter
* @poll_ctx: cq polling context
*
* Finds a cq that satisfies @comp_vector_hint and @nr_cqe requirements and
* claim entries in it for us. In case there is no available cq, allocate
* a new cq with the requirements and add it to the device pool.
* IB_POLL_DIRECT cannot be used for shared cqs so it is not a valid value
* for @poll_ctx.
*/
struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
int comp_vector_hint,
enum ib_poll_context poll_ctx)
{
static unsigned int default_comp_vector;
unsigned int vector, num_comp_vectors;
struct ib_cq *cq, *found = NULL;
int ret;
if (poll_ctx > IB_POLL_LAST_POOL_TYPE) {
WARN_ON_ONCE(poll_ctx > IB_POLL_LAST_POOL_TYPE);
return ERR_PTR(-EINVAL);
}
num_comp_vectors =
min_t(unsigned int, dev->num_comp_vectors, num_online_cpus());
/* Project the affinty to the device completion vector range */
if (comp_vector_hint < 0) {
comp_vector_hint =
(READ_ONCE(default_comp_vector) + 1) % num_comp_vectors;
WRITE_ONCE(default_comp_vector, comp_vector_hint);
}
vector = comp_vector_hint % num_comp_vectors;
/*
* Find the least used CQ with correct affinity and
* enough free CQ entries
*/
while (!found) {
spin_lock_irq(&dev->cq_pools_lock);
list_for_each_entry(cq, &dev->cq_pools[poll_ctx],
pool_entry) {
/*
* Check to see if we have found a CQ with the
* correct completion vector
*/
if (vector != cq->comp_vector)
continue;
if (cq->cqe_used + nr_cqe > cq->cqe)
continue;
found = cq;
break;
}
if (found) {
found->cqe_used += nr_cqe;
spin_unlock_irq(&dev->cq_pools_lock);
return found;
}
spin_unlock_irq(&dev->cq_pools_lock);
/*
* Didn't find a match or ran out of CQs in the device
* pool, allocate a new array of CQs.
*/
ret = ib_alloc_cqs(dev, nr_cqe, poll_ctx);
if (ret)
return ERR_PTR(ret);
}
return found;
}
EXPORT_SYMBOL(ib_cq_pool_get);
/**
* ib_cq_pool_put - Return a CQ taken from a shared pool.
* @cq: The CQ to return.
* @nr_cqe: The max number of cqes that the user had requested.
*/
void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe)
{
if (WARN_ON_ONCE(nr_cqe > cq->cqe_used))
return;
spin_lock_irq(&cq->device->cq_pools_lock);
cq->cqe_used -= nr_cqe;
spin_unlock_irq(&cq->device->cq_pools_lock);
}
EXPORT_SYMBOL(ib_cq_pool_put);